
I2C bus (Inter-Integrated Circuit)
 Designed for low-cost, medium data rate applications.

(Phillips Semiconductor, 1980s)

 Tutorial: http://www.esacademy.com/faq/i2c/
 Characteristics:
 serial, byte-oriented;
 multiple-master;
 fixed-priority arbitration;
 moderate speeds:

 standard mode: 100Kbits/s
 fast mode: 400Kbits/s
 high speed mode: 3.4 Mbits/s

 Many microcontrollers come with built-in I2C controllers.

Serial Buses Information Page: http://www.epanorama.net/links/serialbus.html

http://www.esacademy.com/faq/i2c/

I2C data link layer
 Every device has an address
 Set by device and/or system designer.
 7 bits in standard (10 bits in extension).
 Bit 8 of address signals read (1) or write (0).

 General call address (0000000) for broadcast.
 Bus transaction = series of one-byte transmissions
 Master sends slave address followed by data to or from slave.
 Good for “data-push” programming.

I2C physical layer

master 1 master 2

slave 1 slave 2

SCL

SDL
data line

clock line

•Uses only two wires (plus ground)

I2C electrical interface (standard & fast speeds)

Source: I2C Specification

 Open collector/drain drivers (default state high)
 No global master for clock

I2C signaling
 Bus = “wired-AND” configuration
 Open collector/drain drivers on SDA & SCL
 Resistor pulls bus up to logic 1.
 Any sender can pull the bus down to 0, even if other senders are trying

to drive the bus to 1.
 Sender “releases” SDA by disabling its driver, allowing SDA to be pulled

up to logic 1
 Data on SDA must be stable while SCL high
 Data on SDA is sampled while SCL is high
 SDA may change only while SCL low

Exceptions:
 SDA 1->0 while SCL=1 signals START condition
 SDA 0->1 while SCL=1 signals STOP condition

I2C data format

SCL

SDA

...

MSB

start

... ack

...

Start:
SDA 1->0 while SCL=1

stop

Stop:
SDA 0->1 while SCL=1

SDA stable
while SCL=1

Clock synchronization
 Master generates its own clock on SCL during data xfer
 Clock synchronization uses wired-AND
 Driving low pulls SCL low, resetting all clock counters
 SCL remains low while any driver pulls it low
 SCL low time = slowest clock

(others in wait states)
 First device to finish

high state pulls SCL low

Source: I2C Specification

Four I2C device operating modes
 Master-sender
 Module issues START and ADDRESS, and then transmits data

to the addressed slave device
 Master-receiver
 Module issues START and ADDRESS, and receives data from

the addressed slave device
 Slave-sender
 Another master issues START and the ADDRESS of this

module, which then sends data to the master
 Slave-receiver
 Another master issues START and the ADDRESS of this

module, which then receives data from the master.

Some devices only support slave modes – sensors, memories, etc.

I2C bus arbitration
 Master may start sending if bus free
 2 or more may generate START at same time

 Sender listens while sending.
 Test SDA while SCL high

 Sender stops transmitting if arbitration lost
 Transmit 1 and hear 0 on SDA.

 Arbitration continues through address & ack bits, and
then data & ack bits if necessary

Arbitration example

Source: I2C Specification

Data transfer
 Send 8-bit byte (MSB first)
 Each byte followed by acknowledge bit
 master releases SDA line (high) during ack clock
 slave must pull SDA low for proper acknowledge
 if SDA left high, master may stop or repeat start
 if master is receiving from slave, slave releases SDA to allow

master to pull SDA low for ack

 Slave can hold SCL low to force wait time between bytes

Basic data formats
Master transmitting data to slave

Master receiving data from slave

I2C transmissions (ACKs not shown)

multi-byte write

read from slave

write, then read

S adrs 0 data data P

S adrs 1 data P

S adrs 0 data S adrs 1 data P

Re-start without giving up the bus

STM32 I2C Module (3 in STM32F407)

 Standard I2C compliant bus interface.
 All I2C bus-specific sequencing, protocol, arbitration, timing
 7-bit and 10-bit addressing
 Standard (≤ 100KHz) or Fast (≤ 400KHz) speed modes
 Multi-master capability – use as master or slave

 Also supports standards:
 SMBus (System Management Bus)
 PMBus (Power Management Bus)

 DMA support – between memory and data register
 2 interrupt vectors – data transfer complete and errors

