
Purposes of example:
Follow a design through several levels of abstraction.

Gain experience with UML.

Text: Section 1.4

Example: Model Train Controller

Model train setup

console

power
supply

rcvr motor

ECCaddressheader command

Requirements
 Console controls up to 8 trains on 1 track.
 Throttle has at least 63 levels.
 Inertia control adjusts responsiveness with at least 8 levels.
 Emergency stop button.
 Error detection scheme on messages.
 Ignore erroneous messages

Requirements form

name model train controller
purpose control speed of <= 8 model trains
inputs throttle, inertia, emergency stop,

train #
outputs train control signals
functions set engine speed w. inertia;

emergency stop
performance can update train speed at least 10

times/sec
manufacturing cost $50
power wall powered
physical
size/weight

console comfortable for 2 hands; < 2
lbs.

Conceptual specification
 Before we create a detailed specification, we will make an

initial, simplified specification.
 Gives us practice in specification and UML.
 Good idea in general to identify potential problems before

investing too much effort in detail.

Basic system commands

Command-name parameters

set-speed speed (positive/negative)

set-inertia inertia-value (non-negative)

estop none

Typical control sequence

:console :train_rcvrset-inertia
set-speed

set-speed

set-speed

estop

Time Receiver
always

“listening”
Console always

monitoring
buttons/knobs

Message classes
command

set-inertia
value: unsigned-

integer

set-speed

value: integer

estop

 Implemented message classes derived from message class.
 Attributes and operations will be filled in for detailed specification.

 Implemented message classes specify message type by their class.
 May have to add type as parameter to data structure in

implementation.

base class

Subsystem collaboration diagram
Shows relationship between console and receiver
(ignores role of track): interaction via commands

:console :receiver

1..n: command
message typesequence

System structure modeling
 Some classes define non-computer components.
Denote by *name.

 Choose important systems at this point to show basic
roles and relationships.

 Console:
 read state of front panel;
 format messages;
 transmit messages.

 Train:
 receive message;
 interpret message;
 control the train.

Major subsystem roles

Console system class diagram
console

panel formatter transmitter

knobs* sender*

1

1

1

11 1

1 1 1 1

 panel: describes analog knobs and interface hardware.
 formatter: turns knob settings into bit streams.
 transmitter: sends data on track.

* = physical object

Train system class diagram
train set

train
receiver

controller

motor
interface

detector* pulser*

1 1..t 1
1

1 1

1 1

1
1

1 1

 receiver: digitizes signal from track.
 controller: interprets received commands and makes

control decisions.
 motor interface: generates signals required by motor.

Detailed specification
 We can now fill in the details of the conceptual

specification:
more classes;
 behaviors.

 Sketching out the spec first helps us understand the basic
relationships in the system.

Train system analog physical object classes

knobs*
train-knob: integer
speed-knob: integer
inertia-knob: unsigned-

integer
emergency-stop: boolean

pulser*

pulse-width: unsigned-
integer

direction: boolean

sender*

send-bit()

detector*

read-bit() : integer

set_knobs()

Motor
controlled by
pulse width
modulation:

V
+

-

duty cycle

Panel and motor interface classes

panel

train-number() : integer
speed() : integer
inertia() : integer
estop() : boolean
new-settings()

motor-interface
speed: integer
inertia: integer

 panel class defines the controls.
 new-settings() function reads the controls.

 motor-interface class defines the motor speed/inertia,
held as state.

Control input cases
 Use a soft panel to show current panel settings for each

train.
 Changing train number:
must change soft panel settings to reflect current

train’s speed, etc.
 Controlling throttle/inertia/estop:
 read panel, check for changes, perform command.

Transmitter and receiver classes

transmitter

send-speed(adrs: integer,
speed: integer)

send-inertia(adrs: integer,
val: integer)

send-estop(adrs: integer)

receiver

current: command
new: boolean

read-cmd()
new-cmd() : boolean
rcv-type(msg-type:

command)
rcv-speed(val: integer)
rcv-inertia(val:integer)

 transmitter class has one method for each type of message sent.
 receiver class provides methods to:
 detect a new message;
 determine its type;
 read its parameters (estop has no parameters).

Formatter class

formatter

current-train: integer
current-speed[ntrains]: integer
current-inertia[ntrains]:

unsigned-integer
current-estop[ntrains]: boolean

send-command()
panel-active() : boolean
operate()

 Formatter class holds state for each train, setting for current
train.

 The operate() operation performs the basic formatting task.

Control input sequence diagram

:knobs* :panel :formatter :transmitter

ch
an

ge
 in

 sp
ee

d/
in

er
tia

/e
st

op
ch

an
ge

 in
tra

in
 n

um
be

r

change in
control
settings

read panel

panel settings panel-active

send-command
send-speed,
send-inertia.
send-estop

read panel

panel settings

read panel
panel settings

change in
train
number

set-knobs
new-settings

:sender*

Formatter operate() behavior
(in the formatter class)

idle

update-panel()

send-command()

panel-active() new train number

other

Formatter panel-active() behavior
(in the formatter class)

panel*:read-train()
current-train = train-knob

update-screen
changed = true

T

panel*:read-speed() current-speed = throttle
changed = true

T

F

...
F

...

current-train != train-knob

current-speed != throttle

Train controller class

controller

current-train: integer
current-speed[ntrains]: integer
current-direction[ntrains]: boolean
current-inertia[ntrains]:

unsigned-integer

operate()
issue-command()

Setting the speed
 Don’t want to change speed instantaneously.
 Controller should change speed gradually by sending

several commands.

Controller operate behavior

issue-command()
receive-command()

wait for a
command

from receiver

Sequence diagram for set-speed cmd.

:receiver :controller :motor-interface :pulser*
new-cmd
cmd-type
rcv-speed set-speed set-pulse

set-pulse

set-pulse

set-pulse

set-pulse

:detector*

Refined command classes

command

type: 3-bits
address: 3-bits
parity: 1-bit

set-inertia
type=001
value: 3-bits

set-speed
type=010
value: 7-bits

estop

type=000

Summary
 Separate specification and programming.
 Small mistakes are easier to fix in the spec.
 Big mistakes in programming cost a lot of time.

 You can’t completely separate specification and
architecture.
Make a few tasteful assumptions.

	Example: Model Train Controller
	Model train setup
	Requirements
	Requirements form
	Conceptual specification
	Basic system commands
	Typical control sequence
	Message classes
	Subsystem collaboration diagram
	System structure modeling
	Console system class diagram
	Train system class diagram
	Detailed specification
	Train system analog physical object classes
	Panel and motor interface classes
	Control input cases
	Transmitter and receiver classes
	Formatter class
	Control input sequence diagram
	Formatter operate() behavior �(in the formatter class)
	Formatter panel-active() behavior �(in the formatter class)
	Train controller class
	Setting the speed
	Controller operate behavior
	Sequence diagram for set-speed cmd.
	Refined command classes
	Summary

