
ELEC 3040/3050 

Lab #7

PWM Waveform Generation

References: STM32L1xx Technical Reference Manual

STM32L100RC Data Sheet



Goals of this lab exercise

 Begin applying system design concepts to 

primary semester design project

 Speed controller for a dc motor

 Generate a pulse-width-modulated (PWM) 

waveform with keypad-selectable duty cycle

 Using a programmable timer

The generated waveform will be amplified in the next lab to 

drive a dc motor
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Motor Speed Control Project

1. Generate a PWM waveform

2. Amplify the waveform to drive the motor

3. Measure motor speed

4. Measure motor parameters

5. Control speed with a PID or other controller
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PWM Digital Waveforms

 A pulse-width modulated (PWM) signal is a 

periodic signal comprising pulses of varying 

duration

 Modulation refers to modifying the pulse width 

(with period held constant) to achieve a desired 

effect

 “Effect” often an average voltage to control a device

 PWM signals are often used to drive motors, 

commercial lights, etc.
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PWM to Drive a Servo Motor

 Servo PWM signal 

 20 ms period

 1 ms pulse width

 Vavg ≈ Vmax/10
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PWM Waveform Parameters
T   = period of waveform (constant)
T1 = duration of pulse      (T2 = T – T1)
Duty Cycle = T1/T = T1/(T1+T2)

Vavg = Vmax x Duty Cycle

Pulses can 
also be 
active-low.
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Vavg = 0.5Vmax

Vavg = 0.25Vmax

Vavg = 0.75Vmax



Timer operating modes
Timer capture/compare channels provide operating modes other than periodic 
interrupts

 Output compare mode – Create a signal waveform/pulse/etc.

 Connect timer output TIMx_CHy to a GPIO pin

 Compare CNT to value in Capture/Compare Register CCRy

 Change output pin when CNT = CCRy

 Pulse-Width Modulated (PWM) waveform generation mode

 Similar to output compare mode

 Force output pin active while  CNT < CCRy

 Force output pin inactive while CCRy ≤ CNT ≤ ARR

 ARR sets PWM period, CCRy determines PWM duty cycle

 One pulse mode – Create a single pulse on a pin

 Similar to output compare mode

 Disable counter when the event occurs

 Input capture mode – Capture time at which an external event occurs

 Connect a GPIO pin to timer input TIMx_CHy

 Capture CNT value in Capture/Compare Register CCRy at time of an event on the pin

 Use to measure time between events, tachometer signal periods, etc
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General-purpose timers TIM10/TIM11
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2 channels in TIM9, 4 channels in TIM2-3-4, no channels in TIM6-7

TIM6-7-10-11 have up counters, TIM2-3-4-9 have up/down counters

Capture/Compare Channel 1 – TIMx_CH1 input/output

Basic timing function

(earlier lab) 

* 2.097MHz if default MSI clock used

(0x0020_0000 cycles/sec)

* 16 MHz if HSI clock used



Timer capture/compare channels

Input capture:

Copy CNT to CCRx

when input event

detected

CNT=CCRx=3

(toggle OCxREF)

CNT=ARR=7

(reset CNT and OCxREF)

One-pulse

Pulse-width

modulation

Output compare:

Trigger an event

when CNT = CCRx

OCxREF

Period

Start

active
inactive
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ARR

CCRx

CNT < CCRx CNT >= CCRx



Capture/Compare Output Stage

Output**
Comparator

OutputsCNT

CCR1

=
Output polarity

Output Compare or PWM mode

Enable output

ARR

** Route output OC1 to a GPIO pin as an “alternate function”.

(each GPIO pin can connect to one or two timer channels)
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Timer outputs as GPIO pin alternate functions
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From STM32L100RX Data Sheet Table 7. “Pin Definitions” (partial)

Each GPIO pin configurable as: INPUT, OUTPUT, ANALOG, ALTERNATE FUNCTION

- Select pin modes in GPIOx->MODER  (10 = alternate function)

1. Select AF mode for pin in MODER

2. Select AFn in GPIOx->AFRL/AFRH

We will use 

TIM10_CH1

(Pin PA6)



