
ELEC 3040/3050

Lab #7

PWM Waveform Generation

References: STM32L1xx Technical Reference Manual

STM32L100RC Data Sheet

Goals of this lab exercise

 Begin applying system design concepts to

primary semester design project

 Speed controller for a dc motor

 Generate a pulse-width-modulated (PWM)

waveform with keypad-selectable duty cycle

 Using a programmable timer

The generated waveform will be amplified in the next lab to

drive a dc motor

2

Motor Speed Control Project

1. Generate a PWM waveform

2. Amplify the waveform to drive the motor

3. Measure motor speed

4. Measure motor parameters

5. Control speed with a PID or other controller

Computer

System

12v DC

Motor
Tachometer

Amplifier

9v

Power

Supply

Frequency/

Amplitude

Measurement

3

PWM Digital Waveforms

 A pulse-width modulated (PWM) signal is a

periodic signal comprising pulses of varying

duration

 Modulation refers to modifying the pulse width

(with period held constant) to achieve a desired

effect

 “Effect” often an average voltage to control a device

 PWM signals are often used to drive motors,

commercial lights, etc.

4

PWM to Drive a Servo Motor

 Servo PWM signal

 20 ms period

 1 ms pulse width

 Vavg ≈ Vmax/10

5

PWM Waveform Parameters
T = period of waveform (constant)
T1 = duration of pulse (T2 = T – T1)
Duty Cycle = T1/T = T1/(T1+T2)

Vavg = Vmax x Duty Cycle

Pulses can
also be
active-low.

6

Vavg = 0.5Vmax

Vavg = 0.25Vmax

Vavg = 0.75Vmax

Timer operating modes
Timer capture/compare channels provide operating modes other than periodic
interrupts

 Output compare mode – Create a signal waveform/pulse/etc.

 Connect timer output TIMx_CHy to a GPIO pin

 Compare CNT to value in Capture/Compare Register CCRy

 Change output pin when CNT = CCRy

 Pulse-Width Modulated (PWM) waveform generation mode

 Similar to output compare mode

 Force output pin active while CNT < CCRy

 Force output pin inactive while CCRy ≤ CNT ≤ ARR

 ARR sets PWM period, CCRy determines PWM duty cycle

 One pulse mode – Create a single pulse on a pin

 Similar to output compare mode

 Disable counter when the event occurs

 Input capture mode – Capture time at which an external event occurs

 Connect a GPIO pin to timer input TIMx_CHy

 Capture CNT value in Capture/Compare Register CCRy at time of an event on the pin

 Use to measure time between events, tachometer signal periods, etc

7

General-purpose timers TIM10/TIM11

8

2 channels in TIM9, 4 channels in TIM2-3-4, no channels in TIM6-7

TIM6-7-10-11 have up counters, TIM2-3-4-9 have up/down counters

Capture/Compare Channel 1 – TIMx_CH1 input/output

Basic timing function

(earlier lab)

* 2.097MHz if default MSI clock used

(0x0020_0000 cycles/sec)

* 16 MHz if HSI clock used

Timer capture/compare channels

Input capture:

Copy CNT to CCRx

when input event

detected

CNT=CCRx=3

(toggle OCxREF)

CNT=ARR=7

(reset CNT and OCxREF)

One-pulse

Pulse-width

modulation

Output compare:

Trigger an event

when CNT = CCRx

OCxREF

Period

Start

active
inactive

9

ARR

CCRx

CNT < CCRx CNT >= CCRx

Capture/Compare Output Stage

Output**
Comparator

OutputsCNT

CCR1

=
Output polarity

Output Compare or PWM mode

Enable output

ARR

** Route output OC1 to a GPIO pin as an “alternate function”.

(each GPIO pin can connect to one or two timer channels)

10

Timer outputs as GPIO pin alternate functions

11

From STM32L100RX Data Sheet Table 7. “Pin Definitions” (partial)

Each GPIO pin configurable as: INPUT, OUTPUT, ANALOG, ALTERNATE FUNCTION

- Select pin modes in GPIOx->MODER (10 = alternate function)

