
Operating systems
 The operating system controls resources:
 who gets the CPU;
 when I/O takes place;
 how much memory is allocated.
 how processes communicate.

 The most important resource is the CPU itself.
 CPU access controlled by the scheduler.

Embedded vs. general-purpose scheduling
 Workstations try to avoid starving processes of CPU

access.
 Fairness = access to CPU.

 Embedded systems must meet deadlines.
 Low-priority processes might not run for a long time.

Real-time operating system (RTOS)
features
 Task scheduling
 Priority, time-slice, fixed ordering, etc.
 Meet real-time requirements

 Inter-task communication
 Task synchronization & mutual exclusion
 Coordinate operations
 Protect tasks from each other

 Memory management
 Scalability
 Library of plug-ins at compile time to minimize RTOS size
 Other features: Date/time, File system, Networking, Security

General OS model (Linux-like)

Embedded OS

O/S Services

Kernel

Device Drivers (optional)

Process
Management

Memory
Management

Network
Interface

Virtual
File System

Inter-Process
Communication

Application
Program

Commercial RTOSs (partial)

 FreeRTOS.org
 POSIX (IEEE Standard)
 AMX (KADAK)
 C Executive (JMI Software)
 RTX (CMX Systems)
 eCos (Red Hat)
 INTEGRITY (Green Hills

Software)
 LynxOS (LynuxWorks)
 µC/OS-II (Micrium)
 Neutrino (QNX Software

Systems)

 Nucleus (Mentor Graphics)
 RTOS-32 (OnTime Software)
 OS-9 (Microware)
 OSE (OSE Systems)
 pSOSystem (Wind River)
 QNX (QNX Software Systems)
 Quadros (RTXC)
 RTEMS (OAR)
 ThreadX (Express Logic)
 Linux/RT (TimeSys)
 VRTX (Mentor Graphics)
 VxWorks (Wind River)

Keil ARM CMSIS Real-Time Operating System (CMSIS-RTOS)

OS process management
 OS needs to keep track of:
 process priorities;
 scheduling state;
 process activation records.

 Processes may be created:
 statically before system starts;
 dynamically during execution.

 Example: incoming telephone call processing

Multitasking OS

Program 1

Program 2

Program 3

OS

Task 1
Program 1

Task 1 Registers
Task 1 Stack

Task 2
Program 2

Task 2 Registers
Task 2 Stack

Task 3
Program 3

Task 3 Registers
Task 3 Stack

Task activation records

Process = unique execution of a program
•code + data
•multiple processes may share code
•each process has unique data
(CPU registers, stack, memory)

•process defined by its “activation record”

Multitasking OS

Process threads
(lightweight processes)

Program 1 OS

Task 1
Program 1

Task 1 Registers
Task 1 Stack

Task activation record

Thread 1

Thread 2

Thread 3
Threads have own CPU register values,
but cohabit same memory space, so they
could affect data of another thread.

•a process may have multiple threads
•threads may run on separate CPU cores

Typical process/task activation
records (task control blocks)

 Task ID
 Task state (running, ready, blocked)
 Task priority
 Task starting address
 Task stack
 Task CPU registers
 Task data pointer
 Task time (ticks)

Process state

 A process can be in one of
three states:
 executing on the CPU;
 ready to run;
 waiting for data.

executing

ready waiting

gets data
and CPU

needs
data

gets data

needs data

preemptedgets
CPU

Task/process states & OS functions

Priority-driven scheduling
 Each process has a priority, which determines scheduling

policy:
 fixed priority;
 time-varying priorities.
 CPU goes to highest-priority process that is ready.

 Can we meet all deadlines?
 Must be able to meet deadlines in all cases.

 How much CPU horsepower do we need to meet our
deadlines?
 Consider CPU utilization

Preemptive scheduling
 Timer interrupt gives CPU

to O/S kernel.
 Time quantum is smallest

increment of CPU
scheduling time.

“System tick timer”

 Kernel decides what task
runs next.

 Kernel performs context
switch to new context.

Context switching
 Set of registers that define a process’s state is its context.
 Stored in a record.

 Context switch moves the CPU from one process’s
context to another.

 Context switching code is usually assembly code.
 Restoring context is particularly tricky.

freeRTOS.org context switch
(Handler on next slide)

freeRTOS.org timer handler
void vPreemptiveTick(void)

{

/* Save the context of the current task. */

portSAVE_CONTEXT();

/* Increment the tick count - this may wake a task. */

vTaskIncrementTick();

/* Find the highest priority task that is ready to run. */

vTaskSwitchContext();

/* End the interrupt in the AIC. */

AT91C_BASE_AIC->AIC_EOICR = AT91C_BASE_PITC->PITC_PIVR;;

portRESTORE_CONTEXT();

}

Simple priority-driven scheduling example
 Rules:
 each process has a fixed priority (1 = highest);
 highest-priority ready process gets CPU;
 process continues until done or wait state.