Selecting an alternate function
Timers

Only a subset of AF’s available at each pin,

as listed in data sheet. (see previous slide)

AFR[0]:
AFRLn

defines

pin n,

n=0..7

GPIOn->MODER selects AF mode for pins (10)

GPIOn->AFR[0] selects AFs for pins Pn7-Pn0

GPIOn->AFR[1] selects AFs for pins Pn15-Pn8

Example: Configure PA6 as TIM3_CH1  (AF2)

GPIOA->MODER &= ~0x00003000;  //clear PA6 mode

GPIOA->MODER  |=   0x00002000;  //PA6 = AF mode

GPIOA->AFR[0]   &= ~0x0F000000;  //clear AFRL6

GPIOA->AFR[0]    |=    0x02000000;  //PA6 = AF2
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Timer System Control Register 1

7         6          5          4         3          2          1           0

OPM URS UDIS CEN

Counter Enable*

0 = disable

1 = enable

ARPE

TIMx_CR1 (reset value = all 0’s)

DIR*CMS*

Direction

0 = count up

1 = count down

Center mode select

00 = edge-aligned

-count in one direction

Others: center aligned

-count in both directions

* TIM6-7-10-11 limited to count up:

- DIR = 0 & CMS = 00 only

One Pulse Mode

1 = counter stops at update event

0 = counter continues at UE

See timer overview 

from earlier lab
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*CEN only bit that needs to be changed for simple PWM



Timer Status Register

7         6          5          4         3          2          1           0

UIF

Update interrupt flag

1 = update interrupt pending

0 = no update occurred

Set by hardware on update event

Cleared by software 

(reset UIF bit to 0)

TIMx_SR (reset value = all 0’s)

CC4IF CC3IF CC2IF CC1IF

Capture/compare interrupt flags

1 = capture/compare interrupt pending

0 = no capture/compare event occurred

Set by hardware on capture/comp event

Cleared by software 

(reset CCxIF bit to 0)

See timer overview 

from earlier lab
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TIM10 has only CC1IF



Timer DMA/Interrupt Enable Register

8        7         6          5          4         3          2          1           0

UIE

Update interrupt* enable
1 = enable, 0 = disable

UDE

TIMx_DIER (reset value = all 0’s)

Update DMA request enable

1 = enable,  0 = disable

CC4IE CC3IE CC2IE CC1IE

Capture/Compare interrupt* enable
TIMx interrupt on capture/compare event

1 = CCx interrupt enabled,  0 = disabled

See timer overview 

from earlier lab

* Capture/compare and update events generate the same IRQn signal, and use 

the same interrupt handler. Handler reads status register flags to determine source.
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TIM10 has 

only CC1IE



Capture/Compare Register (CCR)
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 Compared to TIMx_CNT to trigger operations at specified times.

 TIMx_CCRy = TIMx capture/compare register, channel y
 TIM2-3-4: y=1,2,3,4;   TIM9: y = 1,2;    TIM10-11: y=1

 CCRy register width same as CNT/ARR registers  (16 bits)

------------------------------------------------------------------------------------------

 Input capture mode: TIMx_CNT captured in TIMx_CCRy when a 

designated input signal event is detected

 Output compare mode: TIMx_CCRy compared to TIMx_CNT; each 

match is signaled on OCy output

 One pulse mode: same as output compare, but disable after match

 PWM mode: TIMx_CCRy compared to TIMx_CNT
 CNT < CCRy => output active

 CNT ≥ CCRy => output inactive

TIMx_CNT operates as discussed previously for periodic interrupt generation:

- Signal update event and reset to 0 when CNT = ARR while counting up

- Signal update event and reload ARR when CNT = 0 while counting down



Capture/Compare Mode Registers

Capture/Compare 1 Select
00 = output

01 = input**: IC1 = TI1

10 = input**: IC1 = TI2

11 = input**: IC1 = TRC

Output Compare 1 Mode
000 = frozen (no events)

001 = Set CH1 active* on match

010 = Set CH1 inactive* on match

011 = Toggle CH1 on match

100 = Force CH1 to inactive* (immediate)

101 = Force CH1 to active* (immediate)

