
Wolf Text - Chapter 1.3

The Embedded System Design
Process

Design methodologies
 A procedure for designing a system.
 Understanding your methodology helps you ensure you

didn’t skip anything.
 Compilers, software engineering tools, computer-aided

design (CAD) tools, etc., can be used to:
 help automate methodology steps;
 keep track of the methodology itself.

Design methodologies for complex
embedded systems?

Levels of design abstraction
Requirements

Specification

Architecture

Component
design

System
integration

What does the customer want?

System functions/characteristics

Block diagram (HW vs. SW)

HW & SW module detailed design

Working system

Top-down vs. bottom-up
 Top-down design:
 start from most abstract description;
work to most detailed.

 Bottom-up design:
work from small components to big system.

 Real design often uses both techniques.

Stepwise refinement
 At each level of abstraction, we must:
 analyze the design to determine characteristics of the

current state of the design;
 refine the design to add detail.

Embedded system design constraints
 Cost
 Competitive markets penalize products which don’t deliver

adequate value for the cost
 Performance
 Perform required operations (throughput)
 Meet real-time deadlines (latency)

 Size and weight limits
 Mobile (aviation, automotive) and portable (e.g. handheld)

systems
 Power and energy limits
 Battery capacity
 Cooling limits

 Environment
 Temperatures may range from -40°C to 125°C, or even more

Presenter
Presentation Notes
Embedded systems have constraints which depend on the product’s particular environment and market. Designs must meet these to be successful.

Impact of Constraints
 Microcontrollers/SoCs (rather than microprocessors)
 Include peripherals to interface with other devices, respond

efficiently
 On-chip RAM, ROM reduce circuit board complexity and cost

 Programming language
 Programmed in C rather than Java (smaller and faster code, so less

expensive MCU)
 Some performance-critical code may be in assembly language
 Hierarchical design with SW libraries (math, I/O drivers, etc.)

 Operating system
 Small system: typically no OS, but instead simple scheduler (or

even just interrupts + main code (foreground/background system)
 Complex system: If OS is used, likely to be a lean RTOS

Presenter
Presentation Notes
System design constraints impact a number of design decisions, such as the choice of a microcontroller rather than a microprocessor, the selection of amounts of memory, number and types of peripheral devices.

In addition, we need to select a programming language for developing the application, and decide on whether the use of an operating system would be beneficial.

Project Cost
 Total cost of a project involves non-recurring

engineering (NRE), cost plus recurring (RE)
cost, and number of units produced (K)

Project Cost = NRE + K*RE

NRE includes design time, tools, facilities
RE includes components, manufacturing, testing, and

maintenance

What does “performance” actually mean?
 In general-purpose computing, performance often means

average-case, may not be well-defined.
 In real-time systems, performance means meeting deadlines.
 Some systems require high throughput/bandwidth
 We need to analyze the system at several levels of abstraction

to understand performance:
 CPU.
 Platform.
 Multiprocessor.
 Program.
 Task.

Computers as Components 4e © 2016 Marilyn Wolf

Real-time operation
Must finish operations by deadlines.
Hard real time: missing deadline causes failure.
 Soft real time: missing deadline results in degraded

performance.

Many systems are multi-rate: must handle
operations at widely varying rates.

 A real-time operating system (RTOS) can
manage scheduling of operations to satisfy critical
timing constraints

The performance paradox
 Microprocessors generally use more logic circuits to

implement a function than do custom logic circuits.
 But are microprocessors as fast as custom circuits?
 aggressive VLSI technology;
 heavily pipelined;
 smart compilers;
 re-use and improve efficient SW routines.

Execution Time = NI x CPI x Tclk
(#instructions) x (#clocks/instruction) x (clock period)

Power considerations
 Custom logic typical in low power devices.
 Modern microprocessors offer features to help control

power consumption.
 Turn off unnecessary logic/modules
 Reduce memory accesses
 Reduce external communication
 Reduce clock rates (CMOS)
 Provide “sleep modes”
 Low-power electronic circuit design methods

 Software design techniques can also help reduce power
consumption.

Safe, secure systems
 Security: system’s ability to prevent malicious attacks.
 Traditional security is oriented to IT and data security.
 Insecure embedded computers can create unsafe cyber-physical systems.
 Internet of Things presents special security challenges!

 Safety: no crashes, accidents, harmful releases of energy, etc.
 We need to combine safety and security:
 Identify security breaches that compromise safety.

 Safety and security can’t be bolted on---they must be baked in.

 Integrity: maintenance of proper data values.
 Privacy: no unauthorized releases of data.

Computers as Components 4e © 2016 Marilyn Wolf

Product development time
Often designed by a small team of designers.
Often constrained by tight deadlines.
 6 month market window is common.
Optimal sales windows (ex. calculators for back-to-school)

Optimal sales window for holiday “gadgets”
 Longer lead times for control systems (automotive,

aerospace, process control, etc.)

