The Effects of Geometrical Scaling on the Frequency Response and Noise Performance of SiGe HBTs

Shiming Zhang, Student Member, IEEE, Guofu Niu, Member, IEEE, John D. Cressler, Fellow, IEEE, Alvin J. Joseph, Member, IEEE, Greg Freeman, Member, IEEE, and David L. Harame, Senior Member, IEEE

Abstract—We examine the geometrical scaling issues in SiGe HBT technology. Width scaling, length scaling, and stripe-number scaling are quantified from a radio frequency (RF) design perspective at 2 GHz. We conclude that a SiGe HBT with emitter area $A_E = 0.1 \times 20 \times 6 \mu m^2$ is optimum for low noise applications at $f = 2$ GHz using the design methodology, which guarantees optimal noise and input impedance matching with the simplest matching network. Finally, the optimal device sizes at $f = 4, 6$ GHz for low noise applications are also obtained using the same method.

Index Terms—Geometrical scaling, low noise amplifier (LNA), noise figure, noise model, SiGe HBT.

I. INTRODUCTION

While vertical profile scaling of emerging SiGe HBT technologies has received significant recent attention, the design issues and tradeoffs associated with geometrical scaling of a given SiGe technology generation have not been explored in detail. This is particularly true with respect to radio frequency (RF) performance metrics, where an empirical approach to optimum device geometry is frequently adopted (i.e., measure a large matrix of device sizes to determine the best one). We attempt to shed light on these geometrical scaling issues in SiGe HBT technology by addressing the following question: Given a specific SiGe HBT technology generation (i.e., vertical doping and Ge profile fixed), what is the device geometry that best optimizes a given RF performance metric? In this work, we focus on the frequency response and broadband noise performance at the practical RF frequencies of 2, 4 and 6 GHz and which would be required in the development of a low noise amplifier (LNA), for instance. Our results are based on a commercial 0.5 μm SiGe HBT technology [1], but our approach can be easily extended to any SiGe technology.

II. DEVICE TECHNOLOGY AND PARAMETER EXTRACTION

The SiGe HBT was fabricated using a self-aligned epitaxial-base technology [1]. It has a planar structure and deep trench/shallow trench isolation, as shown in Fig. 1. The SiGe base is deposited in an ultrahigh-vacuum/chemical vapor deposition (UHV/CVD) low temperature epitaxy (LTE) system. The intrinsic collector was formed by a double ion implantation to realize high performance. Representative vertical doping and Ge profiles of the SiGe HBT are shown in Fig. 2.

There are in general three geometrical variables associated with scaling: emitter stripe width W, emitter stripe length L, and the number of stripes S of a given emitter stripe width and length. We present results on SiGe HBTs with: $A_E = 0.3 \times 2.5 \mu m^2$, $A_E = 0.4 \times 2.5 \mu m^2$, $A_E = 0.6 \times 2.5 \mu m^2$ (variable W), $A_E = 0.5 \times 2.5 \mu m^2$, $A_E = 0.5 \times 5 \mu m^2$, $A_E = 0.5 \times 20 \mu m^2$ (variable L), $A_E = 0.5 \times 20 \times 2 \mu m^2$, $A_E = 0.5 \times 20 \times 4 \mu m^2$, $A_E = 0.5 \times 20 \times 8 \mu m^2$ (variable S) and 50 $A_E = 0.5 \times 2.5 \mu m^2$ in parallel. These devices were measured.

Manuscript received August 7, 2001; revised November 29, 2001. This work was supported by the Semiconductor Research Corporation under Contract 2000-HJ-769 and an IBM University Partner Award. The review of this paper was arranged by Editor J. N. Burghartz.

S. Zhang, G. Niu, and J. D. Cressler are with the Electrical and Computer Engineering Department, Alabama Microelectronics Science and Technology Center, Auburn University, Auburn, AL 36849 USA (e-mail: zhangsh@eng.auburn.edu).

