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The Embedded System Design 
Process



Design methodologies
 A procedure for designing a system.
 Understanding your methodology helps you ensure you 

didn’t skip anything.
 Compilers, software engineering tools, computer-aided 

design (CAD) tools, etc., can be used to:
 help automate methodology steps;
 keep track of the methodology itself.



Design methodologies for complex 
embedded systems?



Levels of design abstraction
Requirements

Specification

Architecture

Component
design

System
integration

What does the customer want?

System functions/characteristics

Block diagram (HW vs. SW)

HW & SW module detailed design

Working system



Top-down vs. bottom-up
 Top-down design:
 start from most abstract description;
work to most detailed.

 Bottom-up design:
work from small components to big system.

 Real design often uses both techniques.



Stepwise refinement
 At each level of abstraction, we must:
 analyze the design to determine characteristics of the 

current state of the design;
 refine the design to add detail.



Embedded system design constraints
 Cost
 Competitive markets penalize products which don’t deliver 

adequate value for the cost
 Performance
 Perform required operations (throughput)
 Meet real-time deadlines (latency)

 Size and weight limits
 Mobile (aviation, automotive) and portable (e.g. handheld) 

systems
 Power and energy limits
 Battery capacity
 Cooling limits

 Environment
 Temperatures may range from -40°C to 125°C, or even more
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Impact of Constraints
 Microcontrollers/SoCs (rather than microprocessors)
 Include peripherals to interface with other devices, respond 

efficiently 
 On-chip RAM, ROM reduce circuit board complexity and cost

 Programming language
 Programmed in C rather than Java (smaller and faster code, so less 

expensive MCU)
 Some performance-critical code may be in assembly language
 Hierarchical design with SW libraries (math, I/O drivers, etc.)

 Operating system
 Small system: typically no OS, but instead simple scheduler (or 

even just interrupts + main code (foreground/background system)
 Complex system: If OS is used, likely to be a lean RTOS
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Project Cost
 Total cost of a project involves non-recurring

engineering (NRE), cost plus recurring (RE) 
cost, and number of units produced (K)

Project Cost = NRE + K*RE

NRE  includes design time, tools, facilities
RE includes components, manufacturing, testing, and 

maintenance



What does “performance” actually mean?
 In general-purpose computing, performance often means 

average-case, may not be well-defined.
 In real-time systems, performance means meeting deadlines.
 Some systems require high throughput/bandwidth
 We need to analyze the system at several levels of abstraction 

to understand performance:
 CPU.
 Platform.
 Multiprocessor.
 Program.
 Task.
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Real-time operation
Must finish operations by deadlines.
Hard real time: missing deadline causes failure.
 Soft real time: missing deadline results in degraded 

performance.

Many systems are multi-rate: must handle 
operations at widely varying rates.

 A real-time operating system (RTOS) can 
manage scheduling of operations to satisfy critical 
timing constraints



The performance paradox
 Microprocessors generally use more logic circuits to 

implement a function than do custom logic circuits.
 But are microprocessors as fast as custom circuits?
 aggressive VLSI technology;
 heavily pipelined;
 smart compilers;
 re-use and improve efficient SW routines.

Execution Time = NI x CPI x Tclk
(#instructions) x (#clocks/instruction) x (clock period)



Power considerations
 Custom logic typical in low power devices.
 Modern microprocessors offer features to help control 

power consumption.
 Turn off unnecessary logic/modules
 Reduce memory accesses
 Reduce external communication
 Reduce clock rates (CMOS)
 Provide “sleep modes”
 Low-power electronic circuit design methods

 Software design techniques can also help reduce power 
consumption.



Safe, secure systems
 Security: system’s ability to prevent malicious attacks.
 Traditional security is oriented to IT and data security.
 Insecure embedded computers can create unsafe cyber-physical systems.
 Internet of  Things presents special security challenges!

 Safety: no crashes, accidents, harmful releases of energy, etc.
 We need to combine safety and security:
 Identify security breaches that compromise safety.

 Safety and security can’t be bolted on---they must be baked in.

