
CPUs – Chapter 3.5

Caches.
Memory management.
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ARM Cortex A9 Microarchitecture

Main System Memory



ARM Cortex-A9 MPCore



Cache operation
 Many main memory locations are mapped onto one 

cache entry.
 May have caches for:
 instructions;
 data;
 data + instructions (unified).

 Memory access time is no longer deterministic.
 Depends on “hits” and “misses”
 Cache hit: required location is in cache.
 Cache miss: required location is not in cache.

 Working set: set of locations used by program in a time 
interval.
 Anticipate what is needed to minimizes misses



Types of misses
 Compulsory (cold): location has never been accessed.
 Capacity: working set is too large.
 Conflict: multiple locations in working set map to same 

cache entry – fighting for the same cache location

 Cache miss penalty: added time due to a cache miss.



Cache performance benefits
 Keep frequently-accessed locations in fast cache.
 Cache retrieves multiple words at a time from main 

memory.
 Sequential accesses are faster after first access.



Memory system performance
 h = cache hit rate;       (1-h) = cache miss rate
 tcache = cache access time
 tmain = main memory access time

 Average memory access time:
 tav = htcache + (1-h)(tcache+tmain) look-through cache
 tav = htcache + (1-h)tmain look-aside cache



Multiple levels of cache

CPU L1 cache L2 cache

 h1 = cache hit rate.
 h2 = rate for miss on L1, hit on L2.
 Average memory access time:
 tav = h1tL1 + (h2-h1)tL2 + (1- h2-h1)tmain



Write operations
 Write-through: immediately copy write to main memory.
 Write-back: write to main memory only when location is 

removed from cache.



Replacement policies
 Replacement policy: strategy for choosing which cache 

entry to throw out to make room for a new memory 
location.

 Two popular strategies:
 Random.
 Least-recently used (LRU).



Cache organizations
 Fully-associative: any memory location can be stored 

anywhere in the cache (almost never implemented).
 Direct-mapped: each memory location maps onto exactly 

one cache entry.
 N-way set-associative: each memory location can go into 

one of n sets.



Direct-mapped cache locations
 Many locations map onto the same cache block.
 Conflict misses are easy to generate:
 Array a[ ] uses locations 0, 1, 2, …
 Array b[ ] uses loc’s 0x400, 0x401, 0x402, …
 Operation a[i] + b[i] generates conflict misses.
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Set-associative cache

 A set of direct-mapped caches:

Set 1 Set 2 Set n...

hit data



Example: direct-mapped vs. set-associative

address data
000 0101
001 1111
010 0000
011 0110
100 1000
101 0001
110 1010
111 0100



Direct-mapped cache behavior
 After 001 access:

block tag data
00 - -
01 0 1111
10 - -
11 - -

 After 010 access:
block tag data
00 - -
01 0 1111
10 0 0000
11 - -



Direct-mapped cache behavior, cont’d.
 After 011 access:

block tag data
00 - -
01 0 1111
10 0 0000
11 0 0110

 After 100 access:
block tag data
00 1 1000
01 0 1111
10 0 0000
11 0 0110



Direct-mapped cache behavior, cont’d.
 After 101 access:

block tag data
00 1 1000
01 1 0001
10 0 0000
11 0 0110

 After 111 access:
block tag data
00 1 1000
01 1 0001
10 0 0000
11 1 0100



2-way set-associtive cache behavior
 Final state of cache (twice as big as direct-mapped):

set blk 0 tag blk 0 data blk 1 tag blk 1 data
001 1000 - -
010 1111 1 0001
100 0000 - -
110 0110 1 0100



2-way set-associative cache behavior
 Final state of cache (same size as direct-mapped):

set blk 0 tag blk 0 data blk 1 tag blk 1 data
0 01 0000 10 1000
1 10 0111 11 0100
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Example caches
 StrongARM:
 16 Kbyte, 32-way, 32-byte block instruction cache.
 16 Kbyte, 32-way, 32-byte block data cache (write-back).

 C55x:
 Various models have 16KB, 24KB cache.
 Can be used as scratch pad memory.



Scratch pad memories
 Alternative to cache:
 Software determines what is stored in scratch pad.

 Provides predictable behavior at the cost of software 
control.

 C55x cache can be configured as scratch pad.



Memory management units  (3.5.2)

 Memory management unit (MMU) translates addresses:
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Memory management tasks
 Allows programs to move in physical memory during 

execution.
 Allows virtual memory:
 memory images kept in secondary storage;
 images returned to main memory on demand during 

execution.

 Page fault: request for location not resident in memory.



Address translation
 Requires some sort of register/table to allow arbitrary 

mappings of logical to physical addresses.
 Two basic schemes:
 segmented;
 paged.

 Segmentation and paging can be combined (x86, 
PowerPC).



Segments and pages
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Segment address translation

segment base address logical address

range
check

physical address

+

range
error

segment lower bound
segment upper bound

Also check
“protections”



Page address translation

page offset

page offset

page i base

concatenate



Page table organizations

flat tree

page descriptor

page
descriptor



Caching address translations
 Large translation tables require main memory access.
 TLB (translation lookaside buffer): cache for address 

translation.
 Typically small.



ARM memory management
(optional)
 Memory region types:
 section: 1 Mbyte block;
 large page: 64 kbytes;
 small page: 4 kbytes.

 An address is marked as section-mapped or page-
mapped.

 Two-level translation scheme.



ARM address translation
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