
Matrix Keypad Interface
Using Parallel I/O

ELEC 3040/3050
Lab 5

Goals of this lab exercise
 Control a “real device” with the microcontroller
 Coordinate parallel I/O ports to control and

access a device
 Implement interrupt-driven operation of a device
 External device triggers operation(s)

Velleman 16-Key Matrix Keypad
• Used on phones, keyless entry systems, etc.
• Comprises a matrix of switches

– no “active” circuit elements
• Accessed via 8 pins (4 rows/4 columns)

– connected by a ribbon cable to a DIP header
– insert carefully into breadboard

Pins: 1-2-3-4-5-6-7-8 Pin connections to
rows/columns

2 4 6 8

1 3 5 7

Ribbon
cable

Header

Matrix keypad circuit diagram

• 16 keys/contact pairs
• 4 rows x 4 columns
• One key at each row-

column intersection
• Springs normally separate

keys from contacts
• Pressing a key connects

the contacts
(“short circuits” row-to-column)

“Scanning” the keypad
 Drive column wires with output pins
 Drive a column wire low to “activate” it

 Read states of row wires via input pins
 Use pull-up resistors to pull rows up to logic 1
 If no row-column shorts, all rows pulled high
 Row R low only if shorted to column C that is driven low

C

R

+V
Key
pressed

C shorted to R
R state = C state

C

R

+V
Key not
pressed

C not connected to R
R pulled up to logic 1

Scan algorithm

1. Drive one column C low and other columns high
2. Read and test the states of the rows

 If row R is low, it is shorted to column C
 If row R is high, then either:

 R is not shorted to any column wire & remains pulled high
 or, R is shorted to a column wire that is being driven high

3. Repeat steps 1 & 2, but with a different column
wire driven low (and others high)
 Key press detected if a row is detected in a low state
 Key position is intersection of that row and the column

being driven low
(example on next slide)

Example (C-2 driven low, R-2 detected low)

+3.3v+3v

Alternate (non-scan) method
(1) Write to columns (out) and read rows (in)
(2) Change port directions (via MODER)
(3) Write rows (out) and read columns (in)

+3v

+3v

Timing issue
 There is a short time delay from the time a pattern is

written to an output port to the appearance of that
pattern on the external pins.

 After writing a pattern to an output port (to drive
column lines), insert a short program delay (a few
“dummy instructions”) before reading the input port (to
test the row lines.)

Example:
write to output port;
for (k = 0; k < 4; k++); //do-nothing loops for delay
read input port;

GPIO pin electronics - pull-up/pull-down control
 Use pull-up/down device to create a default logic state on a pin

 For inputs that are not always driven (or driven by open-collector/drain ckt)
 Often pull unused input pins high or low logic level to prevent CMOS latch-up

 STM32L1xx GPIO has internal pull-up/pull-down devices for each pin
 Activate via register GPIOn->PUPDR

32-bit register/2 bits per pin:
00: No pull-up or pull-down (reset state for all but PA[15:13], PB[4])
01: Activate pull-up
10: Activate pull-down

Example: Activate pull-up resistor on pin PA3
GPIOA->PUPDR &= ~0x000000C0; //clear bits 7-6 for PA3

GPIOA->PUPDR |= 0x00000040; //set bits 7-6 to 01 for PA3 pull-up

+V

Pin

Pull-
down

Pull-
up

31 30 7 6 5 4 3 2 1 0
Px0Px1Px2Px3Px15

 Generate an interrupt signal when any key is pressed
 Drive all columns low
 Logical “OR” active-low rows
 Any low row triggers IRQ#
 AND gate:

 Connect IRQ# to a GPIO pin, configured as EXTIn interrupt
 Configure EXTIn as falling-edge triggered and enable it in EXTI and NVIC
 Falling edge sets “pending” bits in EXTI and NVIC to trigger an interrupt
 Interrupt handler must clear the pending bit in EXTI
 Pending bit in NVIC is automatically cleared when the interrupt handler

is executed, but may set again if switch bouncing occurs!

