Elements of CPU performance

- Cycle time.
- CPU pipeline.
- Superscalar design.
- Memory system.

$$Texec = (\frac{instructions}{program})(\frac{cycles}{instruction})(\frac{sec\ onds}{cycle})$$

ARM7TDM CPU Core

ARM Cortex A-9 Microarchitecture

Pipelining

Several instructions are executed simultaneously at different stages of completion.

- Various conditions can cause pipeline bubbles that reduce utilization:
 - branches;
 - memory system delays;
 - etc.

ARM pipeline execution

ARM7 has 3-stage pipes:

fetch instruction from memory;
decode opcode and operands;
execute.

Pipeline changes for ARM9TDMI

ARM7TDMI

ARM9TDMI

ARM10 and ARM11 pipelines

ARM10

ARM11

(superscalar design)

Performance measures

- Latency: time it takes for an instruction to get through the pipeline.
- Throughput: number of instructions executed per time period.
- Pipelining increases throughput without reducing latency.

```
Assume a program with N, K-stage instructions

Without pipeline: Texec = N*K

With K-stage pipeline: Texec = K + (N-1)

K cycles for 1st instruction

1 cycle to complete each additional instruction

Speedup = \frac{N \times K}{K + (N-1)}

For large N

Speedup \approx K

This assumes no pipeline stalls.
```


Pipeline stalls

- If every step cannot be completed in the same amount of time, pipeline stalls.
- Bubbles introduced by stall increase latency, reduce throughput.

ARM multi-cycle LDMIA instruction

Control stalls

- Branches often introduce stalls (branch penalty).
 - Stall time may depend on whether branch is taken.
- May have to squash instructions that already started executing.
- Don't know what to fetch until condition is evaluated.

ARM pipelined branch

Delayed branch

- ▶ To increase pipeline efficiency, delayed branch mechanism requires n instructions after branch always executed whether branch is executed or not.
- ▶ SHARC supports delayed and non-delayed branches.
 - Specified by bit in branch instruction.
 - ▶ 2 instruction branch delay slot.

Example: ARM execution time

Determine execution time of FIR filter:

```
for (i=0; i< N; i++)

f = f + c[i]*x[i];
```

- Only branch in loop test may take more than one cycle.
 - ▶ BLT loop takes I cycle best case, 3 worst case.

FIR filter ARM code

; loop initiation code

MOV r0,#0; use r0 for i, set to 0

MOV r8,#0; use a separate index for arrays

ADR r2,N; get address for N

LDR r1,[r2]; get value of N

MOV r2,#0; use r2 for f, set to 0

ADR r3,c; load r3 with address of base of c

ADR r5,x; load r5 with address of base of x

; loop body

```
loop LDR r4,[r3,r8]; get value of c[i]
LDR r6,[r5,r8]; get value of x[i]
MUL r4,r4,r6; compute c[i]*x[i]
ADD r2,r2,r4; add into running sum
; update loop counter and array index
ADD r8,r8,#4; add one to array index
ADD r0,r0,#1; add I to i
; test for exit
CMP r0,r1
BLT loop; if i < N, continue loop
loopend ...
```

FIR filter performance by block

Block	Variable	# instructions	# cycles
Initialization	t _{init}	7	7
Body	t _{body}	4	4
Update	t _{update}	2	2
Test	t_{test}	2	[2,4]

$$t_{loop} = t_{init} + N(t_{body} + t_{update}) + (N-1) t_{test,worst} + t_{test,best}$$

Loop test succeeds is worst case

Loop test fails is best case

FIR performance on ARM

$$t_{loop} = t_{init} + N(t_{body} + t_{update}) + (N-1)t_{test,worst} + t_{test,best}$$
7 4 2 4 2

N = # times loop executed

$$t_{loop} = 5 + (N \times 10) cycles$$

Superscalar execution

- Superscalar processor can execute several instructions per cycle.
 - Uses multiple pipelined data paths.
- Programs execute faster, but it is harder to determine how much faster.
- Multicore module has multiple processors, each executing separate program "threads"

Data dependencies

- Execution time depends on operands, not just opcode.
- Superscalar CPU checks data dependencies dynamically:

data dependency add r2,r0,r1 add r3,r2,r5

C55x pipeline

- ▶ C55x has 7-stage pipe:
 - fetch;
 - decode;
 - address: computes data/branch addresses;
 - access I: reads data;
 - access 2: finishes data read;
 - Read stage: puts operands on internal busses;
 - execute.

C55x organization

C55x pipeline hazards

- Processor structure:
 - Three computation units.
 - ▶ 14 operators.
- Can perform two operations per instruction.
- Some combinations of operators are not legal.

C55x hazards

- A-unit ALU/A-unit ALU.
- A-unit swap/A-unit swap.
- D-unit ALU, shifter, MAC/D-unit ALU, shifter, MAC
- D-unit shifter/D-unit shift, store
- D-unit shift, store/D-unit shift, store
- D-unit swap/D-unit swap
- P-unit control/P-unit control