 Example (continued on next slide)
 P1: priority 1, execution time 10
 P2: priority 2, execution time 30
 P3: priority 3, execution time 20

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3

Process initiation disciplines
 Periodic process: executes on (almost) every period.
 Aperiodic process: executes on demand.

 Analyzing aperiodic process sets is harder---must
consider worst-case combinations of process activations.

Timing requirements on processes
 Period: interval between process activations.
 Initiation interval: reciprocal of period.

 Initiation time: time at which process becomes ready.
 Deadline: time by which process must finish.
 Response time: time from occurrence of an “event” until

the CPU responds to it.

 What happens if a process doesn’t finish by its deadline?
 Hard deadline: system fails if missed.
 Soft deadline: user may notice, but system doesn’t necessarily

fail.

Process scheduling considerations

 Response time to an event
 Turnaround time
 Overhead
 Fairness (who gets to run next)
 Throughput (# tasks/sec)
 Starvation (task never gets to run)
 Preemptive vs. non-preemptive scheduling
 Deterministic scheduling (guaranteed times)
 Static vs. dynamic scheduling

Metrics
 How do we evaluate a scheduling policy?
 Ability to satisfy all deadlines.
 CPU utilization---percentage of time devoted to useful work.
 Scheduling overhead---time required to make scheduling

decision.

Some scheduling policies
 Round robin
 Execute all processes in specified order

 Non-preemptive, priority based
 Execute highest-priority ready process

 Time-slice
 Partition time into fixed intervals

 RMS – rate monotonic scheduling (static)
 Priorities depend on task periods

 EDF – earliest deadline first (dynamic)

Round-robin/FIFO scheduling

 Tasks executed sequentially
 No preemption – run to completion
 Signal RTOS when finished

∑ ∑
=

+++=
N

i
srvcirTDnTiresponse TTTTT

1
int,

service
interrupts

circuit
delays

context
switch
& OS
overhead

task
times

while (1) {
Task1();
Task2();
Task3();

}

Non-preemptive, priority-based
schedule

 Task readiness checked in order
of priority

 Task runs to completion

∑∑ ++++= −
<

srvcirTDnnn
ni

Tiiresponse TTTTTTNT int,1,...],max[

service
interrupts

circuit
delays

context
switch
& OS
overhead

higher
priority
tasks;
Ni = #times
Ti ready

while (1) {
if (T1_Ready)

{Task1(); }
else if (T2_Ready)

{Task2(); }
else if (T3_Ready)

{Task3(); }
}

time to
finish a
lower
priority
task

Time-slice scheduler

 Timing based on “tick” = min. period
 Non-preemptive, priority-based :
 execute all task once per “tick”
 task runs to completion

 Minimum time slice:

 Can make all execution times k*Tslice

 RTOS provides timer functions
 set, get, delay

∑∑ +>
<

− srv
ni

Tislicetime TTT int,

while (1) {
wait_for_timer();
if (T1_Ready)

{Task1(); }
else if (T2_Ready)

{Task2(); }
else if (T3_Ready)

{Task3(); }
}

),...,,gcd(21 PnPPslicetime TTTT ≤−

greatest common divisor

ARM CMSIS-RTOS scheduling policies
 Round robin schedule (OS_ROBIN = 1)
 All threads assigned same priority
 Threads allocated a fixed time

 OS_SYSTICK = 1 to enable use of the SysTick timer
 OS_CLOCK = CPU clock frequency (in Hz)
 OS_TICK = “tick time” = #microseconds between SysTick interrupts
 OS_ROBINTOUT = ticks allocated to each thread

 Thread runs for designated time, or until blocked/yield
 Round robin with preemption
 Threads assigned different priorities
 Higher-priority thread becoming ready preempts (stops) a lower-priority

running thread
 When thread blocked, highest-priority ready thread runs

 Co-operative Multi-Tasking (OS_ROBIN = 0)
 All threads assigned same priority
 Thread runs until blocked (no time limit) or executes osThreadYield();
 Next ready thread executes

Rate monotonic scheduling (RMS)
 RMS (Liu and Layland): widely-used, analyzable, static

scheduling policy.
 Time-slice based, preemptive scheduling
 Tasks assigned priority according to how often they must

execute
 Higher priority task preempts a lower-priority one
 Analysis is known as Rate Monotonic Analysis (RMA).

RMA model assumptions
 All processes run on single CPU.
 Processes are periodic
 Zero context switch time.
 No data dependencies between processes.
 Process execution time is constant.
 Deadline is at end of period.
 Highest-priority ready process runs.

RMS priorities
 Optimal (fixed) priority assignment:
 shortest-period process gets highest priority;
 priority inversely proportional to period;
 break ties arbitrarily.

 No fixed-priority scheme does better.

