Lab 8. Speed Control of a Dc motor

The Motor Drive

Motor Speed Control Project

- Generate PWM waveform
- 2. Amplify the waveform to drive the motor
- 3. Measure tachometer signal (motor speed)
- 4. Find parameters of a motor model
- 5. Control motor speed with a computer algorithm

Buehler 12 volt permanent-magnet dc motor with tachometer output

Electrical Connections

yellow/green -- tachometer output

blue/red -- motor winding

Note: Tachometer wires may not have two colors on some units.

Exploded view

Some questions

Required power? $P = V_{motor} \times I_{motor}$

Set up an experiment

- Measure V_{motor} , V_R , and V_{tach}
- $I_{motor} = V_R$ (because $R = 1 \Omega$)

Experimental results

Some observations

- V_{tach} amplitude grows with motor speed
- V_{tach} frequency also grows with speed
- Initial current I_{motor} peaks around 1 A
- Steady state I_{motor} is approx. 250 mA

Why does the process behave this way?

Some analytical modeling...

Motor electro-mechanical models

R_a – armature winding resistance

L_a – armature winding inductance

i_a – armature current

V_t – motor terminal voltage

e_a – back emf

T_m – developed torque

T_L – torque needed for load

 ω – rotational speed

B – friction coefficient

J - moment of inertia

Motor electrical dynamics

 e_a = "back emf" (electromotive force) generated within armature windings

Note: Emf e_a = 0 at standstill, and increases linearly with motor speed. Current i_a is high at low speed.

Mechanical dynamics analogous to electrical circuits!

Equations for these systems have similar form.

Motor mechanical dynamics

 T_m = developed torque increases with current

J = motor moment of inertia

B = motor friction coefficient

 ω = angular velocity of the motor

 T_L = torque required to drive the load

Laplace transformed equations

Electrical

$$V_t(s) = R_a \cdot I_a(s) + L_a \cdot sI_a(s) + K \cdot \Omega(s)$$

Mechanical

$$K \cdot I_a(s) = J \cdot s\Omega(s) + B \cdot \Omega(s) + T_L(s)$$

Steady state analysis (s=0)

Electrical steady state

$$V_t = R_a \cdot I_a + K \cdot \Omega$$

Mechanical steady state

$$K \cdot I_a = B \cdot \Omega + T_L$$

Solve for speed

$$\Omega = -\frac{R_a}{R_a B_m + K^2} \cdot T_L + \frac{K}{R_a B_m + K^2} \cdot V_t$$

Motor speed vs. load torque

Speed is related to load torque and terminal voltage

What we now know:

- For a given load, motor speed is proportional to voltage applied to its terminals
- Use of a PWM signal allows the average voltage of the signal to be varied by varying duty cycle

$$V_{avg} = V_{digital} \left(\frac{T1}{T1 + T2} \right)$$
 T1 = "ON" time T2 = "OFF" time

- We have a 12 Vdc motor (max. terminal voltage is 12 Vdc)
 - A 3 volt signal will be insufficient to produce full speed, PLUS ...
 - Motor may draw 1 A of current, whereas microcontroller output pins can typically supply only milliamperes

Idea: Use a single transistor switch to amplify the digital PWM signal to drive the motor

Basic transistor switch

(ideal models)

Switching an inductive load (motor winding)

Inductor voltage-current law:

$$V_{L}(t) = L \frac{di_{c}}{dt}$$

- As current i_C is switching <u>off</u>,
 - di_C/dt is large and <u>negative</u>
 - Inductor voltage V_L is large and <u>negative</u>
 - □ Collector voltage > V_{cc}
- Q may be destroyed!

