
Processes and Operating Systems
(Text: Chapter 6)
 Multiple tasks and multiple processes.
 Scheduling
 Resource management
 Inter-process communication
 Performance

 Preemptive real-time operating systems (RTOS)
 Book examples: freeRTOS.org, POSIX/Linux, Windows CE
 Keil/ARM: CMSIS Real-Time Operating System

 Based on freeRTOS

 Processes and UML.

Reactive systems

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Respond to external events.
 Engine controller.
 Seat belt monitor.
 Process control.
 Smart phone.

 Requires real-time response.
 System architecture.
 Program implementation.

 May require a chain reaction among multiple processors.

Tasks and processes

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 A task is a functional
description of a connected
set of operations.

 (Task can also mean a
collection of processes.)

 A process is a unique
execution of a program.
 Several copies of a program

may run simultaneously or at
different times.

 A process has its own state:
 registers;
 memory.

 The operating system
manages processes.

Why multiple processes?
 Processes help us manage timing complexity:
 time periods/rates differ between processes

o depending on computational needs and deadlines
o synchronous vs asynchronous execution

 multiple & variable data/execution rates
o multimedia (compressed vs uncompressed data)
o automotive systems

 asynchronous input
o user interfaces - activated at random times (buttons, etc.)
o communication systems

Example: engine control

 Tasks:
 spark control
 crankshaft sensing
 fuel/air mixture
 oxygen sensor
 Kalman filter
 state machine
 gas pedal

engine
controller

Typical rates in engine controllers

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

Variable Full range time (ms) Update period (ms)

Engine spark timing 300 2

Throttle 40 2

Air flow 30 4

Battery voltage 80 4

Fuel flow 250 10

Recycled exhaust gas 500 25

Status switches 100 20

Air temperature Seconds 400

Barometric pressure Seconds 1000

Spark (dwell) 10 1

Fuel adjustment 80 8

Carburetor 500 25

Mode actuators 100 100

Life without processes

 Code turns into a mess:
 interruptions of one task

for another
 “spaghetti” code

time A

B

C

A

C

A_code();
…
B_code();
…
if (C) C_code();
…
A_code();
…
switch (x) {

case C: C();
case D: D();
...

Real-time systems

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Perform a computation to conform to external
timing constraints.

 Deadline frequency:
 Periodic.
 Aperiodic.

 Deadline type:
 Hard: failure to meet deadline causes system failure.
 Soft: failure to meet deadline causes degraded response.
 Firm: late response is useless but some late responses can

be tolerated.
 Process timing specifications:
 Release time: time at which process becomes ready.
 Deadline: time at which process must finish.

Release times and deadlines

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

time

P1

initiating
event

deadline

aperiodic processperiodic process initiated
at start of period

period

P1P1

deadline

period

periodic process initiated
by event

Rate requirements on processes

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Period: interval between
process activations.

 Rate: reciprocal of period.
 Initiation rate may be

higher than period---
several copies of process
run at once.

time

P11

P12

P13

P14

CPU 1

CPU 2

CPU 3

CPU 4

Timing violations

© 2000 Morgan KaufmanOverheads for Computers as Components

 What happens if a process doesn’t finish by its deadline?
 Hard deadline: system fails if missed.
 Soft deadline: user may notice, but system doesn’t necessarily

fail.

Example: Space Shuttle software error

 Space Shuttle’s first launch was delayed by a software
timing error:
 Primary control system PASS and backup flight system BFS.
 PASS used priority schedule (low priority could be

skipped)
 BFS used fixed time-slot schedule
 BFS failed to synchronize with PASS.
 A change to one routine added delay that threw off start

time calculation.
 1 in 67 chance of timing problem.

Task graphs

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Tasks may have data
dependencies---must
execute in certain order.

 Task graph shows
data/control dependencies
between processes.

 Task: connected set of
processes.

 Task set: One or more tasks.

P3

P1 P2

P4

P5

P6

task 1 task 2

task set

Communication between tasks

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Task graph assumes that all
processes in each task run at
the same rate, tasks do not
communicate.

 In reality, some amount of
inter-task communication is
necessary.
 It’s hard to require immediate

response for multi-rate
communication.

MPEG
system
layer

MPEG
audio

MPEG
video

Process execution characteristics

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Process execution time Ti.
 Execution time in absence of preemption.
 Possible time units: seconds, clock cycles.
 Worst-case, best-case execution time may be useful in some

cases.

 Sources of variation:
 Data dependencies.
 Memory system.
 CPU pipeline.

Utilization

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 CPU utilization:
 Fraction of the CPU that is doing useful work.
 Often calculated assuming no scheduling overhead.

 Utilization:
 U = (CPU time for useful work)/ (total available CPU time)

= [Σ t1 ≤ t ≤ t2 T(t)] / [t2 – t1]
= T/t

Scheduling feasibility

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Resource constraints make
schedulability analysis NP-hard.
 Must show that the deadlines are

met for all timings of resource
requests.

 Can we meet all deadlines?
 Must be able to meet deadlines in

all cases.

 How much CPU horsepower do
we need to meet our deadlines?

P1 P2

I/O device

Simple processor feasibility

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Assume:
 No resource conflicts.
 Constant process execution

times.