110 = PWM mode 1 (active* to inactive*)

111 = PWM mode 2 (inactive* to active*)

* Active/inactive levels selected in TIMx_CCER register

** discuss later

TIMx_CCMR1: bits 7:0 configure channel 1; bits 15:8/channel 2

TIMx_CCMR2 (TIM2-3-4): bits 7:0/channel 3; bits 15:8/channel 4

(reset values = all 0’s) 

If Output Mode ->

If Input Mode** ->
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Capture/Compare Enable Register
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TIMx_CCER (reset value = all 0’s)

CC1 Polarity

If CC1 = output, CC1P selects:

0 = OC1 active high

1 = OC1 active low

If CC1 = input:

CC1NP/CC1P select capture trigger:

00: falling edge of input

01: rising edge of input

11: both edges of input

CC1 Enable

If CC1 = output:

1 = OC1 drives output pin

0 = OC1 does not drive output

If CC1 = input:

1 = Capture enabled

0 = Capture disabled

CC4        CC3        CC2

bits          bits bits

15  - 12    11 – 8     7  - 4

Channel 1



Pulse-Width Modulation (PWM) Mode

Period

(TIMx_ARR)

(TIMx_CCRy)

Duty

Output pin

Duty cycle = 

(Duty/Period) x 100%

 PWM by comparing TIMx_CNT to both TIMx_CCRy and TIMx_ARR

 TIMx_ARR => Period

 TIMx_CCRy => Duty

 TIMx_CCMRn (capture/compare mode) (n=1 for channels 1-2 / n=2 for channels 3-4):

 Bits CCyS = 00 to select an output mode for channel y

 Bits OCyM = 110 (PWM mode 1) – active if  CNT < CCRy, inactive otherwise

OCyM = 111 (PWM Mode 2) - inactive if CNT < CCRy , active otherwise

 TIMx_CCER: 

 Bit CCyE = 1 to enable OCy to drive the output pin

 Bit CCyP = 0/1 to select active level high/low (output polarity) of OCy

 Configure GPIO MODER and AF registers to select alt. function TIMx_CHy for the pin
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PWM Signal Examples

1. OCXREF active (high)  when TIMx_CNT <  TIMx_CCRx

Assumes OCxM = 110 and CCxP = 0

2. OCXREF inactive (low) when TIMx_CNT ≥  TIMx_CCRx

3. Update Event when TIMx_CNT = TIMx_ARR (resets TIMx_CNT to 0)

ARR=8

OCXREF

always active

OCXREF

always inactive

1 2

21
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2 3
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Example: 

20KHz PWM signal with 10% duty cycle on pin PB6

 Use TIM4, Channel 1
 Since TIM4_CH1 = AF2 for pin PB6

 Assume timer clock = 16MHz* and prescale = 1
 PWM Period = 16MHz/20KHz = 800  (TIM4_ARR = 799)

 PWM Duty = 800 x 10% = 80  = TIM4_CCR1

 Configure TIM4_CCMR1 bits:
 CC1S = 00  (make channel 1 an output)

 CC1M = 110  (PWM mode 1: active-to-inactive)

 Configure TIM4_CCER bits:
 CC1E = 1 to enable output OC1 to drive the pin

 CC1P = 0 to define OC1 as active high

 Configure PB6 as alternate function TIM4_CH1
 Select AF mode for PB6 in GPIOB->MODER

 Select TIM4_CH1 (AF2) for PB6 in GPIOB->AFRL

21

* What if timer clock 

= 2.097 MHz ?

(0x0020_0000 Hz)



Lab Procedure

 Generate a PWM waveform with timer TIM10

 Period should be 1 ms (frequency 1 KHz)

 First, generate a waveform with one duty cycle value

 Then, verify that you can generate waveforms with each 

of the 11 specified duty cycles, from 0% to 100%, as 

selected by keypad keys 0 – A.

 Measure and record the 11 duty cycle values

 Plot measured duty cycle vs. selection key #

 Repeat with higher/lower PWM frequencies**

 100 Hz, 10 KHz, etc.

 What needs to be changed?
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**Motor performance may

vary with PWM frequency.