A. J. Joseph and D. L. Harame are with IBM Microelectronics, Essex Junction, VT 05452 USA.

G. Freeman is with IBM Microelectronics, Hopewell Junction, NY 12533 USA.

Publisher Item Identifier S 0018-9383(02)/01563-0.
at room temperature ($T = 300$ K) using an HP4155 semiconductor parameter analyzer (dc) and an HP8510C vector network analyzer [scattering (S) parameters]. The cutoff frequency f_T, the maximum oscillation frequency f_{max}, and the total emitter and base resistance r_{BE} of the devices were extracted from measured S-parameters, while the noise parameters (the minimum noise figure NF_{min}, the noise resistance R_n, and the optimum source reflection coefficient $\Gamma_{S_{\text{opt}}}$) and the associated available gain $G_{A_{\text{assoc}}}$ were obtained using the measured S-parameters and the appropriate noise model [2], [3].

III. NOISE MODEL

Direct measurement of noise figure in the GHz range requires substantial experimental effort. An alternative approach is to measure the transistor S-parameters, convert to Y-parameters, and calculate the noise figure through an appropriate noise model [3], which relates the Y-parameters to the noise figure. Such an approach has been demonstrated and its accuracy verified in the SiGe HBT technology under study [3]. This model is accurate at the ranges of collector current density $J_C = 0.05$–0.2 mA/µm2 and frequency $f = 2$–10 GHz. At higher current densities (up to 1 mA/µm2), this model can still be used for the relative comparison, meaning that this model can determine which device has better noise performance. Fig. 3 illustrates the circuit schematic used in deriving the noise model. The principal noise sources in this model are the base and collector shot noise ($2qI_B$, $2qI_C$), emitter thermal noise, and base thermal noise. At a given bias and frequency, the noise figure (NF) is a function of the source admittance. The minimum noise figure (NF_{min}) occurs at the optimum source admittance ($\Gamma_{S_{\text{opt}}}$). The equations for the minimum noise figure (NF_{min}) and the optimum source admittance ($\Gamma_{S_{\text{opt}}}$) can be found in [3]. In noise measurements, the source reflection coefficient ($\Gamma_{S_{\text{opt}}}$) is often used instead of the admittance $Y_{S_{\text{opt}}}$

$$\Gamma_{S_{\text{opt}}} = \frac{1 - Y_{S_{\text{opt}}} Z_0}{1 + Y_{S_{\text{opt}}} Z_0}$$

where Z_0 is the characteristic impedance.

IV. RESULTS AND DISCUSSION

A. Emitter Width Variation

The effects of emitter width variation are given in Table I. As emitter width decreases from 0.6 to 0.4 µm, the reduction of the base resistance leads to a considerable improvement in f_{max}. However, as emitter width decreases from 0.4 to 0.3 µm, f_{max} is almost unchanged mainly due to nonlinear scaling of total base-emitter resistance r_{BE} with emitter width, meaning as emitter width decreases, the intrinsic base resistance is no longer dominant in r_{BE} and the extrinsic base resistance becomes more important. Fig. 4 illustrates the emitter width dependence of the noise parameters of SiGe HBTs at $f = 2$ GHz and $J_C = 0.1$ mA/µm2, the relevant collector current density for low noise applications. Although as the emitter width decreases, NF_{min} decreases slightly, both the noise resistance (R_n) and the associated available gain ($G_{A_{\text{assoc}}}$) are degraded slightly, which means that the smaller emitter width is not necessarily better at $f = 2$ GHz and $J_C = 0.1$ mA/µm2 for low noise applications. However, using constant power (constant collector current here) comparison (which is the case from design point of view), NF_{min} does improve considerably (about 0.25 dB at $J_C = 0.1$ mA) as emitter width decreases at $I_C \leq 0.2$ mA.
as shown in Fig. 5. Another way to understand Fig. 5 is to plot NF_{min} versus J_C using the same data and it is not hard to image that as emitter width decreases, NF_{min} are very close at $J_C = 0.2$ mA/\textmu m2, but NF_{min} decreases significantly at $J_C \geq 0.3$ mA/\textmu m2. Therefore, smaller emitter width does improve NF_{min} at higher current densities or using constant power comparison.

