
Use a formal process & tools to facilitate and
automate design steps:

Requirements
Specification

System architecture
Coding/chip design

Testing

Formal System Design Process with
UML

Text: Chapter 1.4
Other resources on course web page.

Object-Oriented Design
 Describe system/design as interacting objects
 Across multiple levels of abstraction
 Visualize elements of a design

 Object = state + methods.
 State defined by set of “attributes”
 each object has its own identity.
 user cannot access state directly

Methods (functions/operations) provide an abstract
interface to the object attributes.

 Objects map to system HW/SW elements

Objects and classes
 Class: an object type that defines
 state elements for all objects of this type.
 Each object has its own state.
 Elements not directly accessible from outside
 State values may change over time.

methods (operations) used to interact with all objects
of this type.
 State elements accessed through methods

Object-oriented design principles
 Some objects closely correspond to real-world objects.
 Other objects may be useful only for description or

implementation.

 Abstraction: list only info needed for a given purpose
 Encapsulation: mask internal op’s/info
 Objects provide interfaces to read/write the object state.
 Hide object’s implementation from the rest of the system.
 Use of object should not depend on how it’s implemented

Unified Modeling Language (UML)

 Developed by Grady Booch et al.
 Version 1.0 in 1997 (current version 2.4.1)
 Maintained by Object Management Group (OMG) – www.omg.org
 Resources (tutorials, tools): www.uml.org

 Goals:
 object-oriented;
 visual;
 useful at many levels of abstraction;
 usable for all aspects of design.

 Encourage design by successive refinement
 Don’t rethink at each level
 CASE tools assist refinement/design

http://www.omg.org/
http://www.uml.org/

UML Elements
 Model elements
 classes, objects, interfaces, components, use cases, etc.

 Relationships
 associations, generalization, dependencies, etc.

 Diagrams
 class diagrams, use case diagrams, interaction diagrams, etc.
 constructed of model elements and relationships

Free/open source UML diagramming tools are available

Structural vs. Behavioral Models

 Structural: describe system components and relationships
 static models
 objects of various classes

 Behavioral: describe the behavior of the system, as it relates
to the structure
 dynamic models

UML Diagram Types
 Use-case: help visualize functional requirements (user-

system interaction)
 Class: types of objects & their relationships
 Object: specific instances of classes
 Interaction diagrams (dynamic)
 Sequence: how sequences of events occur (message-driven)
 Collaboration: focus on object roles

 Statechart: describe behavior of system/objects
 Component: physical view of system (code, HW)
 Others ….

UML use case diagrams
 Describe behavior user sees/expects (“what” – not “how”)
 Describe user interactions with system objects
 Users = actors (anyone/anything using the system)
Example: Data acquisition system

Actor0
(User)

Measure
V

Analyze
data

Measure
T Supporting

Actor1
(System/CPU)

o Translate to algorithms for system design

use cases

DAQ system use case description
 User
 Select measure volts mode
 Select measurement range or autorange

 System
 If range specified
 Configure to specified gain
 Make measurement

 If in range – display results
 If exceed range – display largest value and flash display

 If auto range
 Configure to midrange gain
 Make measurement

 If in range – display mode
 If above/below range – adjust gain to next range and repeat
 If exceed range – display largest value and flash display

UML class (type of object)

Display

pixels
elements
menu_items

mouse_click()
draw_box

operations/
methods

class name

attributes/
state elements

Class diagram: shows relationships between classes

UML object

d1: Display

pixels: array[] of pixels
elements
menu_items

pixels is a
2-D array

comment

object name
object’s class

attributes

Object diagram: static configuration of objects in a system

The class interface

 Encapsulation: implementation of the object is hidden by the
class
 Interface: How the user sees and interacts with the object

 Operations (methods) provide the abstract interface
between the class’ implementation and other classes.
 An operation can examine/modify the object’s state.
 Operations may have arguments, return values.

 Often list only a subset of attributes/methods within a given design
context
 Those pertinent to that context

Choose your interface properly

 If the interface is too small/specialized:
 object is hard to use for even one application;
 even harder to reuse.

 If the interface is too large:
 class becomes too cumbersome for designers to

understand;
 implementation may be too slow;
 spec and implementation can be buggy.

Relationships between classes and objects

 Association: objects “related” but one does not own the
other.

 Aggregation: complex object comprises several smaller
objects.

 Composition: strong aggregation: part may belong to only
one whole – deleting whole deletes parts.

 Generalization: define one class in terms of another.
Derived class inherits properties.

whole

whole

parts

parts

basederived

Association Example

Keypad CellularRadio

SendsNumberTo

1 1

Optionally – show “direction” of association

SendsNumberTo

Nature of the association

Aggregation/Composition Examples
List Rectangle

Point

compositionaggregation

Atom

Atoms may be in other lists Points can only be on one rectangle
Deleting list doesn’t delete atoms. Deleting rectangle deletes points.

Aggregation/Composition Examples
AddressBook ContactGroup

1 0..*

Contact

1

0..*

0..*

0..*

compositions
aggregation

n..m - between n and m instances
0..* - any number of instances (or none)
1..* - at least one instance
1 - exactly one instance

Generalization/Class derivation
 May define one class in terms of another (more “general”)

class.
 Instead of creating a new class

 Derived class inherits attributes & operations of base class.

