CPUs — Chapter 3.5

Caches.
Memory management.




Caches and CPUs

address data

CPU

data



ARM Cortex-A9 Configurations

Next-Generation Devices

Typical Cortex-A9 Configuration

Mobile Handsets
Connected Mobile Computers

.

High-end mobile devices (1500-3000DMIPS)

2-3 core processor advanced power management

32K Instruction and Data caches, 256-512K shared L2 cache using FL310, partitioned AXI
MEON technology-based Media Processing Engine

Mid-range, cost reduction, (900-1500DMIPS)

Single core processor with NEON ar FPU

16K or 32K instruction and data caches

128-256K L2 cache using PL310, single AMBA AXI bus

Feature-rich mass market (600-900DMIPS)
Single core processor with FPU
16K instruction and data caches, single AXI

Consumer and Auto-infotainment

2. n

Consumer: user interactions (800-3000DMIPS)

1-4 core processors giving design scalability across family of devices

32K instruction and data caches with 0-512K L2 cache

MNEQON technclogy for advanced media and DSP processing

Advanced bus interface unit for high-speed memory transfers between on-chip 3D engines
and network interface MACs

AMP configurations using separate CPU for real-time RTOS

Networking / Home Gateways

I
Bl

Enterprise market (4000-8000DMIPS)

3-4 core performance optimized implementation
32K+64K instruction and data cache

512K-2MB L2 cache, dual 64 bit AMBA AXI interfaces

Consumer devices (800-1500DMIPS3)

1x or 2% multicore utilizing coherent accelerators

32+32K instruction and data, with 256-512K shared L2 cache
MEOM or VFP when offering media gateway or services

Embedded

- & o=

Embedded media and imaging (800-2000DMIPS)

2% multicore: utilizing coherent accelerators

32+32K instruction and data with 256K shared L2 cache

FEU for postscript and image manipulation and enhancement
Code migration through selective AMP/SMP deployments




ARM Cortex A9 Microarchitecture

IROFIC
Coresight ¢/ . P
oresig - I

nterrupt
JTAG i

i

e —————
Coresight
Trace
AMBA 3 AX] G4bit ‘

Main System Memory



ARM Cortex-A9 MPCore

HENESEEENENERENENE .

ARM CoreSight™ MulticoreDebug and Trace Architecture

PTHM
FPUINEON | ™ e

FTM PTM PTHM
FPU/NEON| | " " | [FPU/NEON | " | [FPUNEON!| ™) \c

Cortex-A9 CPU| |Cortex-A9 CPU| |Cortex-A% CPU| |Cortex-A9 CPU

| I-CatheiECadn I-Ca:ha‘t&ch I-&ﬁa‘bhi I-Cache hﬂl

Snoop Control Unit (SCU)
Sl Accelerator
Interrupt Control Coherency
and Distribution §Cache-2-Cache JIS-Y/T-T-T. SRY I . Port

Transfers Filtering

Advanced Bus Interface Unit

EENEREEEEEEEEnEnEeEREN
ore

] Cortex™-A9 MPC
[ ]

HpEpEpEpEpEpEEEpEpEEN



Cache operation

» Many main memory locations are mapped onto one
cache entry.
» May have caches for:
instructions;
data;
data + instructions (unified).
» Memory access time is no longer deterministic.
Depends on “hits” and “misses”
Cache hit: required location is in cache.
Cache miss: required location is not in cache.
» Working set: set of locations used by program in a time
interval.
Anticipate what is needed to minimizes misses



Types of misses

» Compulsory (cold): location has never been accessed.

» Capacity: working set is too large.

» Conflict: multiple locations in working set map to same
cache entry — fighting for the same cache location

» Cache miss penalty: added time due to a cache miss.



Cache performance benefits

» Keep frequently-accessed locations in fast cache.

» Cache retrieves multiple words at a time from main
memory.

Sequential accesses are faster after first access.



Memory system performance

» h = cache hit rate; (I-h) = cache miss rate
» e — Cache access time
» t. ., — Main memory access time

4 Aver'age memor’y access time:
tav = htcache T (I'I‘])(tcache-l-t
t, = ht4. T (1-h)t

look-through cache

main)

cache main look-aside cache



Multiple levels of cache

CPU

» h, = cache hit rate.
» h, = rate for miss on LI, hit on L2.
» Average memory access time:

» ty, = hyty F (hp-hy)tp . (1- hy-hy)t

main



Write operations

» Write-through: immediately copy write to main memory.

» Write-back: write to main memory only when location is
removed from cache.



Replacement policies

» Replacement policy: strategy for choosing which cache
entry to throw out to make room for a new memory

location.
» Two popular strategies:

Random.
Least-recently used (LRU).



Cache organizations

» Fully-associative: any memory location can be stored
anywhere in the cache (almost never implemented).

» Direct-mapped: each memory location maps onto exactly
one cache entry.

» N-way set-associative: each memory location can go into
one of n sets.



Direct-mapped cache locations

» Many locations map onto the same cache block.

» Conflict misses are easy to generate:

Array a[ ] uses locations 0, 1, 2, ...
Array b[ ] uses loc’s 0x400, 0x401, 0x402, ...
Operation a[i] + b[i] generates conflict misses.

CACHE MAIN
Index P Tag Data 0x000 a[0
ox00 1 5 al0 /0x001 a[1
ox01[ 1, 4 b[1] <
O\ R
0 [\
0]\ Index
OxFF[O ] \ 0x400 b[o]
W x401 b[i}
@1 189 |
Hito Address: 0x401 -




Set-associative cache

» A set of direct-mapped caches:




Example: direct-mapped vs. set-associative

address data
000 0101
001 1111
010 0000
011 0110
100 1000
101 0001
110 1010

111 0100



Direct-mapped cache behavior

» After 001 access: » After 010 access:
block tag data block tag data
00 - - 00 - -

0l 0 1111 0l 0 1111
10 - - 10 O 0000



Direct-mapped cache behavior, cont’d.