 Integrity: maintenance of proper data values.
 Privacy: no unauthorized releases of data.
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Product development time
Often designed by a small team of designers.
Often constrained by tight deadlines.
 6 month market window is common.
Optimal sales windows (ex. calculators for back-to-school)

Optimal sales window for holiday “gadgets”
 Longer lead times for control systems (automotive, 

aerospace, process control, etc.)

 Hardware-software co-design can shorten 
design cycle



Requirements
 Plain language description of what the user wants and 

expects to get.
 May be developed in several ways:
 talking directly to customers;
 talking to marketing representatives;
 providing prototypes to users for comment.



Functional vs. non-functional requirements

 Functional requirements:
 output as a function of input.

 Non-functional requirements:
 time required to compute output;
 size, weight, etc.;
 power consumption (battery-powered?);
 reliability;
 low HW costs (CPU, memory) for mass production
 etc.



Sample requirements form

name
purpose
inputs
outputs
functions
performance
manufacturing cost
power
physical size/weight

Use form to assist “interviewing” the customer.



Example: GPS moving map
 Moving map obtains 

position from GPS, paints 
map from local database.

lat: 40 13 lon: 32 19
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GPS moving map requirements
 Functionality: For automotive use. Show major roads 

and landmarks.
 User interface: At least 400 x 600 pixel screen. Three 

buttons max. Pop-up menu.
 Performance: Map should scroll smoothly. No more 

than 1 sec power-up. Lock onto GPS within 15 seconds.
 Cost: $200 street price.
 Physical size/weight: Should fit in dashboard.
 Power consumption: Current draw comparable to 

CD player.



GPS moving map requirements form
name GPS moving map 
purpose consumer-grade 

moving map for driving 
inputs power button, two 

control buttons 
outputs back-lit LCD 400 X 600 
functions 5-receiver GPS; three 

resolutions; displays 
current lat/lon 

performance updates screen within 
0.25 sec of movement 

manufacturing cost $100 cost-of-goods-
sold 

power 100 mW 
physical size/weight no more than 2” X 6”, 

12 oz. 
  



Specification
 A more precise description of the system:
 “What will the system do?” (functions, data, etc.)
 should not imply a particular architecture;
 provides input to the architecture design process.

 May include functional and non-functional elements.
 May be “executable” or may be in mathematical form for 

proofs.
 Often developed with tools, such as UML

“Contract” between customer & architects



GPS moving map specification
 Should include:
what is received from GPS (format, rate, …);
map data;
 user interface;
 operations required to satisfy user requests;
 background operations needed to keep the system 

running.



Architecture design
 What major components go to satisfying the specification?
 Hardware components:
CPUs, peripherals, etc.

 Software components:
major programs and their operations.
major data structures

 Evaluate hardware vs. software tradeoffs
 Must take into account functional and non-functional 

specifications.



GPS moving map block diagram
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GPS moving map hardware architecture
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GPS moving map software architecture
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Designing hardware and software 
components
 Must spend time architecting the system before you start 

coding or designing circuits.
 Some components are ready-made, some can be 

modified from existing designs, others must be designed 
from scratch.



System integration
 Put together the components.
Many bugs appear only at this stage.
 Interfaces must be well designed

 Have a plan for integrating components to uncover bugs 
quickly, test as much functionality as early as possible.
 Test to each specification



Challenges, etc.
 Does it really work?
 Is the specification correct?
Does the implementation meet the spec?
How do we test for real-time characteristics?
How do we test on real data?

 How do we work on the system?
Observability, controllability?
What is our development platform?



Challenges in embedded system design
 How much hardware do we need?
 CPU computing power? Memory?
 What peripheral functions?
 Implement in HW or SW?

 How do we meet timing constraints?
 Faster hardware or cleverer software?
 Real-time operating system or custom design?

 How do we minimize power consumption?
 How do we optimize cost?
 How do we ensure system security/reliability?
 How do we meet our time-to-market deadline?



Summary
 Embedded systems are all around us.
 Chip designers are now system designers.
 Must deal with hardware and software.

 Today’s applications are complex.
 Reference implementations must be optimized, extended.

 Platforms present challenges for:
 Hardware designers---characterization, optimization.
 Software designers---performance/power evaluation, 

debugging.
 Design methodologies help us manage the design process 

and complexity.
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