
Spring 2019
Victor P. Nelson

ELEC 5260/6260/6266
Embedded Computing Systems

Text: “Computers as Components, 4th Edition”
Prof. Marilyn Wolf (Georgia Tech)

Course Web Page:
http://www.eng.auburn.edu/~nelsovp/courses/elec5260_6260/

Course Topics (1)

 Embedded system design and implementation
 The embedded computing space – what is “embedded computing”?

 System design methodologies (including UML)
 Platforms: system-on-chip (SoC), microcontrollers, FPGAs,

networks.
 CPUs for embedded systems (ARM, DSP)
 ARM Cortex-M4 and “Discovery Kit” development board

 System architectures, applications, methodologies.
 Hardware, software, system.

 Hierarchical software design for embedded systems

(continued)

Course Topics (continued)
 Input/output devices, interrupts, timing
 Sensors, data acquisition, and control systems
 Real-time operating systems for embedded systems
 Internet of Things, IoT networks
 Automotive and Aerospace systems
 Standards-based design.
 Case studies

This is not simply a “microcontroller course”.

Introduction to embedded systems
 What is an embedded system?
 Application-specific computer system
 Component of a larger system
 Interacts with its environment
 Often has real-time computing

constraints

embedded
system

Embedded Computer
Software

Hardware

Input from
environment

Output to
environment

User interface Link to other systems

Presenter
Presentation Notes
An embedded system (ES) is a specialized computer system with chip embedded hardware. There is no standard definitions for an ES, but principally it can be defined as a hybrid (pre-)processing and computing system, with a task specialized (internal) design which interacts with its environment and usually has timing constraints.Usually ESs are designed because a repeating task has to be performed, either periodically or spontaneously, with low cost and power, higher performance, etc.A real time system is the system that guarantees output within a defined period of time or interval.

Benefits of Embedded Computer Systems
 Greater performance and efficiency
 Software makes it possible to provide sophisticated control
 Integrated functions often more efficient than external ones

 Lower costs
 Less expensive components can be used
 Manufacturing, operating, and maintenance costs reduced

 More features
 Many not possible or practical with other approaches

 Better dependability/security
 Adaptive system which can compensate for failures
 Better diagnostics to improve repair time

 Potential for distributed system design
 Multiple processors communicating across a network can lower

parts and assembly costs and improve reliability

Presenter
Presentation Notes
Why go to the trouble of adding an embedded computer system to a device? Here’s why.

Application examples
 Simple control: microwave oven front panel
 Canon EOS 3 has three microprocessors.
 32-bit RISC CPU runs auto-focus and eye control systems.

 Digital TV: programmable CPUs + hardwired logic.
 Smart phone: keyboard, communications, games, app’s
 Internet of Things (IoT) - distributed sensors/controllers
 Vehicle control (automotive, aerospace, etc.)
 Industrial process control (nuclear power plant)
 OTHER EXAMPLES??

ASSIGNMENT #1: 4-page report on a current multimedia
system/device or an IoT system

Example embedded system: bike computer
 Functions
 Speed and distance measurement

 Constraints
 Size
 Cost
 Power and energy
 Weight

 Inputs
 Wheel rotation indicator
 Mode key

 Output
 Liquid Crystal Display

 Use Low Performance Microcontroller
 8-bit, 10 MIPS

Input:
Wheel rotation
Mode key

Output:
Display speed
and distance

Presenter
Presentation Notes
A bike computer is one example of a small embedded system.The bike computer senses wheel rotation, mostly magnetically, and outputs the calculated values such as speed, distance, and time to the user.The constraints defined by the user are primarily size/weight and cost, as well as battery life time as compared to power consumption. This means that the total system must be very cost and power efficient. Fortunately, size, weight and cost usually coincide, and the only counteracting variable may be the processor performance.The bike computer, as a weak real-time system, should begin between two sensor impulses. This means that, if the computer is designed for a non-professional biker, it should at least be able to measure a range of up to 60km/h = 16.7 m/s for a racing bike. The circumference of a wheel of a racing bike is about 2m which means 8…9 rotations/s.Consequently, the system should be able to measure a frequency of 10 Hz without any complicated processing algorithms (time-difference-measurement, division, display). Therefore, it should not be a complicated task for the controller. This means that a very simple, low cost, low efficiency microcontroller can be selected.

Gasoline automobile engine control unit
 Functions
 Fuel injection
 Air intake setting
 Spark timing
 Exhaust gas circulation
 Electronic throttle control
 Knock control

 Constraints
 Reliability in harsh

environment
 Cost
 Weight

 Many inputs and outputs

 Discrete sensors & actuators

 Network interface to rest of car

 Use high performance microcontroller

 e.g. 32-bit, 3 MB flash memory,
150 - 300 MHz

Presenter
Presentation Notes
Another example of an embedded system is an engine control unit for a car:In this example, the functional requirements and the constraints are much greater than for the bike computer. Requirements such as spark timing and fuel injection need real time calculations, because every spark and injection is needed for proper operation of the motor. This means that every calculation must be finished at a defined point in time; otherwise, the engine is running rough.Additional constraints are a high reliability in a harsh environment, for relatively low cost. Furthermore, limited installation space requires a small device.Many sensors and actuators have to be operated and networked to the rest of the car by the microcontroller. Consequently, a powerful, reliable and high performance microcontroller is needed.