STM32 I2C Module

Serial data

Serial clock

STM32 I2C registers
I2C_DR – I2C data register

byte to be transmitted (start on DR write)
byte received (RxNE=1)

I2C_OAR1 – I2C own address register 1
ADDMODE 0 = 7-bit ADD[7:1]

; 1 = 10-bit ADD[9:0]

(A second “own address” is also supported)

STM32 I2C – control register 1
I2C_CR1

PE Peripheral function Enable (1 enables the I2C module)
STOP Generate after current byte xfer or after start condition sent
START Master: repeated start generation, Slave: release bus after byte xfer
ACK ACK to be returned after byte received
POS If ACK bit = 1: return ACK after current byte (0) or next byte (1)

SWRST Software reset (or in reset state)
NOSTRETCH Enable/disable clock stretch in slave mode when

ADDR or BRG flag set, until reset by software
ENGC Enable “general call” (ACK address 0x00)
SMBUS 0 for I2C mode; 1 for SMBus mode

(other bits for packet error checking (PEC) or SMBus setup)

SRM32 I2C – control register 2
I2C_CR2

FREQ[5:0] = peripheral clock frequency (in MHz)
allowed values [2MHz … 42MHz]

DMA Control:
LAST: 1 = next DMA EOT is the last transfer
DMAEN: 1 = DMA requests when TxE=1 or RxNE=1

Interrupt Control (interrupt generation events on next slide)
ITBUFEN: 1 = TxE/RxNE event generates Event interrupt
ITEVTEN: 1 = Event interrupt enabled
ITERREN: 1 = Error interrupt enabled

STM32 I2C interrupts

STM32 I2C – status register 1 (of two)
I2C_SR1

ADDR: Master: 1= address sent
Slave: 1= received address matched OAR register or gen call

SB: Master: 1= Start generated (clear by reading SR1 & DR)
TxE: 1= transmitter buffer (DR) empty (can send a new byte)
RxNE: 1= receiver buffer (DR) not empty (byte has been received)
BTF: 1= data byte transfer finished successfully

RxNE=1 & DR not read yet; TxE=1 & DR not written yet
ARLO: 1= arbitration lost detected (this device lost to another)
STOPF: 1= slave detected stop condition after ACK
OVR: 1= DR register overrun/underrun (data lost)
AF: 1= ACK failure (no ACK returned)
BERR: 1= bus error (misplaced Start/Stop condition)
ADD10: 1= master sent 1st byte of 10-bit address

STM32 I2C – status register 2
I2C_SR2

BUSY: 1= communication ongoing on the bus (cleared by Stop)
MSL: 0= slave mode (default)

1= master mode (START has been sent)
TRA: From R/W address bit:

1= data bytes to be TRAnsmitted
0= data bytes to be received

DUALF: Received address matches OAR1 (0) or OAR2 (1)
GENCALL: General call address (0x00) received when ENARP=1

(Other bits for PEC or SMBus)

STM32 I2C bus “events” (from flags)

 Master modes:
 EV5: Start bit sent

 BUSY – MSL – SB

 EV6: Slave acknowledged address
 BUSY – MSL – ADDR

 EV8: DR ready for new byte to transmit
 BUSY – MSL – TXE (transmit buffer empty)

 EV9: new byte received in the DR
 BUSY – MSL – RXNE (receive buffer not empty)

STM32 I2C bus “events” (from flags)

 Slave modes:
 EV1: Own address received, data to be received from master

 BUSY – ADDR (MSL=0, TRA=0)
 EV1: Own address received, data to be sent to master

 BUSY – ADDR – TRA (MSL=0)
 EV2: Slave byte received

 BUSY – RNXE (receive buffer not empty)
 EV3: Slave byte transmitted

 BUSY – TRA - TXE (transmit buffer empty)
 BUSY – TRA – TXE - BTF (transmit buffer empty and byte transfer

finished)

I2C clock control register
I2C_CCR

F/S 0=standard mode (≤ 100KHz), 1=fast mode (≤ 400KHz)

Standard Mode:
Thigh = Tlow = CCR * TPCLK1

Fast Mode, DUTY = 0
Thigh = Tlow = CCR * TPCLK1

Fast Mode, DUTY = 1 (to reach 400KHz)
Thigh = 9 * CCR * TPCLK1
Tlow = 16 * CCR * TPCLK1