RMS example

time
0 5 10

P2 period

P1 period

P1 P2 P1 P1

P1: Period = 4, Execution time = 2
P2: Period = 12, Execution time = 1
LCM of Period = 12
P1 higher priority

RMS example (Ex. 6-3)

time
0 8 10

P1

P2

62 4 12

Process Execution time Period
P1 1 4 - highest priority
P2 2 6
P3 3 12 - lowest priority

P3

P1 P1

P2

P3 P3

Unrolled schedule – LCM of process periods:

RMS example 2 (Ex. 6-4)

Process Execution time Period
P1 2 4 - highest priority
P2 3 6
P3 3 12 - lowest priority

No feasible priority assignment to guarantee schedule
Consider CPU time over longest period (12 = LCM):

(3x2 for P1) + (2x3 for P2) + (1x3 for P3)
= 6 + 6 + 3
= 15 units > 12 units available

RMS Example
(http://www.netrino.com/Publications/Glossary/RMA.html)

 Case 1: Priority(Task1) > Priority(Task2)
 Case 2: Priority(Task2) > Priority(Task1)

 P1 = 50ms, C1= 25ms (CPU uti. = 50%)
 P2 = 100ms, C2= 40ms (CPU uti. = 40%)

Case 1

Case 2

Rate-monotonic analysis
 Response time: time required to finish process.
 Critical instant: scheduling state that gives worst response

time.
 Critical instant for any process occurs when it is ready and all

higher-priority processes are also ready to execute.
 Consider whether the low-priority process can meet its

deadline

Critical instant

P4

P3

P2

P1

critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

CPU utilization for RMS

 CPU utilization for n processes is: Σ i Ti / τi

 All timing deadlines for m tasks can be met (guaranteed) if:

 As number of tasks approaches infinity, maximum utilization
approaches ln 2 = 69%.
 Liu & Layland, “Scheduling algorithms for multiprogramming in a hard real-time

environment”, Journal of the ACM, Jan. 1973

∑ −≤)12(/ /1 m
ii mT τ

Task period τi

Process Pi

Task computation time Ti

RMS CPU utilization, cont’d.
 RMS guarantees all processes will always meet

their deadlines.
 RMS cannot asymptotically guarantee using 100% of CPU,

even with zero context switch overhead.
 Must keep idle cycles available to handle worst-case

scenario.

RMS implementation
 Efficient implementation:
 scan the list of processes;
 choose highest-priority active process.

(C code in figure 6.12 – pg. 330)

Earliest-deadline-first (EDF) scheduling
 Process closest to its deadline has highest priority.
 Dynamic priority scheduling scheme
 Requires recalculating process priorities at every timer

interrupt.
 then select highest-priority ready process

 Priorities based on
 frequency of execution
 deadline
 execution time of the process

 Usually clock-driven
 More complex to implement than RMS
 must re-sort list of ready tasks

EDF example (ex. 6-4)
Process Execution time Period

P1 1 3
P2 1 4
P3 2 5

CPU utilization = 1/3 + 1/4 + 2/5 = .98333333 (too high for RMS)
Time Running Deadlines
0 P1
1 P2
2 P3 P1
3 P3 P2
4 P1 P3
5 P2 P1
6 P1
7 P3 P2
8 P3 P1
9 P1 P3

Time Running Deadlines
10 P2
11 P3 P1,P2
12 P3
13 P1
14 P2 P1,P3
15 P1 P2
16 P2
17 P3 P1
18 P3
19 P1 P2,P3

EDF analysis
 EDF can use 100% of CPU.
 But EDF may miss a deadline.

EDF implementation
 More complex than RMS.
 On each timer interrupt:
 compute time to deadline;
 choose process closest to deadline.

 Generally considered too expensive to use in practice
due to changing priorities.

(C code example in figure 6.13 – pg. 336)

POSIX scheduling policies
 SCHED_FIFO: RMS
 FIFO within priority level

 SCHED_RR: round-robin
 Within priority level, processes time-sliced in round-robin

fashion

 SCHED_OTHER: undefined scheduling policy used to
mix non-real-time and real-time processes.

/* POSIX example – set scheduling policy */
#include <sched.h>
int I, my_process_id;
struct sched_param my_sched_params;
….
i = sched_setschedule(my_process_id,SCHED_FIFO,&sched_params)

ARM CMSIS-RTOS scheduling policies
 Round robin schedule (OS_ROBIN = 1)

 All threads assigned same priority
 Threads allocated a fixed time

 OS_SYSTICK = 1 to enable use of the SysTick timer
 OS_CLOCK = CPU clock frequency (in Hz)
 OS_TICK = “tick time” = #microseconds between SysTick interrupts
 OS_ROBINTOUT = ticks allocated to each thread

 Thread runs for designated time, or until blocked/yield
 Round robin with preemption (OS_ROBIN = 1)

 Threads assigned different priorities
 Higher-priority thread becoming ready preempts (stops) a lower-priority

running thread
 Pre-emptive (OS_ROBIN = 0)

 Threads assigned different priorities
 Thread runs until blocked, or executes osThreadYield(), or higher-priority thread

becomes ready (no time limit)
 Co-operative Multi-Tasking (OS_ROBIN = 0)

 All threads assigned same priority
 Thread runs until blocked (no time limit) or executes osThreadYield();
 Next ready thread executes

Fixing scheduling problems
 What if your set of processes is unschedulable?
 Change deadlines in requirements.
 Reduce execution times of processes.
 Get a faster CPU.

