
I2C bus  (Inter-Integrated Circuit)
 Designed for low-cost, medium data rate applications.  

(Phillips Semiconductor, 1980s)

 Tutorial: http://www.esacademy.com/faq/i2c/
 Characteristics:
 serial, byte-oriented;
 multiple-master;
 fixed-priority arbitration;
 moderate speeds:

 standard mode: 100Kbits/s
 fast mode: 400Kbits/s
 high speed mode: 3.4 Mbits/s

 Many microcontrollers come with built-in I2C controllers.

Serial Buses Information Page: http://www.epanorama.net/links/serialbus.html

http://www.esacademy.com/faq/i2c/


I2C data link layer
 Every device has an address 
 Set by device and/or system designer.
 7 bits in standard (10 bits in extension).
 Bit 8 of address signals read (1) or write (0).

 General call address (0000000) for broadcast.
 Bus transaction = series of one-byte transmissions
 Master sends slave address followed by data to or from slave.
 Good for “data-push” programming.



I2C physical layer

master 1 master 2

slave 1 slave 2

SCL

SDL
data line

clock line

•Uses only two wires (plus ground)



I2C electrical interface (standard & fast speeds)

Source: I2C Specification

 Open collector/drain drivers (default state high)
 No global master for clock



I2C signaling
 Bus = “wired-AND” configuration
 Open collector/drain drivers on SDA & SCL
 Resistor pulls bus up to logic 1.
 Any sender can pull the bus down to 0, even if other senders are trying 

to drive the bus to 1.
 Sender “releases” SDA by disabling its driver, allowing SDA to be pulled 

up to logic 1
 Data on SDA must be stable while SCL high
 Data on SDA is sampled while SCL is high
 SDA may change only while SCL low

Exceptions:
 SDA 1->0 while SCL=1 signals START condition
 SDA 0->1 while SCL=1 signals STOP condition



I2C data format

SCL

SDA

...

MSB

start

... ack

...

Start:
SDA 1->0 while SCL=1

stop

Stop:
SDA 0->1 while SCL=1

SDA stable
while SCL=1



Clock synchronization
 Master generates its own clock on SCL during data xfer
 Clock synchronization uses wired-AND
 Driving low pulls SCL low, resetting all clock counters
 SCL remains low while any driver pulls it low
 SCL low time = slowest clock

(others in wait states)
 First device to finish

high state pulls SCL low

Source: I2C Specification



Four I2C device operating modes
 Master-sender 
 Module issues START and ADDRESS, and then transmits data 

to the addressed slave device
 Master-receiver
 Module issues START and ADDRESS, and receives data from 

the addressed slave device
 Slave-sender
 Another master issues START and the ADDRESS of this 

module, which then sends data to the master
 Slave-receiver
 Another master issues START and the ADDRESS of this 

module, which then receives data from the master.

Some devices only support slave modes – sensors, memories, etc.



I2C bus arbitration
 Master may start sending if bus free
 2 or more may generate START at same time

 Sender listens while sending.
 Test SDA while SCL high

 Sender stops transmitting if arbitration lost
 Transmit 1 and hear 0 on SDA.

 Arbitration continues through address & ack bits, and 
then data & ack bits if necessary



Arbitration example

Source: I2C Specification



Data transfer
 Send 8-bit byte  (MSB first)
 Each byte followed by acknowledge bit
 master releases SDA line (high) during ack clock
 slave must pull SDA low for proper acknowledge
 if SDA left high, master may stop or repeat start
 if master is receiving from slave, slave releases SDA to allow 

master to pull SDA low for ack

 Slave can hold SCL low to force wait time between bytes



Basic data formats
Master transmitting data to slave

Master receiving data from slave



I2C transmissions (ACKs not shown)

multi-byte write

read from slave

write, then read

S adrs 0 data data P

S adrs 1 data P

S adrs 0 data S adrs 1 data P

Re-start without giving up the bus



STM32 I2C Module (3 in STM32F407)