1. Select AF mode for pin in MODER

2. Select AFn in GPIOx->AFRL/AFRH

We will use

TIM10_CH1

(Pin PA6)

Selecting an alternate function
Timers

Only a subset of AF’s available at each pin,

as listed in data sheet. (see previous slide)

AFR[0]:
AFRLn

defines

pin n,

n=0..7

GPIOn->MODER selects AF mode for pins (10)

GPIOn->AFR[0] selects AFs for pins Pn7-Pn0

GPIOn->AFR[1] selects AFs for pins Pn15-Pn8

Example: Configure PA6 as TIM3_CH1 (AF2)

GPIOA->MODER &= ~0x00003000; //clear PA6 mode

GPIOA->MODER |= 0x00002000; //PA6 = AF mode

GPIOA->AFR[0] &= ~0x0F000000; //clear AFRL6

GPIOA->AFR[0] |= 0x02000000; //PA6 = AF2

12

Timer System Control Register 1

7 6 5 4 3 2 1 0

OPM URS UDIS CEN

Counter Enable*

0 = disable

1 = enable

ARPE

TIMx_CR1 (reset value = all 0’s)

DIR*CMS*

Direction

0 = count up

1 = count down

Center mode select

00 = edge-aligned

-count in one direction

Others: center aligned

-count in both directions

* TIM6-7-10-11 limited to count up:

- DIR = 0 & CMS = 00 only

One Pulse Mode

1 = counter stops at update event

0 = counter continues at UE

See timer overview

from earlier lab

13

*CEN only bit that needs to be changed for simple PWM

Timer Status Register

7 6 5 4 3 2 1 0

UIF

Update interrupt flag

1 = update interrupt pending

0 = no update occurred

Set by hardware on update event

Cleared by software

(reset UIF bit to 0)

TIMx_SR (reset value = all 0’s)

CC4IF CC3IF CC2IF CC1IF

Capture/compare interrupt flags

1 = capture/compare interrupt pending

0 = no capture/compare event occurred

Set by hardware on capture/comp event

Cleared by software

(reset CCxIF bit to 0)

See timer overview

from earlier lab

14

TIM10 has only CC1IF

Timer DMA/Interrupt Enable Register

8 7 6 5 4 3 2 1 0

UIE

Update interrupt* enable
1 = enable, 0 = disable

UDE

TIMx_DIER (reset value = all 0’s)

Update DMA request enable

1 = enable, 0 = disable

CC4IE CC3IE CC2IE CC1IE

Capture/Compare interrupt* enable
TIMx interrupt on capture/compare event

1 = CCx interrupt enabled, 0 = disabled

See timer overview

from earlier lab

* Capture/compare and update events generate the same IRQn signal, and use

the same interrupt handler. Handler reads status register flags to determine source.

15

TIM10 has

only CC1IE

Capture/Compare Register (CCR)

16

 Compared to TIMx_CNT to trigger operations at specified times.

 TIMx_CCRy = TIMx capture/compare register, channel y
 TIM2-3-4: y=1,2,3,4; TIM9: y = 1,2; TIM10-11: y=1

 CCRy register width same as CNT/ARR registers (16 bits)

--

 Input capture mode: TIMx_CNT captured in TIMx_CCRy when a

designated input signal event is detected

 Output compare mode: TIMx_CCRy compared to TIMx_CNT; each

match is signaled on OCy output

 One pulse mode: same as output compare, but disable after match

 PWM mode: TIMx_CCRy compared to TIMx_CNT
 CNT < CCRy => output active

 CNT ≥ CCRy => output inactive

TIMx_CNT operates as discussed previously for periodic interrupt generation:

- Signal update event and reset to 0 when CNT = ARR while counting up

- Signal update event and reload ARR when CNT = 0 while counting down

Capture/Compare Mode Registers

Capture/Compare 1 Select
00 = output

01 = input**: IC1 = TI1

10 = input**: IC1 = TI2

11 = input**: IC1 = TRC

Output Compare 1 Mode
000 = frozen (no events)

001 = Set CH1 active* on match

010 = Set CH1 inactive* on match

011 = Toggle CH1 on match

100 = Force CH1 to inactive* (immediate)

101 = Force CH1 to active* (immediate)