 Hardware-software co-design can shorten
design cycle

Requirements
 Plain language description of what the user wants and

expects to get.
 May be developed in several ways:
 talking directly to customers;
 talking to marketing representatives;
 providing prototypes to users for comment.

Functional vs. non-functional requirements

 Functional requirements:
 output as a function of input.

 Non-functional requirements:
 time required to compute output;
 size, weight, etc.;
 power consumption (battery-powered?);
 reliability;
 low HW costs (CPU, memory) for mass production
 etc.

Sample requirements form

name
purpose
inputs
outputs
functions
performance
manufacturing cost
power
physical size/weight

Use form to assist “interviewing” the customer.

Example: GPS moving map
 Moving map obtains

position from GPS, paints
map from local database.

lat: 40 13 lon: 32 19

I-78

Sc
ot

ch
 R

oa
d

GPS moving map requirements
 Functionality: For automotive use. Show major roads

and landmarks.
 User interface: At least 400 x 600 pixel screen. Three

buttons max. Pop-up menu.
 Performance: Map should scroll smoothly. No more

than 1 sec power-up. Lock onto GPS within 15 seconds.
 Cost: $200 street price.
 Physical size/weight: Should fit in dashboard.
 Power consumption: Current draw comparable to

CD player.

GPS moving map requirements form
name GPS moving map
purpose consumer-grade

moving map for driving
inputs power button, two

control buttons
outputs back-lit LCD 400 X 600
functions 5-receiver GPS; three

resolutions; displays
current lat/lon

performance updates screen within
0.25 sec of movement

manufacturing cost $100 cost-of-goods-
sold

power 100 mW
physical size/weight no more than 2” X 6”,

12 oz.

Specification
 A more precise description of the system:
 “What will the system do?” (functions, data, etc.)
 should not imply a particular architecture;
 provides input to the architecture design process.

 May include functional and non-functional elements.
 May be “executable” or may be in mathematical form for

proofs.
 Often developed with tools, such as UML

“Contract” between customer & architects

GPS moving map specification
 Should include:
what is received from GPS (format, rate, …);
map data;
 user interface;
 operations required to satisfy user requests;
 background operations needed to keep the system

running.

Architecture design
 What major components go to satisfying the specification?
 Hardware components:
CPUs, peripherals, etc.

 Software components:
major programs and their operations.
major data structures

 Evaluate hardware vs. software tradeoffs
 Must take into account functional and non-functional

specifications.

GPS moving map block diagram

GPS
receiver

search
engine renderer

user
interfacemap

database

display

GPS moving map hardware architecture

GPS
receiver

CPU

panel I/O

display frame
buffer

memory

GPS moving map software architecture

position database
search renderer

timeruser
interface

pixels

Designing hardware and software
components
 Must spend time architecting the system before you start

coding or designing circuits.
 Some components are ready-made, some can be

modified from existing designs, others must be designed
from scratch.

System integration
 Put together the components.
Many bugs appear only at this stage.
 Interfaces must be well designed

 Have a plan for integrating components to uncover bugs
quickly, test as much functionality as early as possible.
 Test to each specification

Challenges, etc.
 Does it really work?
 Is the specification correct?
Does the implementation meet the spec?
How do we test for real-time characteristics?
How do we test on real data?

 How do we work on the system?
Observability, controllability?
What is our development platform?

Challenges in embedded system design
 How much hardware do we need?
 CPU computing power? Memory?
 What peripheral functions?
 Implement in HW or SW?

 How do we meet timing constraints?
 Faster hardware or cleverer software?
 Real-time operating system or custom design?

 How do we minimize power consumption?
 How do we optimize cost?
 How do we ensure system security/reliability?
 How do we meet our time-to-market deadline?

Summary
 Embedded systems are all around us.
 Chip designers are now system designers.
 Must deal with hardware and software.

 Today’s applications are complex.
 Reference implementations must be optimized, extended.

 Platforms present challenges for:
 Hardware designers---characterization, optimization.
 Software designers---performance/power evaluation,

debugging.
 Design methodologies help us manage the design process

and complexity.

	The Embedded System Design Process
	Design methodologies
	Design methodologies for complex embedded systems?
	Levels of design abstraction
	Top-down vs. bottom-up
	Stepwise refinement
	Embedded system design constraints
	Impact of Constraints
	Project Cost
	What does “performance” actually mean?
	Real-time operation
	The performance paradox
	Power considerations
	Safe, secure systems
	Product development time
	Requirements
	Functional vs. non-functional requirements
	Sample requirements form
	Example: GPS moving map
	GPS moving map requirements
	GPS moving map requirements form
	Specification
	GPS moving map specification
	Architecture design
	GPS moving map block diagram
	GPS moving map hardware architecture
	GPS moving map software architecture
	Designing hardware and software components
	System integration
	Challenges, etc.
	Challenges in embedded system design
	Summary