B. Emitter Length Variation

Table II compares typical transistor parameters for emitter length variations. As expected, the changes of f_T and f_{max} are small as emitter length varies. Fig. 6 gives the emitter length dependence of the noise parameters of the SiGe HBTs at $J_C = 0.1$ mA/\textmu m2 and $f = 2$ GHz. As emitter length increases from 2.5 \textmu m to 20 \textmu m, NF_{min} is reduced by a considerable amount (0.3 dB) and R_{in} and $G_{A,\text{assoc}}$ are also improved. Therefore, a device with longer emitter length has better noise performance at $J_C = 0.1$ mA/\textmu m2 and $f = 2$ GHz and thus it is preferred for LNA design. On the other hand, the real parts of the optimized source impedance $\text{Re}(Z_{\text{opt}})$ of these devices, as shown in Fig. 7, are well above 50 \Omega. Since substrate and interconnect losses are significantly higher in Si than in GaAs, Si RF circuit designs should target the optimization of the size of the transistors in order to simplify matching, rather than design the matching circuit around a given transistor [2]. Therefore, in the design of an Si LNA, $\text{Re}(Z_{\text{opt}})$ of the transistor is usually chosen to be close to 50 \Omega so that the transistor becomes noise-matched to the characteristic impedance of the system, typically 50 \Omega, at the desired frequency. Therefore, devices with multiple stripes are often needed for low noise applications.

C. Emitter Stripe Number Variation

Table III compares typical transistor parameters for emitter stripe number variations. For the device with $A_E = 0.5 \times 20 \times 8 \mu$m2, f_{max} at $J_C = 0.1$ mA/\textmu m2 is slightly lower mainly due to nonlinear scaling of total base-emitter resistance r_{BE} with the reciprocal of the stripe number 1/S. Since other parameters such as β, f_T, C_{ij}/A_E and τ of the device with $A_E = 0.5 \times 20 \times 8 \mu$m2 are either worse or comparable with those of other two devices with 2 and 4 stripe numbers, we expect that the device with 8 stripe number has worse noise performance than those of the devices with 2 and 4 stripe numbers.

Fig. 8 gives the emitter stripe number dependence of $\text{Re}(Z_{\text{opt}})$ at $J_C = 0.1$ mA/\textmu m2 and $f = 2$ GHz, from which the optimized device area ($A_E = 0.5 \times 20 \times 6 \mu$m2, referred to as device A) to match 50 \Omega is extracted. Basically, we can choose any unit cell as a building block ($A_E = 0.5 \times 20 \times 6 \mu$m2 or $A_E = 0.5 \times 2.5 \mu$m2) to get this optimized device area.
Fig. 8. Real part of the optimum source impedance as a function of reciprocal of emitter stripe number at $J_C = 0.1 \, \text{mA}/\mu\text{m}^2$ and $f = 2 \, \text{GHz}$.

Fig. 9. Minimum noise figure versus collector current density for four different devices at $f = 2 \, \text{GHz}$.

Fig. 10. $2\mu_fB/L_1$ and $2\mu_fC/(|h_{21}|^2L_1)$ contributions to $\langle \nu_n^2 \rangle_{\text{norm}}$ versus collector current density at $f = 2 \, \text{GHz}$ for four different devices.

Fig. 11. $\langle \nu_n^2 \rangle_{\text{norm}}$ versus collector current density at $f = 2 \, \text{GHz}$ for four different devices.