Ex: To generate 100KHz SCL in standard mode.
If FREQR = 08, TPCLK1 = 125ns
Set CCR = 40 (0x28)
Thigh = Tlow = 40*125ns = 5000ns

FREQR in CR2

Hierarchical/modular software design

I2C driver I2C module

Codec driver

Application

GPIO pins

Codec
registers

GPIO pins
SCL
SDA

Virtual uC to Codec link

Virtual I2C link

API

Replace Application/Codec with
other functions that use I2C driver

STM32 I2C peripheral driver functions
 Configure control registers, etc.
 I2C_Init() – initialize control registers, clock, etc.
 I2C_Cmd() – enable the I2C module
 Other functions to set/clear individual control bits

 Bus management functions
 I2C_GenerateStart() – signal START on the bus
 I2C_Send7bitAddress() – send slave address
 I2C_GenerateStop() - signal STOP on the bus

 Data transfer functions
 I2C_SendData() – send one byte to DR
 I2C_ReceiveData() – get one byte from DR

 Bus monitoring functions
 I2C_CheckEvent() – test status flags for a bus “event”
 I2C_GetFlagStatus() – test one flag in status register

Typical master-to-slave transfer
Codec_WriteRegister(RegAddr,RegValue)
 I2C_GetFlagStatus() – check flag BUSY=0
 I2C_GenerateStart() – signal START on the bus
 I2C_CheckEvent() – test EV5 flags (start correct)
 I2C_Send7bitAddress() – send slave address
 I2C_CheckEvent() – test EV6 flags (slave address ACK)
 I2C_SendData() – send first byte (register address) to DR
 I2C_CheckEvent() – test EV8 flags (data sending, DR ready for byte)
 I2C_SendData() – send second byte (register value) to DR
 I2C_GetFlagStatus() – check flag BTF=1 (byte transfer finished)
 I2C_GenerateStop() - signal STOP on the bus

Audio Code driver: key functions
 Codec_Init() – all related device/module initialization:
 Codec_GPIO_Init()

 Enable clocks in RCC and all GPIO pins for I2C, I2S, DAC

 Codec_Reset() – reset the Codec (RESET pin)
 Codec_CtrlInterface_Init()

 Calls I2C_Init() with required parameters

 Configure all Codec registers via I2C functions
 Codec_AudioInterfaceInit()

 Initialize DAC and I2S modules

 Codec_WriteRegister() – write value to a code register
 Codec_ReadRegister() – read value from a code register

STM32F4-Discovery Software
 STM32F407VG peripheral drivers added to project from

“Pack” (I2C, SPI, DAC, etc.)
 stm32f4xx_i2c.c => all I2C control/access functions

 Discovery board chip drivers in
 ..\stm32f4discovery_fw\Utilities\STM32F4-Discovery\

stm32f4_discovery_audio_codec.c
 Initialize and control audio codec chip
 Calls functions from I2C, I2S, GPIO, RCC module drivers

Cirrus Logic CS43L22 Portable Audio DAC
with Integrated Class D Speaker Driver

Discovery CS43L22 schematic

	I2C bus (Inter-Integrated Circuit)
	I2C data link layer
	I2C physical layer
	I2C electrical interface (standard & fast speeds)
	I2C signaling
	I2C data format
	Clock synchronization
	Four I2C device operating modes
	I2C bus arbitration
	Arbitration example
	Data transfer
	Basic data formats
	I2C transmissions (ACKs not shown)
	STM32 I2C Module (3 in STM32F407)
	STM32 I2C Module
	STM32 I2C registers
	STM32 I2C – control register 1�I2C_CR1
	SRM32 I2C – control register 2�I2C_CR2
	STM32 I2C interrupts
	STM32 I2C – status register 1 (of two)�I2C_SR1
	STM32 I2C – status register 2�I2C_SR2
	STM32 I2C bus “events” (from flags)
	STM32 I2C bus “events” (from flags)
	I2C clock control register�I2C_CCR
	Hierarchical/modular software design
	STM32 I2C peripheral driver functions
	Typical master-to-slave transfer�Codec_WriteRegister(RegAddr,RegValue)
	Audio Code driver: key functions
	STM32F4-Discovery Software
	Cirrus Logic CS43L22 Portable Audio DAC �with Integrated Class D Speaker Driver
	Discovery CS43L22 schematic

