
Processes and Operating Systems
(Text: Chapter 6)
 Multiple tasks and multiple processes.
 Scheduling
 Resource management
 Inter-process communication
 Performance

 Preemptive real-time operating systems (RTOS)
 Book examples: freeRTOS.org, POSIX/Linux, Windows CE
 Keil/ARM: CMSIS Real-Time Operating System

 Based on freeRTOS

 Processes and UML.



Reactive systems
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 Respond to external events.
 Engine controller.
 Seat belt monitor.
 Process control.
 Smart phone.

 Requires real-time response.
 System architecture.
 Program implementation.

 May require a chain reaction among multiple processors.



Tasks and processes
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 A task is a functional 
description of a connected 
set of operations.

 (Task can also mean a 
collection of processes.)

 A process is a unique 
execution of a program.
 Several copies of a program 

may run simultaneously or at 
different times.

 A process has its own state:
 registers;
 memory.

 The operating system 
manages processes.



Why multiple processes?
 Processes help us manage timing complexity:
 time periods/rates differ between processes

o depending on computational needs and deadlines
o synchronous vs asynchronous execution

 multiple & variable data/execution rates
o multimedia (compressed vs uncompressed data)
o automotive systems

 asynchronous input
o user interfaces - activated at random times (buttons, etc.)
o communication systems



Example: engine control

 Tasks:
 spark control
 crankshaft sensing
 fuel/air mixture
 oxygen sensor
 Kalman filter
 state machine
 gas pedal

engine
controller



Typical rates in engine controllers

© 2008 Wayne WolfOverheads for Computers as Components 2nd ed.

Variable Full range time (ms) Update period (ms)

Engine spark timing 300 2

Throttle 40 2

Air flow 30 4

Battery voltage 80 4

Fuel flow 250 10

Recycled exhaust gas 500 25

Status switches 100 20

Air temperature Seconds 400

Barometric pressure Seconds 1000

Spark (dwell) 10 1

Fuel adjustment 80 8

Carburetor 500 25

Mode actuators 100 100



Life without processes

 Code turns into a mess:
 interruptions of one task 

for another
 “spaghetti” code

time A

B

C

A

C

A_code();
…
B_code();
…
if (C) C_code();
…
A_code();
…
switch (x) {

case C: C();
case D: D();
...



Real-time systems
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 Perform a computation to conform to external 
timing constraints.

 Deadline frequency:
 Periodic.
 Aperiodic.

 Deadline type:
 Hard: failure to meet deadline causes system failure.
 Soft: failure to meet deadline causes degraded response.
 Firm: late response is useless but some late responses can 

be tolerated.
 Process timing specifications:
 Release time: time at which process becomes ready.
 Deadline: time at which process must finish.



Release times and deadlines
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Rate requirements on processes
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 Period: interval between 
process activations.

 Rate: reciprocal of period.
 Initiation rate may be 

higher than period---
several copies of process 
run at once.

time
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CPU 1

CPU 2

CPU 3
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Timing violations
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 What happens if a process doesn’t finish by its deadline?
 Hard deadline: system fails if missed.
 Soft deadline: user may notice, but system doesn’t necessarily 

fail.



Example: Space Shuttle software error

 Space Shuttle’s first launch was delayed by a software 
timing error:
 Primary control system PASS and backup flight system BFS.
 PASS used priority schedule (low priority could be 

skipped)
 BFS used fixed time-slot schedule
 BFS failed to synchronize with PASS.
 A change to one routine added delay that threw off start 

time calculation.
 1 in 67 chance of timing problem.



Task graphs
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 Tasks may have data 
dependencies---must 
execute in certain order.

 Task graph shows 
data/control dependencies 
between processes.

 Task: connected set of 
processes.

 Task set: One or more tasks.

P3

P1 P2

P4

P5

P6

task 1 task 2

task set



Communication between tasks
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 Task graph assumes that all 
processes in each task run at 
the same rate, tasks do not 
communicate.

 In reality, some amount of 
inter-task communication is 
necessary.
 It’s hard to require immediate 

response for multi-rate 
communication.

MPEG 
system 
layer

MPEG 
audio

MPEG 
video



Process execution characteristics
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 Process execution time Ti.
 Execution time in absence of preemption.
 Possible time units: seconds, clock cycles.
 Worst-case, best-case execution time may be useful in some 

cases.

 Sources of variation:
 Data dependencies.
 Memory system.
 CPU pipeline.



Utilization
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 CPU utilization:
 Fraction of the CPU that is doing useful work.
 Often calculated assuming no scheduling overhead.

 Utilization:
 U = (CPU time for useful work)/ (total available CPU time)

= [ Σ t1 ≤ t ≤ t2 T(t) ] / [t2 – t1]
= T/t



Scheduling feasibility
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 Resource constraints make 
schedulability analysis NP-hard.
 Must show that the deadlines are 

met for all timings of resource 
requests.