$50 \, A_E = 0.5 \times 2.5 \, \mu\text{m}^2$ transistors in parallel (referred to as device B with $A_E = 0.5 \times 2.5 \times 50 \, \mu\text{m}^2$, which can be viewed as a device with 50 ($0.5 \times 2.5 \, \mu\text{m}^2$ stripes), for instance, has a similar optimized device area and at $J_C = 0.1 \, \text{mA}/\mu\text{m}^2$ and $f = 2 \, \text{GHz}$ its $\text{Re}(Z_{\text{opt}})$ is 47.75 Ω, which is very close to 50 Ω. Although both device A and device B can match 50 Ω very well, the NF_{min} of device A is at least 0.1 dB smaller than that of device B at $J_C = 0.1 \, \text{mA}/\mu\text{m}^2$ and $f = 2 \, \text{GHz}$, which can be seen in Fig. 9, which is consistent with the conclusion that longer emitter length is preferred for LNA design at $J_C = 0.1 \, \text{mA}/\mu\text{m}^2$ and $f = 2 \, \text{GHz}$.

To understand the differences in NF_{min} observed in Fig. 9, the contributions of the various noise sources need to be investigated. Any linear noisy two-port can be represented by its noiseless counterpart, an input current noise source i_n, an input voltage noise source v_n, and their correlation [4]. Basically, NF_{min} is determined by i_n and v_n [5], and the smaller i_n and v_n are, the smaller NF_{min} is, i_n and v_n are given by [5]

$$\langle i_n^2 \rangle = 2\mu_fB + \frac{2\mu_fC}{|h_{21}|^2}$$

$$\langle v_n^2 \rangle = 4kT\gamma_{BE} + \frac{2\mu_fC}{|h_{21}|^2},$$

In order to compare devices with $A_E = 0.5 \times 20 \times 2 \, \mu\text{m}^2$, $A_E = 0.5 \times 20 \times 4 \, \mu\text{m}^2$, $A_E = 0.5 \times 20 \times 8 \, \mu\text{m}^2$ and device B with $A_E = 0.5 \times 2.5 \times 50 \, \mu\text{m}^2$, $\langle \nu_n^2 \rangle$ and $\langle \nu_n^2 \rangle$ need to be normalized by the total emitter length L_1 of the device

$$\langle \nu_n^2 \rangle_{\text{norm}} = \frac{\langle \nu_n^2 \rangle}{L_1}$$

$$\langle \nu_n^2 \rangle_{\text{norm}} = \frac{\langle \nu_n^2 \rangle}{L_1} = \frac{2\mu_fB}{L_1} + \frac{2\mu_fC}{|h_{21}|^2L_1}$$

$$\langle \nu_n^2 \rangle_{\text{norm}} = \frac{\langle \nu_n^2 \rangle}{L_1} = 4kT\gamma_{BE} + \frac{2\mu_fC}{|h_{21}|^2}$$

where L_1 is the product of the emitter length of a single emitter stripe and the emitter stripe number.

Fig. 10 compares the $2\mu_fB/L_1$ and $2\mu_fC/(|h_{21}|^2L_1)$ contributions to $\langle \nu_n^2 \rangle_{\text{norm}}$ and Fig. 11 gives $\langle \nu_n^2 \rangle_{\text{norm}}$ as a function of collector current density at $f = 2 \, \text{GHz}$ for these four different devices. Since the current gain in the RF bias region is similar for these four devices, the $2\mu_fB/L_1$ contributions of these four devices are very close, while the $2\mu_fC/(|h_{21}|^2L_1)$ contribution of device B is the largest among these four devices because of its smallest $|h_{21}|$. Therefore device B has the largest $\langle \nu_n^2 \rangle_{\text{norm}}$ among these four devices.