110 = PWM mode 1 (active* to inactive*)

111 = PWM mode 2 (inactive* to active*)

* Active/inactive levels selected in TIMx_CCER register

** discuss later

TIMx_CCMR1: bits 7:0 configure channel 1; bits 15:8/channel 2

TIMx_CCMR2 (TIM2-3-4): bits 7:0/channel 3; bits 15:8/channel 4

(reset values = all 0’s)

If Output Mode ->

If Input Mode** ->

17

Capture/Compare Enable Register

18

TIMx_CCER (reset value = all 0’s)

CC1 Polarity

If CC1 = output, CC1P selects:

0 = OC1 active high

1 = OC1 active low

If CC1 = input:

CC1NP/CC1P select capture trigger:

00: falling edge of input

01: rising edge of input

11: both edges of input

CC1 Enable

If CC1 = output:

1 = OC1 drives output pin

0 = OC1 does not drive output

If CC1 = input:

1 = Capture enabled

0 = Capture disabled

CC4 CC3 CC2

bits bits bits

15 - 12 11 – 8 7 - 4

Channel 1

Pulse-Width Modulation (PWM) Mode

Period

(TIMx_ARR)

(TIMx_CCRy)

Duty

Output pin

Duty cycle =

(Duty/Period) x 100%

 PWM by comparing TIMx_CNT to both TIMx_CCRy and TIMx_ARR

 TIMx_ARR => Period

 TIMx_CCRy => Duty

 TIMx_CCMRn (capture/compare mode) (n=1 for channels 1-2 / n=2 for channels 3-4):

 Bits CCyS = 00 to select an output mode for channel y

 Bits OCyM = 110 (PWM mode 1) – active if CNT < CCRy, inactive otherwise

OCyM = 111 (PWM Mode 2) - inactive if CNT < CCRy , active otherwise

 TIMx_CCER:

 Bit CCyE = 1 to enable OCy to drive the output pin

 Bit CCyP = 0/1 to select active level high/low (output polarity) of OCy

 Configure GPIO MODER and AF registers to select alt. function TIMx_CHy for the pin

19

PWM Signal Examples

1. OCXREF active (high) when TIMx_CNT < TIMx_CCRx

Assumes OCxM = 110 and CCxP = 0

2. OCXREF inactive (low) when TIMx_CNT ≥ TIMx_CCRx

3. Update Event when TIMx_CNT = TIMx_ARR (resets TIMx_CNT to 0)

ARR=8

OCXREF

always active

OCXREF

always inactive

1 2

21

3

3

1

2 3

3

20

Example:

20KHz PWM signal with 10% duty cycle on pin PB6

 Use TIM4, Channel 1
 Since TIM4_CH1 = AF2 for pin PB6

 Assume timer clock = 16MHz* and prescale = 1
 PWM Period = 16MHz/20KHz = 800 (TIM4_ARR = 799)

 PWM Duty = 800 x 10% = 80 = TIM4_CCR1

 Configure TIM4_CCMR1 bits:
 CC1S = 00 (make channel 1 an output)

 CC1M = 110 (PWM mode 1: active-to-inactive)

 Configure TIM4_CCER bits:
 CC1E = 1 to enable output OC1 to drive the pin

 CC1P = 0 to define OC1 as active high

 Configure PB6 as alternate function TIM4_CH1
 Select AF mode for PB6 in GPIOB->MODER

 Select TIM4_CH1 (AF2) for PB6 in GPIOB->AFRL

21

* What if timer clock

= 2.097 MHz ?

(0x0020_0000 Hz)

Lab Procedure

 Generate a PWM waveform with timer TIM10

 Period should be 1 ms (frequency 1 KHz)

 First, generate a waveform with one duty cycle value

 Then, verify that you can generate waveforms with each

of the 11 specified duty cycles, from 0% to 100%, as

selected by keypad keys 0 – A.

 Measure and record the 11 duty cycle values

 Plot measured duty cycle vs. selection key #

 Repeat with higher/lower PWM frequencies**

 100 Hz, 10 KHz, etc.

 What needs to be changed?

22

**Motor performance may

vary with PWM frequency.