 Can we meet all deadlines?
 Must be able to meet deadlines in 

all cases.

 How much CPU horsepower do 
we need to meet our deadlines?

P1 P2

I/O device



Simple processor feasibility
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 Assume:
 No resource conflicts.
 Constant process execution 

times.

 Require:
 T ≥ Σi Ti

 Can’t use more than 100% of 
the CPU.

T1 T2 T3

T



Hyperperiod
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 Hyperperiod: least common multiple (LCM) of the task 
periods.

 Must look at the hyperperiod schedule to find all task 
interactions.

 Hyperperiod can be very long if task periods are not 
chosen carefully.



Hyperperiod example
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 Long hyperperiod:
 P1 7 ms.
 P2 11 ms.
 P3 15 ms.
 LCM = 1155 ms.

 Shorter hyperperiod:
 P1 8 ms.
 P2 12 ms.
 P3 16 ms.
 LCM = 96 ms.



Simple processor feasibility example

 P1 period 1 ms, CPU 
time 0.1 ms.

 P2 period 1 ms, CPU 
time 0.2 ms.

 P3 period 5 ms, CPU 
time 0.3 ms.

LCM = 5 ms

period CPU time CPU time/LCM
P1 1 ms 0.1 ms 0.5 ms
P2 1 ms 0.2 ms 1 ms
P3 5 ms 0.3 ms 0.3 ms

total CPU/LCM 1.8 ms
utilization 35%
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Cyclostatic/TDMA
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 TDMA: Time Division Multiple Access (access to CPU)
 Schedule in time slots.
 Same process activation irrespective of workload.

 Time slots may be equal size or unequal. (usually equal)

T1 T2 T3

P

T1 T2 T3

P

P = HyperPeriod



TDMA assumptions
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 Schedule based on least common multiple (LCM) of the 
process periods.

 Trivial scheduler 
 very small “scheduling overhead”. P1 P1 P1

P2 P2

PLCM

 Always gives same CPU utilization 
(assuming constant process execution times).

 Can’t handle unexpected loads.
 Must schedule a time slot for aperiodic events.

(Perhaps leave last time slot empty.)



TDMA schedulability example

 TDMA period = 10 ms.
 P1 CPU time 1 ms.
 P2 CPU time 3 ms.
 P3 CPU time 2 ms.
 P4 CPU time 2 ms.

TDMA period = 10ms

CPU time
P1 1ms
P2 3ms
P3 2ms
P4 2ms
spare 2ms
utilization 80.0%
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P1* P2 P2* P3 P4

2          2            2           2           2

*  => Use half of time slot



Round-robin scheduling
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 Schedule process only if ready.
 Always test processes in the same order.

 Variations:
 Constant system period.
 Start round-robin again after finishing a round.

T1 T2 T3

P

T2 T3

P

Empty slot 
(P1 wasn’t ready)



Round-robin assumptions
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 Schedule based on least common multiple (LCM) of the 
process periods.

 Best done with equal time slots for processes.
 Simple scheduler 
 Low scheduling overhead.
 Can be implemented in hardware.

 Can bound maximum CPU load.
 May leave unused CPU cycles.

 Can be adapted to handle unexpected load.
 Use time slots at end of period



Schedulability and overhead
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 The scheduling process consumes CPU time.
 Not all CPU time is available for processes.
 Need code to control execution of processes.
 Simplest implementation: process = subroutine.

 Scheduling overhead must be taken into account for 
exact schedule.
 May be ignored if it is a small fraction of total execution time.



while loop implementation
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 “Round Robin” schedule
 Simplest implementation 

has one loop.
 No control over execution 

timing.

while (TRUE) {
p1();
p2();

}



Timed loop implementation
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 Encapsulate set of all 
processes in a single 
function that implements 
the task set.

 Use timer to control 
execution of task “p_all”.
 Each process executed in 

each time interval
 No control over timing of 

individual processes.

void p_all(){
p1();
p2();

}



Multiple timers implementation
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 Each task has its own 
function.

 Each task has its own 
timer.
 May not have enough 

timers to implement all the 
rates.

 One timer interrupt may 
delay another

void pA(){ /* rate A */
p1();
p3();

}
void pB(){ /* rate B */

p2();
p4();
p5();

}



Timer + counter implementation
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 Use a software count to 
divide the timer.

 Only works for clean 
multiples of the timer 
period.

int p2count = 0;
void pall(){ 

p1();
if (p2count >= 2) {

p2();
p2count = 0;
}

else p2count++;
p3();

}



Implementing processes
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 All of these implementations are inadequate.
 Need better control over timing.
 Need a better mechanism than subroutines.
 Solve via Real-Time Operating System
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