Embedding a computer

CPU

mem

input

output “device”

“device”

embedded
computer

Options for Building Embedded Systems
D

ed
ic

at
ed

 H
ar

dw
ar

e
S
of

tw
ar

e
R
un

ni
ng

 o
n

G
en

er
ic

 H
ar

dw
ar

e

Implementation Design
Cost

Unit
Cost

Upgrades
& Bug
Fixes

Size Weight Power System
Speed

Discrete Logic low mid hard large high ? very fast

ASIC high
($500K/
mask set)

very low hard tiny - 1 die very low low extremely
fast

Programmable logic –
FPGA, PLD

low mid easy small low medium to
high

very fast

Microprocessor +
memory + peripherals

low to mid mid easy small to
med.

low to
moderate

medium moderate

Microcontroller (int.
memory &
peripherals)

low mid to low easy small low medium slow to
moderate

Embedded PC low high easy medium moderate
to high

medium to
high

fast

Presenter
Presentation Notes
There are many possible ways to embed processing within a device. We can design custom, dedicated hardware using individual logic chips, custom chips (ASICs) or programmable logic chips. Alternatively we can customize our program and try to use a standard computer processor, greatly reducing the hardware development needed. There are various tradeoffs to each approach.Some modern FPGA-based Systems on Chip (SoCs) combine embedded processors with programmable logic.

Microprocessors vs custom circuits?
 Microprocessors can be very efficient:
 Use same logic to perform many different functions.
 Create families of products.
 Create upgradable systems.

 Alternatives:
 Custom System on Chip (SoC) implemented with ASICs, field-

programmable gate arrays (FPGAs), etc.
 May or may not include microprocessor

 “Platform” FPGA – implement one or more microprocessor
hard/soft cores, with embedded memory and programmable
logic

Microprocessor options
 Microcontroller: includes I/O devices, on-chip memory.
 Digital signal processor (DSP): microprocessor

optimized for digital signal processing.
 Application-Specific Processor (ASP): instruction set

& architecture tailored to application (graphics, network,
etc.)

 Soft core: microcontroller or CPU model to be synthesized
into a system on chip (SoC)

 Hard core: microcontroller or CPU implemented as part
of a SoC, “platform FPGAs”

Early history
 Late 1940’s: MIT Whirlwind computer was designed for

real-time operations.
 Originally designed to control an aircraft simulator.

 HP-35 calculator used several chips to implement a
microprocessor in 1972.

 First microprocessor was Intel 4004 in early 1970’s.
 4-bit microcontrollers created in the 1970’s
 8-bit microcontrollers in mid 1970’s
 and so on …

Early history, continued.
 Automobiles have used microprocessor-based engine

controllers starting in 1970’s.
 Control fuel/air mixture, engine timing, etc.
 Multiple modes of operation: warm-up, cruise, hill climbing, etc.
 Provides lower emissions, better fuel efficiency.

 High-performance 32- and 64-bit microcontrollers enable
movement of functions from HW to SW
 Radio.
 Multimedia.
 Communications
 Complex control.

 Networks of lower-level microcontrollers distribute tasks

Automotive embedded systems

 High-end automobile may have dozens of microprocessors:
 8-bit microcontroller checks seat belt;
 Microcontrollers run dashboard devices;
 16/32-bit microprocessor controls engine.
 Network of microcontrollers control antilock brakes
 Entertainment systems
 Navigation systems
 Collision avoidance
 Autonomous operation (self-driving)

BMW 850i brake & stability control system

 Anti-lock brake system (ABS)
 Pump brakes to reduce skidding.

 Automatic stability control + traction (ASC+T)
 Control engine to improve stability (throttle, ignition

timing, differential brake, gears).

 ABS and ASC+T communicate.
 ABS was introduced first---needed to interface to existing ABS

module.

Diagram – next slide

BMW 850i, cont’d.

brake

sensor

brake

sensor

brake

sensor

brake

sensor

ABS hydraulic
pump

High-end embedded system characteristics
 Complex algorithms: high performance & functionality.
High data rates
 Large data structures
 Varied user/device interfaces.
Multiple tasks, heterogeneous.
 Real-time operation/precise timing.
 Low-power operation.
 Safe, reliable, secure operations.
Manufacturable, sustainable, cost-effective.

Often have to make trade-offs to meet constraints

Challenges in embedded system design
 How much hardware do we need?
 CPU computing power? Memory?
 What peripheral functions?
 Implement in HW or SW?

 How do we meet timing constraints?
 Faster hardware or cleverer software?
 Real-time operating system or custom design?

 How do we minimize power consumption?
 How do we optimize cost?
 How do we ensure system security/reliability?
 How do we meet our time-to-market deadline?

	ELEC 5260/6260/6266�Embedded Computing Systems
	Course Topics (1)
	Course Topics (continued)
	Introduction to embedded systems
	Benefits of Embedded Computer Systems
	Application examples
	Example embedded system: bike computer
	Gasoline automobile engine control unit
	Embedding a computer
	Options for Building Embedded Systems
	Microprocessors vs custom circuits?
	Microprocessor options
	Early history
	Early history, continued.
	Automotive embedded systems
	BMW 850i brake & stability control system
	BMW 850i, cont’d.
	High-end embedded system characteristics
	Challenges in embedded system design