Fig. 12 illustrates the $4kT\gamma_{BE}L_1$ and $2\mu_fC/(|h_{21}|^2L_1)$ contributions to $\langle \nu_n^2 \rangle_{\text{norm}}$ and Fig. 13 shows $\langle \nu_n^2 \rangle_{\text{norm}}$ as a function of collector current density at $f = 2 \, \text{GHz}$ for these four different devices. The higher $\langle \nu_n^2 \rangle_{\text{norm}}$ of device B and device with $A_E = 0.5 \times 20 \times 8 \, \mu\text{m}^2$ is mainly due to the larger $4kT\gamma_{BE}L_1$ contributions of these two devices, which lead to their larger NF_{min} (Fig. 9). As shown in Fig. 12, the $4kT\gamma_{BE}L_1$ contribution dominates $\langle \nu_n^2 \rangle_{\text{norm}}$ across most of the bias current range,
indicating significant improvement of noise performance can be expected by increasing the base doping [5]. From this analysis, the higher NFmin of device B is due to the larger \(\langle r_n^2 \rangle_{\text{norm}} \) and \(\langle v_T^2 \rangle_{\text{norm}} \) compared to those of the other three devices. Therefore, the current gain, the cutoff frequency and the total base and emitter resistance need to be improved to reduce the minimum noise figure.

For low noise applications, not only NFmin is important, but also \(\Delta f \), which is the difference between NFmin and NF for 50 \(\Omega \) source impedance and is given by [6]

\[
\Delta f = \frac{4r_n^2 |\Gamma_{S_{\text{opt}}}|^2}{1+|\Gamma_{S_{\text{opt}}}|^2}
\]

where \(r_n = R_n/50 \), \(\Gamma_{S_{\text{opt}}} \) is the optimum source reflection coefficient, and \(R_n \) is the noise resistance.

Fig. 14 shows \(\Delta f \) versus \(J_C \) for the four different devices. We see that device A and device B have similar \(\Delta f \) at \(J_C = 0.1 \) mA/\(\mu \)m² and \(f = 2 \) GHz. Therefore, we conclude that a SiGe HBT with \(A_E = 0.5 \times 20 \times 6 \) \(\mu \)m² is the optimized device at \(J_C = 0.1 \) mA/\(\mu \)m² and \(f = 2 \) GHz for low noise applications.

Using the same method, the optimized transistor sizes at any frequencies and any biases can be found. Table IV summarizes the frequency performance and noise performance of the optimal device sizes at \(f = 2, 4, 6 \) GHz for LNA applications. For the device with \(A_E = 0.5 \times 20 \times 2 \) \(\mu \)m², even at \(f = 6 \) GHz and \(J_C = 0.16 \) mA/\(\mu \)m², the noise figure is still 2.0 dB and the associate available gain can reach 14 dB.

TABLE IV	HIGH-FREQUENCY PERFORMANCE OF THE OPTIMAL DEVICES AT \(f = 2, 4, \) AND 6 \(\text{GHz} \) FOR LNA APPLICATIONS		
	SiGe HBT	SiGe HBT	SiGe HBT
\(A_E = W \times L \times S \) (\(\mu \)m²)	0.5x20x6	0.5x20x4	0.5x20x2
\(J_C \) (mA/\(\mu \)m²)	0.1	0.13	0.16
\(f_T \) (GHz)	\~ 22	27	29.4
\(f_{\text{max}} \) (GHz)	\~ 40	44.3	47.8
NFmin (dB)	\~ 0.95	1.33	1.78
NF50 (dB)	\~ 1.04	1.49	2.01
\(R_a \) (\(\Omega \))	\~ 7	9	17
\(G_{\text{anac}} \) (dB)	\~ 19	15.36	14