Switching an inductive load (need to protect switch Q)

- Use anti-parallel diode D!!!
 - reverse biased when Q is ON
 - gives alternate current path when Q switches OFF (when inductor voltage becomes negative)
 - protects Q
 - Collector voltage is clamped to V_{cc}+V_{diode}
 - □ a.k.a. *freewheeling* diode

D

Drive design practical model

Drive design considerations

- Maximum load current, I_{LOAD}
- Transistor characteristics
 - □ current gain, h_{FE}
 - \Box voltage $V_{BE(sat)}$ in saturation mode
- Microcontroller limitations
 - digital pin output voltage (high), V_{OH}
 - □ digital pin output current, I_{IO} ≈ 20 mA (max)

Design equations

Constraints for base current in the ON state

$$I_{IO} > I_{B} >> \frac{I_{LOAD}}{h_{FE}}$$

Calculate base series resistance, R

$$R = \frac{V_{OH} - V_{BE(sat)}}{I_{B}}$$

EE Board variable power supply

Connect grounds of multiple power supplies

Lab procedure

- Verify proper PWM signal generation
- Study amplifier behavior
 - \square Measure V_{in} , V_{BE} , V_{CE}
 - Compare to theoretical assumptions
- Study motor behavior
 - Measure tachometer output (yellow/green leads)
 - Plot motor speed vs. PWM signal duty cycle
 - Repeat for several PWM signal frequencies
 - Analyze data and discuss results

Choice of devices

- Transistor (Q)
 - 2N3904 is cheap but under-rated for current
 - 2N2222 has higher current rating
 - Both may be destroyed if motor is stalled
- Diode (D)
 - 1N4001 is a rectifier diode: a bit slow, has large diameter leads
 - 1N4148 (or 1N914) is a switching diode: faster,
 but has low current rating (but is not expensive)

2N2222 NPN transistor data

Source: Fairchild Semiconductor

Absolute Maximum Ratings					
Symbol	Parameter Value U				
V _{CEO}	Collector-emitter voltage (base open)	40	V		
V _{CBO}	Collector-base voltage (emitter open)	75	V		
V_{EBO}	Emitter-base voltage (collector open)	6	>		
I _C	Collector current	1	A		

Electrical Characteristics					
Symbol	Parameter	Conditions	min	max	Unit
h _{FE}	Dc current gain	$I_{\rm C}$ = 150 mA, $V_{\rm CE}$ = 1 V	50		
V _{CE(sat)}	Collector-emitter saturation voltage	$I_{\rm C}$ = 150 mA, $I_{\rm B}$ = 15 mA		0.3	V
V _{BE(sat)}	Base-emitter saturation voltage	I _C = 150 mA, I _B = 15 mA	0.6	1.2	V

2N3904 NPN transistor data

Source: Fairchild Semiconductor

Absolute Maximum Ratings					
Symbol	Parameter Value U				
V _{CEO}	Collector-emitter voltage (base open)		V		
V_{CBO}	Collector-base voltage (emitter open)	60	V		
V _{EBO}	Emitter-base voltage (collector open)		V		
I _C	Collector current	200	mA		

Electrical Characteristics					
Symbol	Parameter	Conditions	min	max	Unit
h _{FE}	Dc current gain	$I_{\rm C}$ = 100 mA, $V_{\rm CE}$ = 1 V	30		
V _{CE(sat)}	Collector-emitter saturation voltage	$I_{\rm C}$ = 50 mA, $I_{\rm B}$ = 5 mA		0.3	V
V _{BE(sat)}	Base-emitter saturation voltage	$I_{\rm C}$ = 150 mA, $I_{\rm B}$ = 5 mA		0.95	V

1N4148 switching diode data

Source: Fairchild Semiconductor

Absolute Maximum Ratings					
Symbol	Parameter Value Ui				
V_{RRM}	Maximum repetitive reverse voltage		V		
I _O	Average rectified forward current	200	mA		
I _F	Dc forward current	300	mA		
I _C	Collector current	200	mA		

Electrical Characteristics						
Symbol	Parameter	Conditions	min	max	Unit	
V _F	Forward voltage	I _F = 100 mA		1	V	
I _R	Reverse leakage	V _R = 20 V		0.025	μΑ	
t _{rr}	Reverse recovery time	$I_F = 10 \text{ mA}, V_R = 6 \text{ V}, I_{rr}$ = 1 mA, R _L = 100 ohm		4	ns	