
CPUs – Chapter 3.5

Caches.
Memory management.

Caches and CPUs

CPU
ca

ch
e

co
nt

ro
lle

r cache
main

memory

data

data

address

data

address

ARM Cortex-A9 Configurations

ARM Cortex A9 Microarchitecture

Main System Memory

ARM Cortex-A9 MPCore

Cache operation
 Many main memory locations are mapped onto one

cache entry.
 May have caches for:
 instructions;
 data;
 data + instructions (unified).

 Memory access time is no longer deterministic.
 Depends on “hits” and “misses”
 Cache hit: required location is in cache.
 Cache miss: required location is not in cache.

 Working set: set of locations used by program in a time
interval.
 Anticipate what is needed to minimizes misses

Types of misses
 Compulsory (cold): location has never been accessed.
 Capacity: working set is too large.
 Conflict: multiple locations in working set map to same

cache entry – fighting for the same cache location

 Cache miss penalty: added time due to a cache miss.

Cache performance benefits
 Keep frequently-accessed locations in fast cache.
 Cache retrieves multiple words at a time from main

memory.
 Sequential accesses are faster after first access.

Memory system performance
 h = cache hit rate; (1-h) = cache miss rate
 tcache = cache access time
 tmain = main memory access time

 Average memory access time:
 tav = htcache + (1-h)(tcache+tmain) look-through cache
 tav = htcache + (1-h)tmain look-aside cache

Multiple levels of cache

CPU L1 cache L2 cache

 h1 = cache hit rate.
 h2 = rate for miss on L1, hit on L2.
 Average memory access time:
 tav = h1tL1 + (h2-h1)tL2 + (1- h2-h1)tmain

Write operations
 Write-through: immediately copy write to main memory.
 Write-back: write to main memory only when location is

removed from cache.

Replacement policies
 Replacement policy: strategy for choosing which cache

entry to throw out to make room for a new memory
location.

 Two popular strategies:
 Random.
 Least-recently used (LRU).

Cache organizations
 Fully-associative: any memory location can be stored

anywhere in the cache (almost never implemented).
 Direct-mapped: each memory location maps onto exactly

one cache entry.
 N-way set-associative: each memory location can go into

one of n sets.

Direct-mapped cache locations
 Many locations map onto the same cache block.
 Conflict misses are easy to generate:
 Array a[] uses locations 0, 1, 2, …
 Array b[] uses loc’s 0x400, 0x401, 0x402, …
 Operation a[i] + b[i] generates conflict misses.

a[0]Index P Tag Data 0x000
0x001

0x400
0x401

0x00
0x01

0xFF

a[0] a[1]

b[0]
b[1]

0xFFF

b[1]
0
4

Address: 0x401

=

Hit?

Index

Tag

MAINCACHE

1
1
0
0
0
0

Set-associative cache

 A set of direct-mapped caches:

Set 1 Set 2 Set n...

hit data

Example: direct-mapped vs. set-associative

address data
000 0101
001 1111
010 0000
011 0110
100 1000
101 0001
110 1010
111 0100

Direct-mapped cache behavior
 After 001 access:

block tag data
00 - -
01 0 1111
10 - -
11 - -

 After 010 access:
block tag data
00 - -
01 0 1111
10 0 0000
11 - -

Direct-mapped cache behavior, cont’d.
 After 011 access:

block tag data
00 - -
01 0 1111
10 0 0000
11 0 0110

 After 100 access:
block tag data
00 1 1000
01 0 1111
10 0 0000
11 0 0110

Direct-mapped cache behavior, cont’d.
 After 101 access:

block tag data
00 1 1000
01 1 0001
10 0 0000
11 0 0110

 After 111 access:
block tag data
00 1 1000
01 1 0001
10 0 0000
11 1 0100

2-way set-associtive cache behavior
 Final state of cache (twice as big as direct-mapped):

set blk 0 tag blk 0 data blk 1 tag blk 1 data
001 1000 - -
010 1111 1 0001
100 0000 - -
110 0110 1 0100

2-way set-associative cache behavior
 Final state of cache (same size as direct-mapped):

set blk 0 tag blk 0 data blk 1 tag blk 1 data
0 01 0000 10 1000
1 10 0111 11 0100

ARM Cortex-A9 Configurations

Example caches
 StrongARM:
 16 Kbyte, 32-way, 32-byte block instruction cache.
 16 Kbyte, 32-way, 32-byte block data cache (write-back).

 C55x:
 Various models have 16KB, 24KB cache.
 Can be used as scratch pad memory.

Scratch pad memories
 Alternative to cache:
 Software determines what is stored in scratch pad.

 Provides predictable behavior at the cost of software
control.

 C55x cache can be configured as scratch pad.

Memory management units (3.5.2)

 Memory management unit (MMU) translates addresses:

CPU
main

memory

memory
management

unit

logical
address

physical
address

secondary
storage

swapping

Memory management tasks
 Allows programs to move in physical memory during

execution.
 Allows virtual memory:
 memory images kept in secondary storage;
 images returned to main memory on demand during

execution.

 Page fault: request for location not resident in memory.

Address translation
 Requires some sort of register/table to allow arbitrary

mappings of logical to physical addresses.
 Two basic schemes:
 segmented;
 paged.

 Segmentation and paging can be combined (x86,
PowerPC).

Segments and pages

memory

segment 1

segment 2

page 1
page 2

segments have
arbitrary size

pages have
fixed size

fragmentation
of free memory

Segment address translation

segment base address logical address

range
check

physical address

+

range
error

segment lower bound
segment upper bound

Also check
“protections”

Page address translation

page offset

page offset

page i base

concatenate

Page table organizations

flat tree

page descriptor

page
descriptor

Caching address translations
 Large translation tables require main memory access.
 TLB (translation lookaside buffer): cache for address

translation.
 Typically small.

ARM memory management
(optional)
 Memory region types:
 section: 1 Mbyte block;
 large page: 64 kbytes;
 small page: 4 kbytes.

 An address is marked as section-mapped or page-
mapped.

 Two-level translation scheme.

ARM address translation

offset1st index 2nd index

physical address

Translation table
base register

1st level table
descriptor

2nd level table
descriptor

concatenate

concatenate

	CPUs – Chapter 3.5
	Caches and CPUs
	ARM Cortex-A9 Configurations
	ARM Cortex A9 Microarchitecture
	ARM Cortex-A9 MPCore
	Cache operation
	Types of misses
	Cache performance benefits
	Memory system performance
	Multiple levels of cache
	Write operations
	Replacement policies
	Cache organizations
	Direct-mapped cache locations
	Set-associative cache
	Example: direct-mapped vs. set-associative
	Direct-mapped cache behavior
	Direct-mapped cache behavior, cont’d.
	Direct-mapped cache behavior, cont’d.
	2-way set-associtive cache behavior
	2-way set-associative cache behavior
	ARM Cortex-A9 Configurations
	Example caches
	Scratch pad memories
	Memory management units (3.5.2)
	Memory management tasks
	Address translation
	Segments and pages
	Segment address translation
	Page address translation
	Page table organizations
	Caching address translations
	ARM memory management�(optional)
	ARM address translation

