- IoT system applications
- IoT system architectures

References: Wolf Text: Chapter 8

ARM SoC/IoT Presentations

https://pixabay.com/en/network-iot-internet-of-things-782707/

ARM: Making Things Smart, Connected and Interactive

What is it?

- "The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure."
 wikipedia.org
- Buzzword, trend, convenient categorisation, industrial and consumer

Why Now?

- Embedded chips are becoming:
 - Cheaper (<50c)
 - Smaller (<1mm²)
 - Lower power (μW)
 - Commoditised HW and SW
- Communication is growing faster (broadband)
- New socio-economic demands (globalisation, competition, mobility)

Socio-Economic Benefits

- Automation (higher productivity)
- Smart monitoring, control and maintenance (higher efficiency, lower cost, higher quality, better optimisation/outcomes)
- Better safety (early warning)
- Higher responsiveness (dynamic response to varying demands)
- Huge and varied applications in industry, agriculture, health, transport, infrastructure, smart living, consumer etc.

IoT system applications

- Soft real-time networked embedded system.
 - Input devices: tags, sensors, etc.
 - Output devices: motor controllers, displays, etc.
- Examples:
 - Computer-readable identification code for objects.
 - Appliances controlled by cell phone interface.
 - Sensor network with analytics.

https://www.quora.com/How-is-IOT-useful-in-manufacturing

Devices

• People:

- Implanted devices in the body.
- Wearable devices on the body.
- Environmental devices outside the body.

https://www.meddeviceonline.com/doc/how-revolutionizing-healthcare-0001

• Objects:

- Interior: temperature sensor, etc.
- Exterior: RFID, etc.
- Environmental: camera, motion sensor, etc.

https://communicationandmediastudies.wordpress.com/2012/10/24/the-internet-of-things/

Connecting the Physical and Digital Worlds

- Integrated sensors, memory and processing
- Low power systems
- Little Data

Wireless Network

- High throughput networks
- Low power wireless networks

Cloud

- High performance efficient servers
- High capacity storage
- Software as a service
- Big Data

Things ("Edge" Devices)

IoT system architectures

• Edge: I/O devices.

• Cloud: centralized processing.

• **Smart appliance** = connected appliance + network + UI.

IoT system architectures, cont'd.

Monitoring system = sensors + network + database + dashboard.

IoT system architectures, etc.

• Control system = sensors + database + controller + actuator.

Things: Basic Building Functional Blocks

Unlock a greater potential with custom SoCs

From PCB to custom SoC

Increase margins by reducing

- Cost
- Complexity
- Size

- Reliability
- Differentiation
- IP protection

Cortex-M: Scalable, compatible and trusted

ARM Cortex-M0 DesignStart Processor

Subset of the full ARM Cortex-M0

- Low gate count, 32-bit processor, 3-stage pipeline
- Implements ARMv6-M architecture
- Can achieve around 0.9 DIPS/MHz

Provided as synthesizable Verilog model

- CPU contained in top-level macro-cell "CORTEXMODS" (instantiated in the SoC system model) and submodule "cortexm0ds_logic" (pre-configured, obfuscated)
- Top-level macro-cell implements memory and system bus interface compatible with *AMBA 3 AHB-Lite* specification, including interrupt and event inputs, 3 status outputs, and an event output.

• **DesignStart Kit** includes:

• Simulation testbench, a set of AHB-Lite peripherals, example SoC systems

IoT Demo Architecture

The "THING"

Sense/Compute/Control/Store/Communicate

- Periodically sense, encrypt, send ambient light and acceleration data to "The Cloud".
- Based on ARM SoC LiB and Cortex-M0 CPU.
- Platform: FPGA board
 (Digilent Nexys4 DDR, Numato Labs Mimas V2)

IoT SoC Application

Periodically capture sensor data

- Read ambient light sensor data
- Read X-axis/Y-axis/Z-axis acceleration data
- Sample at 1Hz frequency (timer interrupt-driven)

Encrypt sensor data

- Tiny Encryption Algorithm (TEA)
- Encrypt before sending (for debug decrypt back to original data if Switch 1 on)

Transmit data via Bluetooth to server

- Simulated wireless network and "Cloud" server
- For debug (Switch 0 on) transmit via hard-wired USB to server
- Display sensor data in server terminal window

IoT Demo Sensors & Communication

ADXL362 3-axis Accelerometer

- 12-bit X/Y/Z axis values + 12-bit temperature
- On Nexys4 DDR board
- SPI interface

PmodALS Ambient Light Sensor

- Vishay Semiconductor TEMT6000X01 ambient light sensor
- Texas Instruments ADC081S021 analog to digital converter
- SPI interface

PmodBT2 Bluetooth Interface

- Roving Networks RN-42 Bluetooth (2.1, 2.0, 1.2, 1.0)
- UART interface

IoT SoC Hardware

- ARM Cortex-M0 "Design Start" CPU
- Program and data in distributed/block RAM in FPGA
- Peripherals: basic I/O, timer, UART, SPI (all except SPI in the SoC LiB)
 - Sensors accessed via SPI
 - Wireless and wired communication via UARTs
- CPU and peripherals interconnected via AHB-Lite bus

Things: The Security Challenge

Flexible embedded device security

- Security important as more embedded devices become connected
- Even the smallest of devices need to
 - Safely store and process secrets
 - Have secure communications (i.e., encryption)
 - Offer trust in the integrity of the device and its software
 - Be able to isolate trusted resources from non-trusted
 - Reduce attack surface of key components

... without compromising on latency, determinism or footprint.

