
ELEC 3040/3050
Lab 6

Time-based interrupts (Digital stopwatch design)

Reference: STM32L100 Reference Manual, Chap. 18,
General-Purpose Timers (TIM9/TIM10/TIM11)

1

Timer usage in computer systems

 Periodically interrupt CPU to perform tasks
 Sample temperature/pressure readings
 Generate music samples

 Provide accurate time delays
 Instead of software loops

 Generate pulses or periodic waveforms
 PWM signal for motor control
 Strobe pulse for an external device

 Determine time/duration of an external event
 Measure a tachometer signal from a motor

2

Performing periodic operations

 Operations to be performed every T seconds
 Timer module interrupts main thread every T seconds

 Timer period usually programmable

 Interrupt handler performs required operations
 Operations usually include clearing a flag in the timer

T 2T 3T 4T 5T ……

Main
thread

Interrupt
handler

Timer
events

3

Timer Peripheral Modules

 Based on pre-settable binary counter
 Count value can be read (and written on some uCs)
 Count direction (up/down) may be fixed or selectable
 Counter’s clock source may be fixed or selectable

 Counter mode: count pulses/events (e.g. odometer pulses)
 Timer mode: periodic clock source;

count value proportional to elapsed time (e.g. stopwatch)
 Count overflow/underflow action configurable

 Set a flag (testable by software)
 Generate an interrupt when flag set (if enabled)
 Reload counter with a designated value and continue counting
 Activate/toggle a hardware output signal

Events

Clock

Current Count

Reload Value

Presettable
Binary Counter Output

Control
PWM

InterruptReload

or

Flag

4

STM32L1xx programmable timers
 8 programmable timers (all use 16-bit counters)

 Other available timers:
 Watchdog (WWDG): 7-bit down-counter

 Interrupt CPU if count reaches 0
 Correctly-operating S/W periodically resets count to prevent this

 Real-Time Clock (RTC)
 Maintains time of day and calendar (with battery backup)

 SysTick timer
 24-bit down-counter in all Cortex-M processors
 Triggers periodic interrupts (“clock ticks”)

5

Timers Count
direction

Periodic
interrupts

OC/IC/PWM*
channels

TIM2-3-4 up/down yes 4
TIM9 up/down yes 2
TIM10-11 up yes 1
TIM6-7 up yes 0

*OC = Output Compare
IC = Input Capture
PWM = Pulse Width

Modulated
Waveforms

STM32L1xx Clock Options
 MSI (Multi-Speed Internal) DEFAULT AT POWER ON

 Internal oscillator: 2.097 MHz (0x20_0000 Hz)
 Default clock selected by startup code

 HSI (High-Speed Internal)
 Internal oscillator: 16 MHz
 Select at startup by executing:
RCC->CR |= RCC_CR_HSION; // Turn on 16MHz HSI oscillator
while ((RCC->CR & RCC_CR_HSIRDY) == 0); // Wait until HSI ready
RCC->CFGR |= RCC_CFGR_SW_HSI; // Select HSI as system clock

 HSE (High-Speed External)
 Supplied via pins PH0/PH1: 8 MHz on STM32L100-Discovery

 PLL (Phase-Lock Loop)
 Generate up to 32MHz clock from HSI or HSE source
 More precise than internal oscillators

6

7

Scaled clock triggers
up-counter/down-counter
FCK_CNT = FCK_PSC ÷ Prescale

ARR

Update Event

Update Event Interrupt

All TIMx clocks = 2.097MHz*
TIM2-3-4-6-7 on APB1
TIM9-10-11 on APB2

* Unless reprogrammed
CK_PSC = CK_INT
when count enabled

Event: CNT=ARR (up-count) or CNT=0 (down-count)
• CNT resets to 0 (if count up) or reloads ARR (if count down)
• UIF flag is set in the status register

Signaled when UIF sets,
if enabled (UIE=1)

Basic timing function

Current Count

Auto-Reload Value

TIMx_CNT
16 bits

Timer as a periodic interrupt source

Clock
UIF InterruptEvent

Reload

TIMx_PSC
16 bits

TIMx_ARR
16 bits

 Count-up “overflow event” if TIMx_CNT reaches TIMx_ARR
 1→UIF (udate interrupt flag) and TIMx_CNT resets to 0.
 If UIE = 1 (update interrupt enabled), interrupt signal sent to NVIC