» After Ol | access:

block tag data
00 - -

ol 0 111
10 O 0000
110 0110

» After 100 access:

block tag data
00 | 1000
ol O 111
10 O 0000
11 0 0110



Direct-mapped cache behavior, cont’d.

» After 101 access:

block tag data
00 | 1000
Ol | 0001
10 O 0000
110 0110

» After ||| access:
block tag data
00 | 1000
0l | 0001
10 O 0000

I

| | 0100



2-way set-associtive cache behavior

» Final state of cache (twice as big as direct-mapped):

set blk O tagblk O data blk | tagblk | data
00| 1000 - -
010 111 | 0001
100 0000 : :

110 Ol10 | 0100



2-way set-associative cache behavior

» Final state of cache (same size as direct-mapped):
set blk O tagblk O data blk | tagblk | data
0 Ol 0000 |0 1000
| 10 Ol I 0100



ARM Cortex-A9 Configurations

Next-Generation Devices

Typical Cortex-A9 Configuration

Mobile Handsets
Connected Mobile Computers

.

High-end mobile devices (1500-3000DMIPS)

2-3 core processor advanced power management

32K Instruction and Data caches, 256-512K shared L2 cache using FL310, partitioned AXI
MEON technology-based Media Processing Engine

Mid-range, cost reduction, (900-1500DMIPS)

Single core processor with NEON ar FPU

16K or 32K instruction and data caches

128-256K L2 cache using PL310, single AMBA AXI bus

Feature-rich mass market (600-900DMIPS)
Single core processor with FPU
16K instruction and data caches, single AXI

Consumer and Auto-infotainment

2. n

Consumer: user interactions (800-3000DMIPS)

1-4 core processors giving design scalability across family of devices

32K instruction and data caches with 0-512K L2 cache

MNEQON technclogy for advanced media and DSP processing

Advanced bus interface unit for high-speed memory transfers between on-chip 3D engines
and network interface MACs

AMP configurations using separate CPU for real-time RTOS

Networking / Home Gateways

I
Bl

Enterprise market (4000-8000DMIPS)

3-4 core performance optimized implementation
32K+64K instruction and data cache

512K-2MB L2 cache, dual 64 bit AMBA AXI interfaces

Consumer devices (800-1500DMIPS3)

1x or 2% multicore utilizing coherent accelerators

32+32K instruction and data, with 256-512K shared L2 cache
MEOM or VFP when offering media gateway or services

Embedded

- & o=

Embedded media and imaging (800-2000DMIPS)

2% multicore: utilizing coherent accelerators

32+32K instruction and data with 256K shared L2 cache

FEU for postscript and image manipulation and enhancement
Code migration through selective AMP/SMP deployments




Example caches

» StrongARM:

|6 Kbyte, 32-way, 32-byte block instruction cache.
|6 Kbyte, 32-way, 32-byte block data cache (write-back).

» C55x:
Various models have |6KB, 24KB cache.

Can be used as scratch pad memory.



Scratch pad memories

» Alternative to cache:

Software determines what is stored in scratch pad.

» Provides predictable behavior at the cost of software
control.

» C55x cache can be configured as scratch pad.



Memory management units (3.5.2)

» Memory management unit (MMU) translates addresses:

CPU

|

physical swapping
address

logical
address



Memory management tasks

» Allows programs to move in physical memory during
execution.
» Allows virtual memory:

memory images kept in secondary storage;

images returned to main memory on demand during
execution.

» Page fault: request for location not resident in memory.



Address translation

» Requires some sort of register/table to allow arbitrary
mappings of logical to physical addresses.
» Two basic schemes:
segmented;
paged.
» Segmentation and paging can be combined (x86,
PowerPC).



Segments and pages

‘ page 1 I — pages have

page 2 fixed size

S
segments have

arbitrary size \

fragmentation
of free memory



Segment address translation

range
error

segment lower bound
segment upper bound

Also check /

“protections”



Page address translation

g CONcatenate




Page table organizations

page
descriptor
page descriptor

/

flat tree



Caching address translations

» Large translation tables require main memory access.

» TLB (translation lookaside buffer): cache for address
translation.

Typically small.



ARM memory management
(optional)
» Memory region types:

section: | Mbyte block;

large page: 64 kbytes;

small page: 4 kbytes.

» An address is marked as section-mapped or page-
mapped.

» Two-level translation scheme.



ARM address translation

Translation table
base register

1st index

2nd index

offset

descriptor
1st level table

descriptor
2nd level table

g CONcatenate

concatenate

physical address




	CPUs – Chapter 3.5
	Caches and CPUs
	ARM Cortex-A9 Configurations
	ARM Cortex A9 Microarchitecture
	ARM Cortex-A9 MPCore
	Cache operation
	Types of misses
	Cache performance benefits
	Memory system performance
	Multiple levels of cache
	Write operations
	Replacement policies
	Cache organizations
	Direct-mapped cache locations
	Set-associative cache
	Example: direct-mapped vs. set-associative
	Direct-mapped cache behavior
	Direct-mapped cache behavior, cont’d.
	Direct-mapped cache behavior, cont’d.
	2-way set-associtive cache behavior
	2-way set-associative cache behavior
	ARM Cortex-A9 Configurations
	Example caches
	Scratch pad memories
	Memory management units  (3.5.2)
	Memory management tasks
	Address translation
	Segments and pages
	Segment address translation
	Page address translation
	Page table organizations
	Caching address translations
	ARM memory management�(optional)
	ARM address translation