Priority inversion
 Priority inversion: low-priority process keeps high-priority

process from running.
 Improper use of system resources can cause scheduling

problems:
 Low-priority process grabs I/O device.
 High-priority device needs I/O device, but can’t get it until low-

priority process is done.

 Can cause deadlock.

Solving priority inversion
 Give priorities to system resources.
 Have process inherit the priority of a resource that it

requests.
 Low-priority process inherits priority of device if higher.
 Allows it to finish without preemption

Data dependencies

 Data dependencies allow us to
improve utilization.
 Restrict combination of

processes that can run
simultaneously.

 P1 and P2 can’t run
simultaneously.

 Don’t allow P3 to preempt P1.
(prevents both P1 and P2 from running)

P1

P2

P3

Task 1 Task 2

“Task graph”

Processes and CPUs
 Activation record: copy of process state (to reactivate)
 Context switch:
 current CPU context goes out;
 new CPU context goes in.

CPU

PC

registers

process 1

process 2

...
memory

code

data

activation
record

Context-switching time
 Non-zero context switch time can push limits of a tight

schedule.
 Hard to calculate effects---depends on order of context

switches.
 In practice, OS context switch overhead is small.
 Copy all registers to activation record, keeping proper return

value for PC.
 Copy new activation record into CPU state.
 How does the program that copies the context keep its own

context?

Context switching in ARM

 Save old process:

STMIA r13,{r0-r14}^
MRS r0,SPSR
STMDB r13,{r0,r15}

 Start new process:

ADR r0,NEXTPROC – get pointer
LDR r13,[r0] - get context block ptr
LDMDB r13,{r0,r14} – status & PC
MSR SPSR,r0 - restore CPSR
LDMIA r13,{r0-r14}^ - rest of reg’s
MOVS pc,r14 - resume process

STMIA: store multiple & increment address, ^ = user-mode registers
STMDB: save status register & PC

What about interrupts?

 Interrupts take time away from
processes.

 Perform minimum work possible in
the interrupt handler.

 Interrupt service routine (ISR)
performs minimal I/O.
 Get register values, put register

values.

 Interrupt service process/thread
performs most of device function.

P1

OS

P2

OS

intr

P3

Evaluating performance
 May want to test:
 context switch time assumptions;
 scheduling policy.

 OS simulator can exercise a process set and trace system
behavior.

Processes in UML
 An active object has an

independent thread of
control.

 Specified by an active
class.

	Operating systems
	Embedded vs. general-purpose scheduling
	Real-time operating system (RTOS) features
	General OS model (Linux-like)
	Commercial RTOSs (partial)
	OS process management
	Multitasking OS
	Multitasking OS
	Process threads�(lightweight processes)
	Typical process/task activation records (task control blocks)
	Process state
	Task/process states & OS functions
	Priority-driven scheduling
	Preemptive scheduling
	Context switching
	freeRTOS.org context switch
	freeRTOS.org timer handler
	Simple priority-driven scheduling example
	Priority-driven scheduling example
	Process initiation disciplines
	Timing requirements on processes
	Process scheduling considerations
	Metrics
	Some scheduling policies
	Round-robin/FIFO scheduling
	Non-preemptive, priority-based schedule
	Time-slice scheduler
	ARM CMSIS-RTOS scheduling policies
	Rate monotonic scheduling (RMS)
	RMA model assumptions
	RMS priorities
	RMS example
	RMS example (Ex. 6-3)
	RMS example 2 (Ex. 6-4)
	RMS Example (http://www.netrino.com/Publications/Glossary/RMA.html)
	Rate-monotonic analysis
	Critical instant
	CPU utilization for RMS
	RMS CPU utilization, cont’d.
	RMS implementation
	Earliest-deadline-first (EDF) scheduling
	EDF example (ex. 6-4)
	EDF analysis
	EDF implementation
	POSIX scheduling policies
	ARM CMSIS-RTOS scheduling policies
	Fixing scheduling problems
	Priority inversion
	Solving priority inversion
	Data dependencies
	Processes and CPUs
	Context-switching time
	Context switching in ARM
	What about interrupts?
	Evaluating performance
	Processes in UML