 Prescale value (set by TIMx_PSC) multiplies input clock period (1/ Fclk) to
produce counter clock period:

Tcnt = 1/Fcnt = (PSC+1)×(1/Fclk)
 Time interval = TIMx_ARR (Auto-Reload Register) value × counter clock period:

Tout = (ARR+1)×Tcnt = (ARR+1)×(PSC+1)×(1/Fclk)

Example: For 1 second time period, given Fclk = 2.097MHz:
Tout = (0x2000 × 0x100) ÷ 0x200000 = 1 second
ARR = 0x1FFF & PSC = 0xFF (or equivalent combination)

UIE
&

TIMx_SR

TIMx_DIER

Fclk Fcnt

8

9

Counter timing:
PSC = 0
(prescale x1)
ARR = 36

Counter timing:
PSC= 3
(prescale x4)
ARR = 36

TEVENT = Prescale x Count x TCK_INT = (PSC+1) x (ARR+1) x TCK_INT

Timer registers
 TIMx Counter (TIMx->CNT)

 16-bit binary counter, operating at fCK_CNT

 Up counter in TIM6, TIM7, TIM10, TIM11
 Up/down counter in TIM2, TIM3, TIM4, TIM9

 TIMx Prescale Register (TIMx->PSC)
 16-bit clock prescale value
 fCK_CNT = fCK_INT ÷ prescale (CK_INT is the clock source)

 TIMx Auto-Reload Register (TIMx->ARR)
 16-bit auto-reload value
 End value for up count / initial value for down count
 New ARR value can be written while the timer is running

 Takes effect immediately if ARPE=0 in TIMx_CR1
 Held in buffer until next update event if ARPE=1 in TIMx_CR1

10

(x = timer #)

Timer System Control Register 1

7 6 5 4 3 2 1 0

URS UDIS CEN

Counter Enable
1 = enable, 0 = disable

CEN=1 to begin counting
(apply CK_INT to CK_PSC)

Other Options:
UDIS = 0 enables update event to be generated (default)
URS = 0 allows different events to generate update interrupt (default)

1 restricts update interrupt to counter overflow/underflow
ARPE = 0 allows new ARR value to take effect immediately (default)

1 enables ARR buffer (new value held in buffer until next update event)
TIM2-4 and TIM9 include up/down direction and center-alignment controls

ARPE

TIMx_CR1 (default = all 0’s)

Examples:
TIM4->CR1 |= 0x01; //Enable counting
TIM4->CR1 &= ~0x01; //Disable counting

11

Timer Status Register

7 6 5 4 3 2 1 0

UIF

Update Interrupt Flag
1 = update interrupt pending
0 = no update occurred

Set by hardware on update event
(CNT overflow)

Cleared by software
(write 0 to UIF bit)

TIMx_SR (reset value = all 0’s)

CC1FCC2FCC3FCC4F

Capture/Compare Channel n Interrupt Flags
(to be discussed later)

Example: do actions if UIF=1
if (TIM4->SR & 0x01 == 0x01) { //test UIF

.. do some actions
TIM4->SR &= ~0x01; //clear UIF

}

12

Timer Interrupt Control Register

8 7 6 5 4 3 2 1 0

UIE

Update interrupt enable
1 = enable, 0 = disable

(interrupt if UIF=1 when UIE=1)

TIMx_DIER (default = all 0’s)

CC1IECC2IECC3IECC4IE

Capture/Compare n Interrupt Enable
(To be discussed later)

Examples:
TIM4->DIER |= 0x01; //Enable interrupt
TIM4->DIER &= ~0x01; //Disable interrupt

13

Timer clock source
 Clock TIMx_CLK to each timer module TIMx must be

enabled in the RCC (reset and clock control) module
 TIMx_CLK is derived from a peripheral bus clock

 TIM2-3-4-6-7 on APB1 (peripheral bus 1), enabled in RCC->APB1ENR
 TIM9-10-11 on APB2 (peripheral bus 2), enabled in RCC->APB2ENR
 Example: enable clocks to TIM2 and TIM9:

RCC->APB1ENR |= 0x00000001; //TIM2EN is bit 0 of APB1ENR
RCC->APB2ENR |= 0x00000004; //TIM9EN is bit 2 of APB2ENR

 STM32L1xx.h defines symbols for bit patterns
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; //same as 0x00000001
RCC->APB2ENR |= RCC_APB2ENR_TIM9EN; //same as 0x00000004

