Lab 8. Speed Control of a D.C. motor

The Motor Drive
Motor Speed Control Project

1. Generate PWM waveform
2. **Amplify the waveform to drive the motor**
3. Measure motor speed
4. Measure motor parameters
5. Control speed with a computer algorithm

![Diagram of motor speed control system](image_url)
Buehler 12 volt permanent-magnet dc motor with tachometer output

Electrical Connections

- yellow/green -- tachometer output
- blue/red -- motor winding

Note: Tachometer wires may not have two colors on some units.
Exploded view
Motor electro-mechanical models

- R_a – armature winding resistance
- L_a – armature winding inductance
- i_a – armature current
- V_t – terminal voltage
- e_a – back emf
- T_m – developed torque
- T_L – torque needed for load
- ω – rotational speed
- B – friction coefficient
- J – moment of inertia
Motor Electrical Dynamics

\[v_t = R_a \cdot i_a + L \frac{di_a}{dt} + e_a \]

\[e_a = K \omega_m \]

\(e_a \) = “back emf” (electromotive force) generated within armature windings

Note: back emf = 0 at standstill and increases linearly with motor speed
Mechanical Dynamics Analogous to Electrical Circuits!

Equations for these systems have similar form.
Motor Mechanical Dynamics

\[T_m = K \cdot i_a \]

\[T_m = J \cdot \frac{d\omega}{dt} + B \cdot \omega + T_L \]

- \(T_m \) = developed torque increases with current
- \(J \) = motor moment of inertia
- \(B \) = motor friction coefficient
- \(\omega \) = angular velocity of the motor
- \(T_L \) = torque required to drive the load
Laplace Transformed Equations

- **Electrical**

\[V_t(s) = R_a \cdot I_a(s) + L_a \cdot sI_a(s) + K \cdot \Omega(s) \]

- **Mechanical**

\[K \cdot I_a(s) = J \cdot s\Omega(s) + B \cdot \Omega(s) + T_L(s) \]
Steady state analysis (s=0)

- **Electrical steady state**
 \[V_t = R_a \cdot I_a + K \cdot \Omega \]

- **Mechanical steady state**
 \[K \cdot I_a = B \cdot \Omega + T_L \]

- **Solve for speed**
 \[\Omega = -\frac{R_a}{R_a B_m + K^2} \cdot T_L + \frac{K}{R_a B_m + K^2} \cdot V_t \]
Motor speed vs. load torque

- Speed is related to load torque and terminal voltage

\[\Omega = \frac{R_a}{R_a B_m + K^2} \cdot T_L + \frac{K}{R_a B_m + K^2} \cdot V_t \]

Graph showing the relationship between speed (\(\Omega\)) and torque (\(T_L\)) with different loads and increasing terminal voltage (\(V_t\)). Operating points are indicated for speeds 1 and 2, and loads 1 and 2.
Transient response experiment

- Measure V_{motor}, V_R, and V_{tach}
- $I_{\text{motor}} = V_R$ (because $R = 1$)
Experimental results

Current reaches 1 amp during startup!
What we now know:

- For a given load, motor speed is proportional to voltage applied to its terminals.
- Use of a PWM signal allows the *average* voltage of the signal to be varied by varying duty cycle.

\[
V_{avg} = V_{digital} \left(\frac{T1}{T1+T2} \right)
\]

where:
- \(T1 \) = “ON” time
- \(T2 \) = “OFF” time

- We have a 12v dc motor (max. terminal voltage is 12v)
 - A 3 volt signal will be insufficient to produce full speed, PLUS …
 - Motor may draw *amps* of current, whereas digital chip outputs can typically supply only *milliamperes*

Idea: Use a single transistor switch to amplify the digital PWM signal to drive the motor.
Basic Transistor Switch

(ideal models)
Switching an Inductive Load
(motor winding)

- Inductor voltage-current law:
 \[V_L(t) = L \frac{di_C}{dt} \]

- When current \(i_C \) is switched off,
 - \(\frac{di_C}{dt} \) is large and negative
 - Inductor voltage is large and negative
 - Collector voltage > \(V_{cc} \)

- \(Q \) may be destroyed!
Switching an Inductive Load
(need to protect switch Q)

- **Use anti-parallel diode** *D!!!*
 - reverse biased when Q is ON
 - gives alternate current path when Q switches OFF (when inductor voltage becomes negative)
 - protects Q
 - Collector voltage is clamped to $V_{cc} + V_{diode}$
 - a.k.a. *freewheeling* diode

