
Purposes of example:
Follow a design through several levels of abstraction.

Gain experience with UML.

Text: Section 1.4

Example: Model Train Controller



Model train setup

console

power
supply

rcvr motor

ECCaddressheader command



Requirements
 Console controls up to 8 trains on 1 track.
 Throttle has at least 63 levels.
 Inertia control adjusts responsiveness with at least 8 levels.
 Emergency stop button.
 Error detection scheme on messages.
 Ignore erroneous messages



Requirements form

name model train controller
purpose control speed of <= 8 model trains
inputs throttle, inertia, emergency stop,

train #
outputs train control signals
functions set engine speed w. inertia;

emergency stop
performance can update train speed at least 10

times/sec
manufacturing cost $50
power wall powered
physical
size/weight

console comfortable for 2 hands; < 2
lbs.



Conceptual specification
 Before we create a detailed specification, we will make an 

initial, simplified specification.
 Gives us practice in specification and UML.
 Good idea in general to identify potential problems before 

investing too much effort in detail.



Basic system commands

Command-name parameters 

set-speed speed (positive/negative) 

set-inertia inertia-value (non-negative) 

estop none 
 

 



Typical control sequence

:console :train_rcvrset-inertia
set-speed

set-speed

set-speed

estop

Time Receiver
always

“listening”
Console always

monitoring
buttons/knobs



Message classes
command

set-inertia
value: unsigned-

integer

set-speed

value: integer

estop

 Implemented message classes derived from message class.
 Attributes and operations will be filled in for detailed specification.

 Implemented message classes specify message type by their class.
 May have to add type as parameter to data structure in 

implementation.

base class



Subsystem collaboration diagram
Shows relationship between console and receiver 
(ignores role of track):  interaction via commands

:console :receiver

1..n: command
message typesequence



System structure modeling
 Some classes define non-computer components.
Denote by *name.

 Choose important systems at this point to show basic 
roles and relationships.

 Console:
 read state of front panel;
 format messages;
 transmit messages.

 Train:
 receive message;
 interpret message;
 control the train.

Major subsystem roles



Console system class diagram
console

panel formatter transmitter

knobs* sender*
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 panel: describes analog knobs and interface hardware.
 formatter: turns knob settings into bit streams.
 transmitter: sends data on track.

* = physical object



Train system class diagram
train set

train
receiver

controller

motor
interface

detector* pulser*
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 receiver: digitizes signal from track.
 controller: interprets received commands and makes 

control decisions.
 motor interface: generates signals required by motor.



Detailed specification
 We can now fill in the details of the conceptual 

specification:
more classes;
 behaviors.

 Sketching out the spec first helps us understand the basic 
relationships in the system.



Train system analog physical object classes

knobs*
train-knob: integer
speed-knob: integer
inertia-knob: unsigned-

integer
emergency-stop: boolean

pulser*

pulse-width: unsigned-
integer

direction: boolean

sender*

send-bit()

detector*

read-bit() : integer

set_knobs()

Motor 
controlled by 
pulse width 
modulation:

V
+

-

duty cycle



Panel and motor interface classes

panel

train-number() : integer
speed() : integer
inertia() : integer
estop() : boolean
new-settings()

motor-interface
speed: integer
inertia: integer

 panel class defines the controls.
 new-settings() function reads the controls.

 motor-interface class defines the motor speed/inertia, 
held as state.



Control input cases
 Use a soft panel to show current panel settings for each 

train.
 Changing train number:
must change soft panel settings to reflect current 

train’s speed, etc.
 Controlling throttle/inertia/estop:
 read panel, check for changes, perform command.



Transmitter and receiver classes

transmitter

send-speed(adrs: integer,
speed: integer)

send-inertia(adrs: integer,
val: integer)

send-estop(adrs: integer)

receiver

current: command
new: boolean

read-cmd()
new-cmd() : boolean
rcv-type(msg-type:

command)
rcv-speed(val: integer)
rcv-inertia(val:integer)

 transmitter class has one method for each type of message sent.
 receiver class provides methods to:
 detect a new message;
 determine its type;
 read its parameters (estop has no parameters).



Formatter class

formatter

current-train: integer
current-speed[ntrains]: integer
current-inertia[ntrains]:

unsigned-integer
current-estop[ntrains]: boolean

send-command()
panel-active() : boolean
operate()

 Formatter class holds state for each train, setting for current 
train.

 The operate() operation performs the basic formatting task.



Control input sequence diagram

:knobs* :panel :formatter :transmitter
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control
settings

read panel

panel settings panel-active

send-command
send-speed,
send-inertia.
send-estop

read panel

panel settings

read panel
panel settings

change in
train
number

set-knobs
new-settings

:sender*



Formatter operate() behavior 
(in the formatter class)

idle

update-panel()

send-command()

panel-active() new train number

other



Formatter panel-active() behavior 
(in the formatter class)

panel*:read-train()
current-train = train-knob

update-screen
changed = true

T

panel*:read-speed() current-speed = throttle
changed = true

T

F

...
F

...

current-train != train-knob

current-speed != throttle



Train controller class

controller

current-train: integer
current-speed[ntrains]: integer
current-direction[ntrains]: boolean
current-inertia[ntrains]:

unsigned-integer

operate()
issue-command()



Setting the speed
 Don’t want to change speed instantaneously.
 Controller should change speed gradually by sending 

several commands.



Controller operate behavior

issue-command()
receive-command()

wait for a
command

from receiver



Sequence diagram for set-speed cmd.

:receiver :controller :motor-interface :pulser*
new-cmd
cmd-type
rcv-speed set-speed set-pulse

set-pulse

set-pulse

set-pulse

set-pulse

:detector*



Refined command classes

command

type: 3-bits
address: 3-bits
parity: 1-bit

set-inertia
type=001
value: 3-bits

set-speed
type=010
value: 7-bits

estop

type=000



Summary
 Separate specification and programming.
 Small mistakes are easier to fix in the spec.
 Big mistakes in programming cost a lot of time.

 You can’t completely separate specification and 
architecture.
Make a few tasteful assumptions.
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