 Standard I2C compliant bus interface.
 All I2C bus-specific sequencing, protocol, arbitration, timing
 7-bit and 10-bit addressing
 Standard (≤ 100KHz) or Fast (≤ 400KHz) speed modes
 Multi-master capability – use as master or slave

 Also supports standards:
 SMBus (System Management Bus)
 PMBus (Power Management Bus)

 DMA support – between memory and data register
 2 interrupt vectors – data transfer complete and errors



STM32 I2C Module

Serial data

Serial clock



STM32 I2C registers
I2C_DR – I2C data register

byte to be transmitted (start on DR write)
byte received (RxNE=1)

I2C_OAR1 – I2C own address register 1
ADDMODE  0 = 7-bit ADD[7:1]

;   1 =  10-bit ADD[9:0]

(A second “own address” is also supported)



STM32 I2C – control register 1
I2C_CR1

PE Peripheral function Enable (1 enables the I2C module)
STOP Generate after current byte xfer or after start condition sent
START Master: repeated start generation, Slave: release bus after byte xfer
ACK ACK to be returned after byte received
POS If ACK bit = 1: return ACK after current byte (0) or next byte (1)

SWRST Software reset (or in reset state)
NOSTRETCH Enable/disable clock stretch in slave mode when 

ADDR or BRG flag set, until reset by software
ENGC Enable “general call” (ACK address 0x00)
SMBUS 0 for I2C mode; 1 for SMBus mode

(other bits for packet error checking (PEC) or SMBus setup)



SRM32 I2C – control register 2
I2C_CR2

FREQ[5:0] = peripheral clock frequency (in MHz)
allowed values [2MHz … 42MHz]

DMA Control:
LAST: 1 = next DMA EOT is the last transfer
DMAEN: 1 = DMA requests when TxE=1 or RxNE=1

Interrupt Control (interrupt generation events on next slide)
ITBUFEN: 1 = TxE/RxNE event generates Event interrupt
ITEVTEN: 1 = Event interrupt enabled
ITERREN: 1 = Error interrupt enabled



STM32 I2C interrupts



STM32 I2C – status register 1 (of two)
I2C_SR1

ADDR: Master: 1= address sent
Slave:   1= received address matched OAR register or gen call

SB:  Master: 1= Start generated (clear by reading SR1 & DR)
TxE:      1= transmitter buffer (DR) empty  (can send a new byte)
RxNE:   1= receiver buffer (DR) not empty (byte has been received)
BTF:      1= data byte transfer finished successfully

RxNE=1 & DR not read yet; TxE=1 & DR not written yet
ARLO:  1= arbitration lost detected (this device lost to another)
STOPF: 1= slave detected stop condition after ACK
OVR:    1= DR register overrun/underrun (data lost)
AF:       1= ACK failure (no ACK returned)
BERR:  1= bus error (misplaced Start/Stop condition)
ADD10: 1= master sent 1st byte of 10-bit address



STM32 I2C – status register 2
I2C_SR2

BUSY: 1= communication ongoing on the bus (cleared by Stop)
MSL:    0= slave mode (default) 

1= master mode (START has been sent)
TRA:    From R/W address bit:

1= data bytes to be TRAnsmitted
0= data bytes to be received 

DUALF: Received address matches  OAR1 (0) or OAR2 (1)
GENCALL: General call address (0x00) received when ENARP=1

(Other bits for PEC or SMBus)



STM32  I2C bus “events” (from flags)

 Master modes:
 EV5:  Start bit sent

 BUSY – MSL – SB

 EV6:  Slave acknowledged address
 BUSY – MSL – ADDR 

 EV8:  DR ready for new byte to transmit
 BUSY – MSL – TXE (transmit buffer empty)

 EV9:  new byte received in the DR
 BUSY – MSL – RXNE (receive buffer not empty)



STM32  I2C bus “events” (from flags)

 Slave modes:
 EV1: Own address received, data to be received from master

 BUSY – ADDR (MSL=0, TRA=0)
 EV1:  Own address received, data to be sent to master