![Diagram of switching an inductive load with an anti-parallel diode](image-url)
Drive design model

\[V_{\text{high}} \]

\[I_B \]

\[I_{\text{load}} \]

\[V_{BE(sat)} \]

\[V_{CE(sat)} \]
Drive Design parameters

- Maximum load current, I_{LOAD}
- Transistor current gain, h_{FE}
- Transistor voltage $V_{BE(sat)}$ in saturation mode
- Microcontroller output voltage, V_{high}
Design Equations

- Requirement for base current in the ON state

\[I_B \gg \frac{I_{LOAD}}{h_{FE}} \]

- Calculate base series resistance, \(R \)

\[R = \frac{V_{high} - V_{BE(sat)}}{I_B} \]
EE Board variable power supply

Positive Supply
VP+ output voltage & current limit

VP+ ON

Actual VP+ Current

Waveforms Power Supply Window
Connect grounds of multiple power supplies

- **Discovery board GND**
- **External circuits**
- **external power supply option**

Diagram Description

- **External power supply**
 - +5 Vdc
 - Ground

- **USB cable**
 - +5 Vdc
 - Ground

- **EEBoard**
 - VP+
 - Ground

- **Discovery board**
 - 5V
 - 3V
 - Voltage regulator
 - v_{DD}
 - GND
 - v_{SS}

- **External circuits**
 - v_{CC}
 - Keypad, motor drive, ...

Make these connections.
Lab Procedure

- Verify proper PWM signal generation
- Measure ac tachometer output (yellow/green leads) at multiple non-zero speeds
- Plot motor speed vs. PWM signal duty cycle
- Repeat for several PWM signal frequencies, over a range of values
 - Find the “best” frequency (produces most linear plot)
Choice of devices

- Transistor (Q)
 - 2N3904 is cheap but under-rated for current
 - 2N2222 has higher current rating
 - Both may be destroyed if motor is stalled

- Diode (D)
 - 1N4001 is a rectifier diode: a bit slow, has large diameter leads
 - 1N4148 (or 1N914) is a switching diode: faster, but has low current rating (but is not expensive)
2N2222 NPN transistor data

Source: Fairchild Semiconductor

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEO}</td>
<td>Collector-emitter voltage (base open)</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>V_{CBO}</td>
<td>Collector-base voltage (emitter open)</td>
<td>75</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>Emitter-base voltage (collector open)</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector current</td>
<td>1</td>
<td>A</td>
</tr>
</tbody>
</table>

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{FE}</td>
<td>Dc current gain</td>
<td>$I_C = 150 \text{ mA}$, $V_{CE} = 1 \text{ V}$</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CE(sat)}$</td>
<td>Collector-emitter saturation voltage</td>
<td>$I_C = 150 \text{ mA}$, $I_B = 15 \text{ mA}$</td>
<td></td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>$V_{BE(sat)}$</td>
<td>Base-emitter saturation voltage</td>
<td>$I_C = 150 \text{ mA}$, $I_B = 15 \text{ mA}$</td>
<td>0.6</td>
<td>1.2</td>
<td>V</td>
</tr>
</tbody>
</table>
2N3904 NPN transistor data

Source: Fairchild Semiconductor

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEO}</td>
<td>Collector-emitter voltage (base open)</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>V_{CBO}</td>
<td>Collector-base voltage (emitter open)</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>Emitter-base voltage (collector open)</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector current</td>
<td>200</td>
<td>mA</td>
</tr>
</tbody>
</table>

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{FE}</td>
<td>Dc current gain</td>
<td>$I_C = 100\ mA,\ V_{CE} = 1\ V$</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CE(sat)}$</td>
<td>Collector-emitter saturation voltage</td>
<td>$I_C = 50\ mA,\ I_B = 5\ mA$</td>
<td></td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>$V_{BE(sat)}$</td>
<td>Base-emitter saturation voltage</td>
<td>$I_C = 150\ mA,\ I_B = 5\ mA$</td>
<td></td>
<td>0.95</td>
<td>V</td>
</tr>
</tbody>
</table>
1N4148 switching diode data

Source: Fairchild Semiconductor

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RRM}</td>
<td>Maximum repetitive reverse voltage</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>I_O</td>
<td>Average rectified forward current</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>I_F</td>
<td>Dc forward current</td>
<td>300</td>
<td>mA</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector current</td>
<td>200</td>
<td>mA</td>
</tr>
</tbody>
</table>

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward voltage</td>
<td>$I_F = 100$ mA</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse leakage</td>
<td>$V_R = 20$ V</td>
<td>0.025</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Reverse recovery time</td>
<td>$I_F = 10$ mA, $V_R = 6$ V, I_{rr} = 1 mA, $R_L = 100$ ohm</td>
<td>4</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>