CPUs — Chapter 3.5

Caches.
Memory management.
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ARM Cortex-A9 Configurations

Next-Generation Devices

Typical Cortex-A9 Configuration

Mobile Handsets
Connected Mobile Computers

.

High-end mobile devices (1500-3000DMIPS)

2-3 core processor advanced power management

32K Instruction and Data caches, 256-512K shared L2 cache using FL310, partitioned AXI
MEON technology-based Media Processing Engine

Mid-range, cost reduction, (900-1500DMIPS)

Single core processor with NEON ar FPU

16K or 32K instruction and data caches

128-256K L2 cache using PL310, single AMBA AXI bus

Feature-rich mass market (600-900DMIPS)
Single core processor with FPU
16K instruction and data caches, single AXI

Consumer and Auto-infotainment

2. n

Consumer: user interactions (800-3000DMIPS)

1-4 core processors giving design scalability across family of devices

32K instruction and data caches with 0-512K L2 cache

MNEQON technclogy for advanced media and DSP processing

Advanced bus interface unit for high-speed memory transfers between on-chip 3D engines
and network interface MACs

AMP configurations using separate CPU for real-time RTOS

Networking / Home Gateways

I
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Enterprise market (4000-8000DMIPS)

3-4 core performance optimized implementation
32K+64K instruction and data cache

512K-2MB L2 cache, dual 64 bit AMBA AXI interfaces

Consumer devices (800-1500DMIPS3)

1x or 2% multicore utilizing coherent accelerators

32+32K instruction and data, with 256-512K shared L2 cache
MEOM or VFP when offering media gateway or services

Embedded

- & o=

Embedded media and imaging (800-2000DMIPS)

2% multicore: utilizing coherent accelerators

32+32K instruction and data with 256K shared L2 cache

FEU for postscript and image manipulation and enhancement
Code migration through selective AMP/SMP deployments




ARM Cortex A9 Microarchitecture
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ARM Cortex-A9 MPCore
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Cache operation

» Many main memory locations are mapped onto one
cache entry.
» May have caches for:
instructions;
data;
data + instructions (unified).
» Memory access time is no longer deterministic.
Depends on “hits” and “misses”
Cache hit: required location is in cache.
Cache miss: required location is not in cache.
» Working set: set of locations used by program in a time
interval.
Anticipate what is needed to minimizes misses



Types of misses

» Compulsory (cold): location has never been accessed.

» Capacity: working set is too large.

» Conflict: multiple locations in working set map to same
cache entry — fighting for the same cache location

» Cache miss penalty: added time due to a cache miss.



Cache performance benefits

» Keep frequently-accessed locations in fast cache.

» Cache retrieves multiple words at a time from main
memory.

Sequential accesses are faster after first access.



Memory system performance

» h = cache hit rate; (I-h) = cache miss rate
» e — Cache access time
» t. ., — Main memory access time

4 Aver'age memor’y access time:
tav = htcache T (I'I‘])(tcache-l-t
t, = ht4. T (1-h)t

look-through cache

main)

cache main look-aside cache



Multiple levels of cache

CPU

» h, = cache hit rate.
» h, = rate for miss on LI, hit on L2.
» Average memory access time:

» ty, = hyty F (hp-hy)tp . (1- hy-hy)t

main



Write operations

» Write-through: immediately copy write to main memory.

» Write-back: write to main memory only when location is
removed from cache.



Replacement policies

» Replacement policy: strategy for choosing which cache
entry to throw out to make room for a new memory

location.
» Two popular strategies:

Random.
Least-recently used (LRU).



Cache organizations

» Fully-associative: any memory location can be stored
anywhere in the cache (almost never implemented).

» Direct-mapped: each memory location maps onto exactly
one cache entry.

» N-way set-associative: each memory location can go into
one of n sets.



Direct-mapped cache locations

» Many locations map onto the same cache block.

» Conflict misses are easy to generate:

Array a[ ] uses locations 0, 1, 2, ...
Array b[ ] uses loc’s 0x400, 0x401, 0x402, ...
Operation a[i] + b[i] generates conflict misses.
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Set-associative cache

» A set of direct-mapped caches:




Example: direct-mapped vs. set-associative

address data
000 0101
001 1111
010 0000
011 0110
100 1000
101 0001
110 1010

111 0100



Direct-mapped cache behavior

» After 001 access: » After 010 access:
block tag data block tag data
00 - - 00 - -

0l 0 1111 0l 0 1111
10 - - 10 O 0000



Direct-mapped cache behavior, cont’d.

» After Ol | access:

block tag data
00 - -

ol 0 111
10 O 0000
110 0110

» After 100 access:

block tag data
00 | 1000
ol O 111
10 O 0000
11 0 0110



Direct-mapped cache behavior, cont’d.

» After 101 access:

block tag data
00 | 1000
Ol | 0001
10 O 0000
110 0110

» After ||| access:
block tag data
00 | 1000
0l | 0001
10 O 0000

I

| | 0100



2-way set-associtive cache behavior

» Final state of cache (twice as big as direct-mapped):

set blk O tagblk O data blk | tagblk | data
00| 1000 - -
010 111 | 0001
100 0000 : :

110 Ol10 | 0100



2-way set-associative cache behavior

» Final state of cache (same size as direct-mapped):
set blk O tagblk O data blk | tagblk | data
0 Ol 0000 |0 1000
| 10 Ol I 0100
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Example caches

» StrongARM:

|6 Kbyte, 32-way, 32-byte block instruction cache.
|6 Kbyte, 32-way, 32-byte block data cache (write-back).

» C55x:
Various models have |6KB, 24KB cache.

Can be used as scratch pad memory.



Scratch pad memories

» Alternative to cache:

Software determines what is stored in scratch pad.

» Provides predictable behavior at the cost of software
control.

» C55x cache can be configured as scratch pad.



Memory management units (3.5.2)

» Memory management unit (MMU) translates addresses:

CPU

|

physical swapping
address

logical
address



Memory management tasks

» Allows programs to move in physical memory during
execution.
» Allows virtual memory:

memory images kept in secondary storage;

images returned to main memory on demand during
execution.

» Page fault: request for location not resident in memory.



Address translation

» Requires some sort of register/table to allow arbitrary
mappings of logical to physical addresses.
» Two basic schemes:
segmented;
paged.
» Segmentation and paging can be combined (x86,
PowerPC).



Segments and pages

‘ page 1 I — pages have

page 2 fixed size

S
segments have

arbitrary size \

fragmentation
of free memory



Segment address translation

range
error

segment lower bound
segment upper bound

Also check /

“protections”



Page address translation

g CONcatenate




Page table organizations

page
descriptor
page descriptor

/

flat tree



Caching address translations

» Large translation tables require main memory access.

» TLB (translation lookaside buffer): cache for address
translation.

Typically small.



ARM memory management
(optional)
» Memory region types:

section: | Mbyte block;

large page: 64 kbytes;

small page: 4 kbytes.

» An address is marked as section-mapped or page-
mapped.

» Two-level translation scheme.



ARM address translation

Translation table
base register

1st index

2nd index

offset

descriptor
1st level table

descriptor
2nd level table

g CONcatenate

concatenate

physical address
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