Derived_class

Base_class

UML
generalization

(child class)

(parent class)

Class derivation example

Display

pixels
elements
menu_items

pixel()
set_pixel()
mouse_click()
draw_box

BW_display Color_display

base class

derived classes

generalizations

parent class

child class child class

Multiple inheritance

Speaker Display

Multimedia_display

base classes

derived class inherits properties of both base classes

Generalization example

Links and associations

 Association: describes relationship between classes.
 Association & class = abstract

 Link: describes relationships between objects.
 Link & object = physical

Association & link examples

message
msg: ADPCM_stream
length : integer

message set

count : integer

0..* 1

Contains
(association)

contained messages # containing message sets

ADPCM: adaptive differential pulse-code modulation

m1:message
msg = msg1
length = 1102

m2:message
msg = msg2
length = 2114

Msg:message set

count = 2

contains

contains

(links)
Object
Diagram

Class
Diagram

Object & Class Diagram Example

Object
diagram

Class
diagram

OO implementation in C++
(derive from UML diagram)

/* Define the Display class */
class Display {
pixels : pixeltype[IMAX,JMAX]; /* attributes */

public:
/* methods */
Display() { } /* create instance */
pixeltype pixel(int i, int j) {

return pixels[i,j]; }
void set_pixel(pixeltype val, int i,

int j) { pixels[i,j] = val; }
}

Instantiating an object of a class in C++

/*instantiate Display object d1*/
Display d1;

/* manipulate object d1 */
apixel = d1.pixel(0,0);

d1.set_pixel(green,18,123);

object method

Behavioral descriptions
 Several ways to describe behavior:
 internal view;
 external view.

 Dynamic models:
 State diagram: state-dependent responses to events
 Sequence diagram: message flow between objects over time
Collaboration diagram: relationships between objects

 Specify:
 inter-module interactions
 order of task executions
 what can be done in parallel
 alternate execution paths
 when tasks active/inactive

State machines

a b

state state name

transition

Similar to sequential circuit state diagrams

Event-driven state machines
 Behavioral descriptions are written as event-driven state

machines.
Machine changes state on occurrence of an “event”.

 An event may come from inside or outside of the system.
 Signal: asynchronous event.
Call: synchronized communication.
 Timer: activated by time.

 May also have state changes without events
 Ex. when some condition is satisfied

Signal event

<<signal>>
mouse_click

leftorright: button
x, y: position

event
declaration

a

b

mouse_click(x,y,button)

event description

Call event

c d

draw_box(10,5,3,2,blue)

e f

tm(time-value)

Timer event

Ex. RTOS “system tick timer”

Example: click on a display

region
found

got menu
item

called
menu item

found
object

object
highlighted

start

finish

mouse_click(x,y,button)/
find_region(region)

region = menu/
which_menu(i) call_menu(I)

region = drawing/
find_object(objid) highlight(objid)

Sequence diagram
 Shows sequence of operations over time.
 Use to plan timing of operations

 Relates behaviors of multiple objects.

 Objects listed at top from left to right
 Each object has a time line (shown as dashed line)
 Focus of control (shown as a rectangle) indicates when object is

“active”
 Actions between objects shown as horizontal lines/arrows

Sequence diagram example

m: Main f1: Function f2: Function

f1(p1)

f2(p2)

return(r2)

time
box = “focus
of control”

Programs on a CPU: only one has control of CPU at a time

return(r1)

Sequence diagram example

m: Mouse d1: Display u: Menu

mouse_click(x,y,button)
which_menu(x,y,i)

call_menu(i)

time

lifelines

box =
“focus of control”

Display and menu co-exist (both “active”)

Collaboration Diagram
 Show relationship between object in terms of messages

passed between them
Objects as icons
Messages as arrows
Arrows labeled with sequence numbers to show order

of events

Example: Cell phone class diagram
Dialer Cellular Radio

MicrophoneButton Speaker Display

Telephone

Source: Robert C. Martin, “UML Tutorial: Collaboration Diagrams”

Cell phone use case: Make call
1. User enters number (presses buttons)
2. Update display with digits
3. Dialer generates tones for digits – emit from speaker
4. User presses “send”
5. “In use” indicator lights on display
6. Cell radio connects to network
7. Digits sent to network
8. Connection made to called party

Source: Robert C. Martin, “UML Tutorial: Collaboration Diagrams”

Collaboration diagram: Make call

:Speaker

Source: Robert C. Martin, “UML Tutorial: Collaboration Diagrams”

:Button :Dialer :CellularRadio

:DisplaySend:Button

1.2 EmitTone(code)
1* Digit(code)

1.1 DisplayDigit(code)2:Send()

2.1 Connect(pno)

Show collaborations in the previous use case (including order)

Summary
 Example: Model train set (Section 1.4)

 Object-oriented design helps us organize a design.
 UML is a transportable system design language.
 Provides structural and behavioral description

primitives.

	Formal System Design Process with UML
	Object-Oriented Design
	Objects and classes
	Object-oriented design principles
	Unified Modeling Language (UML)
	UML Elements
	Structural vs. Behavioral Models
	UML Diagram Types
	UML use case diagrams
	DAQ system use case description
	UML class (type of object)
	UML object
	The class interface
	Choose your interface properly
	Relationships between classes and objects
	Association Example
	Aggregation/Composition Examples
	Aggregation/Composition Examples
	Generalization/Class derivation
	Class derivation example
	Multiple inheritance
	Generalization example
	Links and associations
	Association & link examples
	Object & Class Diagram Example
	OO implementation in C++�(derive from UML diagram)
	Instantiating an object of a class in C++
	Behavioral descriptions
	State machines
	Event-driven state machines
	Signal event
	Call event
	Example: click on a display
	Sequence diagram
	Sequence diagram example
	Sequence diagram example
	Collaboration Diagram
	Example: Cell phone class diagram
	Cell phone use case: Make call
	Collaboration diagram: Make call
	Summary