 BUSY – ADDR – TRA     (MSL=0)
 EV2:  Slave byte received

 BUSY – RNXE     (receive buffer not empty)
 EV3:  Slave byte transmitted

 BUSY – TRA - TXE  (transmit buffer empty)
 BUSY – TRA – TXE - BTF  (transmit buffer empty and byte transfer 

finished)



I2C clock control register
I2C_CCR

F/S   0=standard mode (≤ 100KHz), 1=fast mode (≤ 400KHz)

Standard Mode:  
Thigh = Tlow = CCR * TPCLK1

Fast Mode, DUTY = 0
Thigh = Tlow = CCR * TPCLK1

Fast Mode, DUTY = 1   (to reach 400KHz)
Thigh = 9 * CCR * TPCLK1
Tlow = 16 * CCR * TPCLK1

Ex: To generate 100KHz SCL in standard mode.
If FREQR = 08, TPCLK1 = 125ns
Set CCR = 40 (0x28) 
Thigh = Tlow =  40*125ns = 5000ns

FREQR in CR2



Hierarchical/modular software design

I2C driver I2C module

Codec driver

Application

GPIO pins

Codec
registers

GPIO pins
SCL
SDA

Virtual uC to Codec link

Virtual I2C link

API

Replace Application/Codec with 
other functions that use I2C driver



STM32 I2C peripheral driver functions
 Configure control registers, etc.
 I2C_Init() – initialize control registers, clock, etc.
 I2C_Cmd() – enable the I2C module
 Other functions to set/clear individual control bits

 Bus management functions
 I2C_GenerateStart() – signal  START on the bus
 I2C_Send7bitAddress() – send slave address
 I2C_GenerateStop() - signal STOP on the bus

 Data transfer functions
 I2C_SendData() – send one byte to DR
 I2C_ReceiveData() – get one byte from DR

 Bus monitoring functions
 I2C_CheckEvent() – test status flags for a bus “event”
 I2C_GetFlagStatus() – test one flag in status register



Typical master-to-slave transfer
Codec_WriteRegister(RegAddr,RegValue)
 I2C_GetFlagStatus() – check flag BUSY=0
 I2C_GenerateStart() – signal  START on the bus
 I2C_CheckEvent() – test EV5 flags (start correct)
 I2C_Send7bitAddress() – send slave address
 I2C_CheckEvent() – test EV6 flags (slave address ACK)
 I2C_SendData() – send first byte (register address) to DR
 I2C_CheckEvent() – test EV8 flags (data sending, DR ready for byte)
 I2C_SendData() – send second byte (register value) to DR
 I2C_GetFlagStatus() – check flag BTF=1 (byte transfer finished)
 I2C_GenerateStop() - signal STOP on the bus



Audio Code driver: key functions
 Codec_Init() – all related device/module initialization:
 Codec_GPIO_Init() 

 Enable clocks in RCC and all GPIO pins for I2C, I2S, DAC

 Codec_Reset() – reset the Codec (RESET pin)
 Codec_CtrlInterface_Init() 

 Calls I2C_Init() with required parameters

 Configure all Codec registers via I2C functions
 Codec_AudioInterfaceInit() 

 Initialize DAC and I2S modules

 Codec_WriteRegister() – write value to a code register
 Codec_ReadRegister() – read value from a code register



STM32F4-Discovery Software
 STM32F407VG peripheral drivers added to project from 

“Pack”  (I2C, SPI, DAC, etc.)
 stm32f4xx_i2c.c => all I2C control/access functions

 Discovery board chip drivers in 
 ..\stm32f4discovery_fw\Utilities\STM32F4-Discovery\

stm32f4_discovery_audio_codec.c
 Initialize and control audio codec chip
 Calls functions from I2C, I2S, GPIO, RCC module drivers



Cirrus Logic CS43L22 Portable Audio DAC 
with Integrated Class D Speaker Driver



Discovery CS43L22 schematic
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