V. SUMMARY

Geometrical scaling issues including width scaling, length scaling and stripe number scaling are investigated from an RF design perspective. Since the optimization of the size of the transistors in Si RF circuit designs is crucial, we use a method that can optimize the emitter geometry in order to minimize the matching circuit losses and overall noise figure. This method not only can choose a device, which can match 50 \(\Omega \) very well, it can also select a device with smaller minimum noise figure, which will improve the noise performance. In real LNA design (assuming 50 \(\Omega \) system), after choosing this optimized transistor, both base inductance and emitter inductance are also needed. In general, base inductance is mainly used to offset the imaginary part of \(Z_{\text{opt}} \), while the emitter inductance is mainly designed to make the real part of the input impedance \(\text{Re}(Z_{\text{in}}) = 50 \) \(\Omega \) (assuming 50 \(\Omega \) system). If both base inductance and emitter inductance are more carefully designed, close to simultaneously noise matching and power matching can be realized. Using this method, we conclude that a SiGe HBT with emitter area \(A_E = 0.5 \times 20 \times 6 \) \(\mu \)m² is optimum device geometry for low noise applications at \(J_C = 0.1 \) mA/\(\mu \)m² and 2 GHz, while \(A_E = 0.5 \times 20 \times 4 \) \(\mu \)m² and \(A_E = 0.5 \times 20 \times 2 \) \(\mu \)m² are the optimal device sizes at 4 GHz and 6 GHz, respectively.
ACKNOWLEDGMENT

The wafers were fabricated at IBM Microelectronics, Essex Junction, VT. The authors would like to thank D. Ahlgren and B. Meyerson for their contributions to this work.

REFERENCES

Shiming Zhang (S’99) received the B.E. degree in electrical engineering from the Beijing Polytechnic University (BPU), Beijing, China, in 1992, and the M.S. degree in electrical and computer engineering from Auburn University, Auburn, AL, in 1999, where he is currently pursuing the Ph.D. degree in electrical and computer engineering. From September 1992 to August 1997, he worked on SiGe HBT at BPU as a Research Assistant. His research interests at BPU included layout, profile design, dc and low temperature characterization, and fabrication processing of SiGe HBTs. His main research interests include microwave characterization and modeling of SiGe HBTs and circuits and radiation effects study of SiGe HBTs, GaAs HBTs, and SiGe:C HBTs. He has authored and co-authored more than 20 technical papers related to his research.

Guofu Niu (M’98) was born in Henan, China, in December 1971. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Fudan University, China, in 1992, 1994, and 1997, respectively. From December 1995 to January 1997, he was a Research Assistant with the City University of Hong Kong, Hong Kong, and worked on the mixed-level device/circuit simulation and quantum effect programmable logic gates. From May 1997 to May 2000, he conducted postdoctoral research that focused on SiGe RF devices at Auburn University, Auburn, AL. He joined the faculty of Auburn University in June 2000, where he is currently Associate Professor of Electrical and Computer Engineering. His research interests include SiGe devices and circuits, noise, radiation effects, SIC devices, low temperature electronics, and TCAD. He has published more than 30 journal papers and more than 20 conference papers related to his research.

Dr. Niu served on the Program Committee of the Asia-South-Pacific Design Automation Conference (ASP-DAC) in 1997 and served as a Technical Reviewer for IEEE ELECTRON DEVICE LETTERS, IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE JOURNAL OF SOLID-STATE CIRCUITS, and IEEE MICROWAVE AND GUIDED WAVE LETTERS. He was listed in Who’s Who in America and is a Program Committee Member of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

John D. Cressler (F’01) received the B.S. degree in physics from the Georgia Institute of Technology, Atlanta, in 1984, and the Ph.D. degree in applied physics from Columbia University, New York, in 1990. From 1984 to 1992, he was a Member of Research Staff, IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, working on high-speed Si and SiGe bipolar technology. In addition to his responsibilities while at IBM, he was an Adjunct Professor of mathematics at Western Connecticut State University, Danbury, from 1987 to 1990, as well as an Adjunct Assistant Professor of electrical engineering at Columbia University from 1990 to 1992. In 1992, he left the IBM Research Division to join the Faculty of Auburn University, Auburn, AL. He is currently Philpott-Westpoint Stevens Professor of Electrical and Computer Engineering and Director of the Alabama Microelectronics Science and Technology Center (AMSTC), a multidisciplinary state-funded research center. His research interests include SiGe HBTs and FETs, SiC devices and technology, radiation effects, cryogenic electronics, Si-based RF/microwave circuits, reliability physics, noise, linearity, device simulation, and compact circuit modeling. He has published over 230 technical papers related to his research, written four book chapters, received five awards from the IBM Research Division, and holds one U.S. patent. He has served as a Consultant to IBM, Analog Devices, Westinghouse, ITRI/ERSO (Taiwan), Teletech, the National Technological University, Commercial Data Servers, MemoOptical, Texas Instruments, Houston, and On Semiconductor.