 Require:
 T ≥ Σi Ti

 Can’t use more than 100% of
the CPU.

T1 T2 T3

T

Hyperperiod

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Hyperperiod: least common multiple (LCM) of the task
periods.

 Must look at the hyperperiod schedule to find all task
interactions.

 Hyperperiod can be very long if task periods are not
chosen carefully.

Hyperperiod example

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Long hyperperiod:
 P1 7 ms.
 P2 11 ms.
 P3 15 ms.
 LCM = 1155 ms.

 Shorter hyperperiod:
 P1 8 ms.
 P2 12 ms.
 P3 16 ms.
 LCM = 96 ms.

Simple processor feasibility example

 P1 period 1 ms, CPU
time 0.1 ms.

 P2 period 1 ms, CPU
time 0.2 ms.

 P3 period 5 ms, CPU
time 0.3 ms.

LCM = 5 ms

period CPU time CPU time/LCM
P1 1 ms 0.1 ms 0.5 ms
P2 1 ms 0.2 ms 1 ms
P3 5 ms 0.3 ms 0.3 ms

total CPU/LCM 1.8 ms
utilization 35%

© 2004 Wayne WolfOverheads for Computers as Components 2nd ed.

Cyclostatic/TDMA

© 2004 Wayne WolfOverheads for Computers as Components 2nd ed.

 TDMA: Time Division Multiple Access (access to CPU)
 Schedule in time slots.
 Same process activation irrespective of workload.

 Time slots may be equal size or unequal. (usually equal)

T1 T2 T3

P

T1 T2 T3

P

P = HyperPeriod

TDMA assumptions

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Schedule based on least common multiple (LCM) of the
process periods.

 Trivial scheduler
 very small “scheduling overhead”. P1 P1 P1

P2 P2

PLCM

 Always gives same CPU utilization
(assuming constant process execution times).

 Can’t handle unexpected loads.
 Must schedule a time slot for aperiodic events.

(Perhaps leave last time slot empty.)

TDMA schedulability example

 TDMA period = 10 ms.
 P1 CPU time 1 ms.
 P2 CPU time 3 ms.
 P3 CPU time 2 ms.
 P4 CPU time 2 ms.

TDMA period = 10ms

CPU time
P1 1ms
P2 3ms
P3 2ms
P4 2ms
spare 2ms
utilization 80.0%

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

P1* P2 P2* P3 P4

2 2 2 2 2

* => Use half of time slot

Round-robin scheduling

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Schedule process only if ready.
 Always test processes in the same order.

 Variations:
 Constant system period.
 Start round-robin again after finishing a round.

T1 T2 T3

P

T2 T3

P

Empty slot
(P1 wasn’t ready)

Round-robin assumptions

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Schedule based on least common multiple (LCM) of the
process periods.

 Best done with equal time slots for processes.
 Simple scheduler
 Low scheduling overhead.
 Can be implemented in hardware.

 Can bound maximum CPU load.
 May leave unused CPU cycles.

 Can be adapted to handle unexpected load.
 Use time slots at end of period

Schedulability and overhead

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 The scheduling process consumes CPU time.
 Not all CPU time is available for processes.
 Need code to control execution of processes.
 Simplest implementation: process = subroutine.

 Scheduling overhead must be taken into account for
exact schedule.
 May be ignored if it is a small fraction of total execution time.

while loop implementation

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 “Round Robin” schedule
 Simplest implementation

has one loop.
 No control over execution

timing.

while (TRUE) {
p1();
p2();

}

Timed loop implementation

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Encapsulate set of all
processes in a single
function that implements
the task set.

 Use timer to control
execution of task “p_all”.
 Each process executed in

each time interval
 No control over timing of

individual processes.

void p_all(){
p1();
p2();

}

Multiple timers implementation

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Each task has its own
function.

 Each task has its own
timer.
 May not have enough

timers to implement all the
rates.

 One timer interrupt may
delay another

void pA(){ /* rate A */
p1();
p3();

}
void pB(){ /* rate B */

p2();
p4();
p5();

}

Timer + counter implementation

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 Use a software count to
divide the timer.

 Only works for clean
multiples of the timer
period.

int p2count = 0;
void pall(){

p1();
if (p2count >= 2) {

p2();
p2count = 0;
}

else p2count++;
p3();

}

Implementing processes

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

 All of these implementations are inadequate.
 Need better control over timing.
 Need a better mechanism than subroutines.
 Solve via Real-Time Operating System

	Processes and Operating Systems�(Text: Chapter 6)
	Reactive systems
	Tasks and processes
	Why multiple processes?
	Example: engine control
	Typical rates in engine controllers
	Life without processes
	Real-time systems
	Release times and deadlines
	Rate requirements on processes
	Timing violations
	Example: Space Shuttle software error
	Task graphs
	Communication between tasks
	Process execution characteristics
	Utilization
	Scheduling feasibility
	Simple processor feasibility
	Hyperperiod
	Hyperperiod example
	Simple processor feasibility example
	Cyclostatic/TDMA
	TDMA assumptions
	TDMA schedulability example
	Round-robin scheduling
	Round-robin assumptions
	Schedulability and overhead
	while loop implementation
	Timed loop implementation
	Multiple timers implementation
	Timer + counter implementation
	Implementing processes