Bringing ARM security extensions to the embedded world

- Optional security extension for the ARMv8-M architecture
 - Security architecture for deeply embedded processors
 - Enables containerisation of software
 - Simplifies security assessment of embedded devices.

- Conceptually similar and compatible with existing TrustZone technology
 - New architecture tailored for embedded devices
 - Preserves low interrupt latencies of Cortex-M
 - Provides high performance cross-domain calling.

ARMv8-M Additional States

Existing handler and thread modes mirrored with secure and non-secure states

- Secure and Non-Secure code run on a single CPU
 - For efficient embedded implementation.
- Secure state for trusted code
 - New Secure stack pointers for robust operation
 - Addition of stack-limit checking.
- Dedicated resources for isolation between domains
 - Separate memory protection units for Secure and Non-secure
 - Private SysTick timer for each state.
- Secure side can configure target domain of interrupts.

ARMv8-M Programmers' Model Memory Map

Secure state view

ROM tables Non-secure MPU alias Non-secure SCB alias System control Non-secure SysTick alias Off-chip Device Debug **Security Attribution Unit** Off-chip RAM Secure MPU Peripherals Secure SCB Secure Peripherals **NVIC** Secure SysTick **RAM** ITM/DWT/FPB Secure RAM Flash Secure Flash Secure vector table

Secure memory view permits access to Secure Flash, RAM, and peripherals.

- Load/store access to all regions is possible from Secure state.
- Security of regions can be configured using the Security Attribution Unit (SAU).

ARMv8-M Interrupt Security

High-performance interrupt handling with register protection

- Subject to priority, Secure can interrupt
 Non-secure and vice versa
 - Secure can boost priority of own interrupts
 - Uses current stack pointer to preserve context.
- Uses ARMv7-M exception stacking mechanism
 - Hardware pushes selected registers.
- Non-secure interruption of Secure code
 - CPU pushes all registers and zeroes them
 - Removes ability for Non-secure to snoop Secure register values.

Security Defined by Address

All transactions from core and debugger checked

- All addresses are either Secure or Non-secure.
- Policing managed by Secure Attribution Unit (SAU)
 - Internal SAU similar to MPU
 - Supports use of external system-level definition
 - E.g. based on flash blocks or per peripheral.
- Banked MPU configuration
 - Independent memory protection per security state.
- Load/stores acquire NS attribute based on address
 - Non-secure access attempts to Secure address = memory fault.

Cross-Domain Function Calls

An assembly code level example

- Guard instruction (SG) polices entry point
 - Placed at the start of function callable from non-secure code.
- - Can't branch into the middle of functions
 - Can't call internal functions.
- Code on Non-secure side identical to existing code.

Cortex-M23: Imagine the possibilities

32-bit performance

TrustZone for ARMv8-M

Long battery life

Small area, low cost

Cortex-M23 enhancements over Cortex-M0+

Cortex-M23

Cortex-M0+

NVIC (max 32 IRQs)

MPU (PMSAv6)

AHB Lite

WIC

Fast I/O bus

MTB

Serial wire / JTAG

ARMv6-M

Addressing diverse embedded and IoT opportunities

Cortex-M33 enhancements over Cortex-M4

IoT systems and networks

- OSI model for networks.
- Internet protocol.
- IoT networking concepts.
- Example networks:
 - Classic Bluetooth, Bluetooth Low Energy.
 - 802.15.4 and Zigbee.
 - Wi-Fi.

Network Abstractions: OSI model

- International Standards
 Organization (ISO)
 Open Systems
 Interconnection (OSI)
 to describe networks:
 - 7-layer model.
- Standard way to classify network components and operations.

OSI layers

- Physical: connectors, bit formats, etc.
- Data link: error detection and control across a single link (single hop).
- Network: end-to-end multi-hop data communication.
- Transport: provides connections; may optimize network resources.
- Session: services for end-user applications: data grouping, checkpointing, etc.
- Presentation: data formats, transformation services.
- Application: interface between network and end-user programs

PHY and MAC

- PHY = physical layer.
 - Circuitry to transmit and receive bits.
- MAC = media access control.
 - Provides link-level services.

Internet Protocol (IP)

Internet = network of networks: transports data from one network to another.

Computers as Components 4e © 2016 Marilyn Wolf

IoT networking concepts

- Edge device may not run IP protocol.
 - IP connection may be provided by hub or gateway.
 - Non-IP networks are known as edge networks.
- Ad hoc network is self-organized--not set up by system administrator.
- Ad hoc network services:
 - Authentication of eligibility to join network.
 - Authorization for access to given pieces of information on the network.
 - Encryption and decryption.