Alvin J. Joseph (M’96) received the B.S. degree in electrical engineering from Bangalore University, Bangalore, India, in 1989, and the M.S. and Ph.D. degrees in electrical engineering from Auburn University, Auburn, AL, in 1992 and 1997, respectively. His doctoral research involved the study of physics and optimization and modeling of cryogenically operated SiGe HBTs. In 1997, he joined the SiGe Technology Development Group, IBM Microelectronics Division, Essex Junction, VT. He has been involved in various aspects of designing several SiGe BiCMOS circuits, SiGe/BiCMOS technologies and processes, and SiGe BiCMOS technology to production. He has authored and co-authored several technical journal papers and conference publications related to SiGe HBTs.

Gregory Freeman (S’86–M’90) received the B.S.E.E. degree from the University of Delaware, Newark, in 1984, and the M.S.E.E. and Ph.D. degrees from Stanford University, Stanford, CA, in 1986 and 1991, respectively. His dissertation related to novel approaches for development and control of manufacturing processes.

He joined IBM in 1991 and has ten years of experience in the field of semiconductor device research and development. Since 1994, he has been involved in various forms in the research and development of SiGe HBT BiCMOS technology for wireless and wired networking applications, including early technology development and qualification. His recent achievements include leading a team to develop the world’s first 210 GHz silicon-germanium heterojunction transistor. Since 2000, he has been a Senior Engineering Manager, IBM Microelectronics, Hopewell Junction, NY, responsible for communications technology development and device design, and circuit applications and process integration for SiGe HBTS as well as RF-CMOS. He has authored over 20 technical publications and presentations in the fields of electrical characterization and SiGe HBT BiCMOS technology.
David L. Harame (S'77–M'83–SM'01) was born in Pocatello, ID, in 1948. He received the B.A. degree in zoology from the University of California, Berkeley, in 1971, the M.S. degree in zoology from Duke University, Durham, NC, in 1973, the M.S. degree in electrical engineering from San Jose State University, San Jose, CA, in 1976, and the M.S. degree in materials science and the Ph.D. in electrical engineering from Stanford University, Stanford, CA, in 1984.

He joined IBM’s Bipolar Technology Group, IBM T. J. Watson Research Center, Yorktown Heights, NY, in 1984, where he worked on the fabrication and modeling of silicon-based integrated circuits. His specific research interests there included silicon and SiGe-channel FET transistors, NPN and PNP SiGe-based bipolar transistors, complementary bipolar technology, and BiCMOS technology for digital and analog and mixed-signal applications.

In 1993, he joined IBM’s Semiconductor Research and Development Center, Advanced Semiconductor Technology Center (ASTC), Hopewell Junction, NY, where he was responsible for the development of SiGe technology for mixed signal applications. He managed SiGe BiCMOS technology development at the ASTC through 1997. In 1998, he joined IBM’s Manufacturing Organization, Essex Junction, VT, where he managed a SiGe group and installed the 0.5 μm SiGe BiCMOS process in the manufacturing line. In 1999, he rejoined the Semiconductor Research Corporation while remaining in Essex Junction, VT and co-managed the qualification of 0.25 μm SiGe BiCMOS, as well as 0.18 μm SiGe BiCMOS and two derivative SiGe BiCMOS technologies. In May 2000, he became the Senior Manager of the RF Analog Modeling and Design Kit Department.

Dr. Harame is a Distinguished Engineer of the IBM Corporation, an Executive Committee member of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), and a member of the Compact Modeling Council.