 Default STM32L1xx startup code sets all bus/timer clocks
to 2.097MHz (0x200000 Hz) on the Discovery board
 Reprogram if higher frequency desired

14

Timer interrupt vectors
 Each timer has its own interrupt vector in the vector table

(refer to the startup file and Table 48 of STM32L100xx Reference Manual)
 IRQ# determines vector position in the vector table

 IRQ#: IRQ25 – 26 – 27 – 28 – 29 – 30 – 43 - 44
Timer#: TIM9 - 10 - 11 - 2 - 3 - 4 - 6 - 7

 Symbols for IRQ#’s for NVIC functions defined in stm32l1xx.h
NVIC_EnableIRQ(TIM9_IRQn); // TIM9 = IRQ25
NVIC_ClearPendingIRQ(TIM7_IRQn); // TIM7 = IRQ44

 Default interrupt handler names* in the startup file:
TIM9_IRQHandler(); //handler for TIM9 interrupts
TIM7_IRQHandler(); //handler for TIM7 interrupts

*Either use this name for your interrupt handler, or modify the startup file
to change the default to your own function name.

15

Enabling timer interrupts
 Timer interrupts must be enabled in three places

1. In the timer: UIE bit in register TIMx DIER
TIM4->DIER |= 1; // UIE is bit 0

or: TIM4->DIER |= TIM_DIER_UIE;
 Interrupt triggered if UIF is set while UIE = 1
 Interrupt handler must reset UIF (write 0 to it)

2. In the NVIC – set the enable bit for each IRQn source:
NVIC_EnableIRQ(TIM9_IRQn); // enable TIM9 interrupts
 NVIC “Pending Flag” resets automatically when interrupt handler

entered

3. In the CPU – enable CPU to respond to any configurable interrupt
__enable_irq();

16

Example: Initialize TIM4 for periodic interrupts
 Enable the clock to timer TIM4

RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;

 Calculate prescale and auto-reload values for desired period and
write to PSC and ARR registers:

// TINT = TCLK * (PSC + 1) * (ARR + 1)
TIM4->PSC = psc_value; //prescaler value
TIM4->ARR = arr_value; //auto-reload value

 Enable interrupts on timer update events
TIM4->DIER |= TIM_DIER_UIE; //Enable TIM4 to signal an interrupt
NVIC_EnableIRQ(TIM4_IRQn); //Enable TIM4 interrupt in NVIC
__enable_irq(); //Enable interrupts in CPU

 Enable the timer to start counting
TIM4->CR1 |= TIM_CR1_CEN; //Bit CEN=1 to enable counting

//Bit CEN=0 to stop counting

17

Interrupt handler format
void TIM4_IRQHandler () { //handler for TIM4

 Perform the desired actions
 Update a time/display
 sample external sensor data
 perform a control action
 etc.

 Clear timer’s update interrupt flag (cancel interrupt request)
TIM4->SR &= ~0x01; //UIF is bit 0 of SR

or TIM4->SR &= ~TIM_SR_UIF;

 (Should be unnecessary): clear pending flag in NVIC
NVIC_ClearPendingIRQ(TIM4_IRQn);

}

18

Stopwatch design
 Control watch with two keypad buttons

 Button 0: start and stop the timer
 Freeze the displayed time when stopped
 Continue from displayed value if restarted

 Button 1: clear time to 0.0, but only if watch is stopped

 While watch is running, display elapsed time from 0.0 to
9.9 seconds, and repeat until stopped
 Display two BCD digits on two sets of four LEDs.

 Use previous port configuration (PC7-PC0) to output two 4-bit values
 Use previous Static IO window setup to display the values on LEDs
 Verify count sequence with the logic analyzer

 Timing must be precise, requiring timer interrupts.
 Verify timing precision with the oscilloscope

19

	ELEC 3040/3050 �Lab 6
	Timer usage in computer systems
	Performing periodic operations
	Timer Peripheral Modules
	STM32L1xx programmable timers
	STM32L1xx Clock Options
	Basic timing function
	Timer as a periodic interrupt source
	Counter timing: �PSC = 0�(prescale x1)�ARR = 36
	Timer registers
	Timer System Control Register 1
	Timer Status Register
	Timer Interrupt Control Register
	Timer clock source
	Timer interrupt vectors
	Enabling timer interrupts
	Example: Initialize TIM4 for periodic interrupts
	Interrupt handler format
	Stopwatch design