See “bouncing” on next slide

Keypad interrupt signal - hardware

ABCDDCBA =+++

AND gate
(4082B)

+3v

Dealing with “key bounce”
 Mechanical switches often exhibit bouncing

 Multiple state changes during switch closure/opening
 Due to electrical arcing or mechanical settling of contacts

 Multiple state changes might trigger multiple interrupts, when only one interrupt is
desired/expected (the above could trigger 5 interrupts)

 Debouncing may be required to ensure a single response to a switch activation
Example: Interrupt triggered by initial state change. Delay until bouncing finished, and then
clear “pending registers” in both EXTI and NVIC.

EXTIx_IRQHandler() {
- do required operations for this interrupt
- delay at least Tbounce
- clear EXTI and NVIC “pending” bits for this interrupt

} //no more pending interrupts after exiting the handler

Tbounce

IRQ# signal

(Assume IRQ falling-edge-triggered)

Possible debugging test:
- Increment a variable in

the interrupt handler.
- Should increment

only once per button
press.

Observe/measure
Tbounce on oscilloscope

Tbounce

Discovery Board User Button (PA0) – “switch bounce”

“Bounce” on
button release

(1 -> 0)

0 -> 1 generally
looks “clean” on
button press.

“Bounce” on button release
produced two “rising edges”

~ 0.8
msec

Button press produced
a clean “rising edge”
earlier

Stable 0 after
button release

Hardware design
 Insert keypad into breadboard and connect microcontroller GPIO

pins to “devices” as shown below.
 In software - activate internal pull-up resistors on row lines

GPIO Pins Connected Devices

PB3-PB0 Keypad rows 4-1 (inputs)

PB7-PB4 Keypad columns 4-1 (outputs)

PC3-PC0 LEDs (outputs)

PA1 IRQ#

Other ports Additional LEDs for debug

Also: connect PB7-PB0 and PA1 to EEBOARD DIO pins and use
logic analyzer/oscilloscope to help debug connections and the
scanning algorithm.

Software design
 Review how to read/write I/O ports, set/clear/test bits, and set

up a GPIO pin to interrupt the CPU
 Main program

 Perform all initialization
 Run in a continuous loop, incrementing a one-digit decimal count

once per second, displayed on 4 LEDs
 Don’t display the count for 5 seconds following a key press, but do continue

counting while the key number is displayed
 Resume displaying the count after 5 seconds has elapsed

 Keypad interrupt handler (executed when key pressed)
 Determine which key was pressed
 Display the key number on the 4 LEDs
 Set a global variable so the main program will know to leave the key#

displayed for 5 seconds
 Perform any debouncing and clear pending flags

 Notes:
 After reading inputs from a port – mask all but the row bits
 Consider a “scan loop” rather than 16 “if” statements for detecting keys

(repeated operations)

Debug suggestions
 Observe one or more global variables in a Watch window

 Increment a variable in the ISR to count the number of times the ISR
is executed
 Indicates interrupt detected and ISR entered
 Detects multiple interrupts on one key press (due to “key bouncing”)

 Set a variable to the pressed key number
 Set a variable to values that represent steps of an algorithm

 A switch can be connected to PA1 instead of the keypad to
manually trigger interrupts to test the ISR

 The ISR can write some unique pattern to LED(s) to indicate that
it was entered

 Use the oscilloscope to investigate “key bounce” (trigger
oscilloscope on first interrupt signal).
 Is bouncing observed?
 How long does it last?

Debugging with a logic analyzer
Verify that scan algorithm executes properly in response to key press.

Trigger

	ELEC 3040/3050 �Lab 5
	Goals of this lab exercise
	Velleman 16-Key Matrix Keypad
	Matrix keypad circuit diagram
	“Scanning” the keypad
	Scan algorithm
	Example (C-2 driven low, R-2 detected low)
	Alternate (non-scan) method
	Timing issue
	GPIO pin electronics - pull-up/pull-down control
	Keypad interrupt signal - hardware
	Dealing with “key bounce”
	Slide Number 13
	Slide Number 14
	Hardware design
	Software design
	Debug suggestions
	Debugging with a logic analyzer