Network topologies

Routing

- Routing discovery determines routes between source/destination pairs.
- Routing is driven by routing tables at the nodes.

QoS

- Many networks support synchronous and asynchronous communication.
 - Asynchronous: data records, etc.
 - Synchronous: voice, etc.
- Quality-of-service (QoS): bandwidth and periodicity characteristics.
- Admission control ensures that network can handle the QoS demands of a request.

Synchronization and beacons

- Many network operations require nodes to be synchronized.
- Synchronization can be performed using beacon.
 - Beacon transmission marks the beginning of a communications interval.

Computers as Components 4e © 2016 Marilyn Wolf

Communcations energy

- Communications energy is a large part of node energy consumption.
- Comm energy consumption depends on many factors and parameters.
 - Generally evaluated for a set of use cases.
- We can use power state machine to model communications energy cost.

Communications power state machine example

step	state	time	energy
1	sleep	1 ms	1 nJ
2	idle	10 μs	0.5 nJ
3	receive	50 μs	1.25 nJ
4	transmit	50 μs	1.75 nJ
5	receive	50 μs	1.25 nJ
6	transmit	50 μs	1.75 nJ
			total = 7.5 nJ

Bluetooth

- Introduced in 1999, originally for telephony applications.
- Classic Bluetooth operates in instrumentation, scientific, and medical (ISM) band in the 2.4 GHz range.
- Bluetooth networks organized as piconet.
 - One master, several slaves.
 - Slave can be active or parked.
 - A device can be a slave on several networks simultaneously.

Bluetooth stack

- Transport protocol:
 - Radio, baseband layer, link manager, logical link control and adaptation protocol (L2CAP).
- Middleware:
 - RFCOMM for serial port, service discovery protocol, Internet Protocol, IrDA, etc.
- Applications.

Bluetooth protocol

- Every Bluetooth device has a 48-bit Bluetooth Device Address.
- Every device has a Bluetooth clock.
- Transmissions alternate between master and slave directions.
- Two types of packets:
 - Synchronous connection-oriented (SCO) packets for QoS-oriented traffic.
 - Asynchronous connectionless (ACL) packets for non-QoS traffic.
 - SCO traffic has higher priority than ACL packets.

Bluetooth Low Energy

- Designed for very low energy operation such as button-sized battery.
 - Goal: minimize radio on-time.
- Part of Bluetooth standard but deviates from Classic Bluetooth in several ways.
- Advertising transmissions can be used to broadcast, discover devices, etc.
- Connections can be established.
- Attribute Protocol Layer allows devices to create application-specific protocols.
- Generic Attribute Profile Layer (GATT) defines basic attributes for all BLUE devices.
- Pairing devices uses a short-term key to send a long-term key.
 - Bonding: storing long-term key in device database.
 - Optional data encryption using AES.

802.15.4 and ZigBee

- 802.15.4 defines MAC and PHY layers.
 - Supports full-function and reduced-function devices.
 - Either star or peer-to-peer topology.
 - Communication performed using frames.
 - Optional superframe provides a beacon mechanism and QoS.
- ZigBee is a set of application-oriented standards.
 - NWK layer provides network services.
 - APL layer provides application-level services.
 - Supports many different topologies.

Wi-Fi

- Originally designed for portable and mobile applications.
 - Has been adapted for lower-energy operation.
- Supports ad hoc networking.
- Network provides a set of services:
 - Distribution of messages from one node to another.
 - Integration delivers messages from another network.
 - Association relates a station to an access point.

IoT Systems Databases

- Database holds data about devices, helps to analyze data.
- Relational database management system:
 - Domain1 X domain2 X ... -> Range.
- Database organized into records or tuples:
 - Attribute: table column.
 - Record: table row.
- One column is the primary key---uniquely identifies a record.

Database example

devices

	name	id (primary key)		address		type			
_	door	234		10.113		binary			
record	refrigerator	4326		10.117		signal			
	table	213		11.039		MV			
	chair	4325		09.4	123 b		oinary		
	faucet	2		11.3	324	signal			
dev						evice_data			
signature (primary key) 256423		y)	device		time		value		
			234		11:23:14		1		
	252456		4326		11:23:47		40		
	663443	663443		234		11:27:55			

Computers as Components 4e © 2016 Marilyn Wolf

IoT Management - Timewheels

- Used to manage timing of events in the system.
- Timewheel is a time-sorted set of events.
 - Event placed in proper spot in timewheel queue upon arrival.
 - When current time is equal to time of event at head, event is processed.

Timewheel state diagram

Example: smart home

- Performs a variety of services:
 - Remote or automatic operation of lights and appliances.
 - Energy and water management.
 - Activity monitoring.
- Activity monitoring can help elderly, people with special needs:
 - Reports on daily activities.
 - Alerts for out-of-the-ordinary activity.
 - Recommendations.

Example smart home

- Cameras can identify resident and their activity.
- Faucet, door sensors can identify activity but not who performs the activity.

Use case: activity monitoring

Use case: light control

Smart home object diagram

