
Lab 4 – Interrupt-driven operations

• Interrupt handling in Cortex-M CPUs
• Nested Vectored Interrupt Controller (NVIC)
• Externally-triggered interrupts via GPIO pins
• Software setup for interrupt-driven applications

Interrupt-driven operations
 An interrupt is an event that initiates the automatic transfer of

software execution from one program thread to an interrupt
handler

 Event types:
 Signal from a “device” (keyboard, timer, data converter, etc.)
 Device external to the CPU (possibly within a microcontroller)
 Signals that a device needs, or is able to provide service

(i.e. device goes from “busy” to “ready”)
 Asynchronous to the current program thread
 Allows CPU to do other work until device needs service!

 An internal event or “exception” caused by an instruction
Ex. invalid memory address, divide by 0, invalid op code

 A software interrupt instruction
Ex. ARM Cortex SVC (supervisor call) instruction

2

Interrupts in control systems
Continuous loop Loop with interrupts

Hardware
actions

Interrupt
signalmain

main

Interrupt
handler

1. Suspend main thread
2. Save CPU state
3. Execute interrupt handler
4. Restore CPU state
5. Resume main thread

Handling an interrupt request

1
2

3

5
4

CPU in
“Thread Mode”

CPU in
“Handler
Mode”

3

Cortex-M Interrupt Process
(much of this is transparent when using C)

1. Interrupt signal detected by CPU
2. Suspend main program execution

 finish current instruction
 save CPU state (push registers onto stack)
 set LR to 0xFFFFFFF9 (indicates interrupt return)
 set IPSR to interrupt number
 load PC with ISR address from vector table

3. Execute interrupt service routine (ISR)
 save other registers to be used 1
 clear the “flag” that requested the interrupt
 perform the requested service
 communicate with other routines via global variables
 restore any registers saved by the ISR 1

4. Return to and resume main program by executing BX LR
 saved state is restored from the stack, including PC

Pre-IRQ
top of stack

IRQ
top of stack

1 C compiler takes care of saving/restoring registers4

Special CPU registers

of current exception
(lower priority cannot interrupt)

PRIMASK = 1 prevents (masks) activation of all exceptions with configurable priority
PRIMASK = 0 permits (enables) exceptions

Use CMSIS1 functions to enable/disable interrupts
__enable_irq(); //enable interrupts (set PRIMASK=0)
__disable_irq(); //disable interrupts (set PRIMASK=1)

double-underscore

Processor Status Register (PSR)

Prioritized Interrupts Mask Register (PRIMASK)

1 Cortex Microcontroller Software Interface Standard – Functions for all ARM Cortex-M CPUs.
Automatically included in your project; defined in header files: core_cmFunc.h, core_cm3.h5

ALU flags

Prioritized, vectored interrupts

CPU

device 1 device 2 device n

V1 V2 .. Vn

interrupt
acknowledge interrupt

requests

• Interrupt controller: selects highest priority
request and notifies CPU

• Priority: which interrupt gets the CPU next?
• Interrupt number IRQx: x unique for each

device
• Interrupt vector Vx: address of interrupt

handler for device generating IRQx.
• arranged by interrupt # in a “Vector Table”

6

IRQ1 IRQ2 IRQn

Cortex-M CPU and peripheral exceptions
Priority1 IRQ#2 Notes

Reset -3 Power-up or warm reset

NMI -2 -14 Non-maskable interrupt from peripheral or software

HardFault -1 -13 Error during exception processing or no other handler

MemManage Config -12 Memory protection fault (MPU-detected)

BusFault Config -11 AHB data/prefetch aborts

UsageFault Config -10 Instruction execution fault - undefined instruction, illegal
unaligned access

SVCcall Config -5 System service call (SVC) instruction

DebugMonitor Config Break points/watch points/etc.

PendSV Config -2 Interrupt-driven request for system service

SysTick Config -1 System tick timer reaches 0

IRQ0 Config 0 Signaled by peripheral or by software request

IRQ1 (etc.) Config 1 Signaled by peripheral or by software request

1 Lowest priority # = highest priority
2 IRQ# used in CMSIS function calls

Vendor peripheral interrupts
IRQ0 .. IRQ44

AR
M

C
PU

Ex
ce

pt
io

ns

7

Interrupt
Table for
STM32L1xx
Peripherals

Tech. Ref.
Manual:
Table 48

Also - refer
to vector
table in
startup
code

External
interrupts

Timer
interrupts

8

IRQ6

STM32L1 vector table in startup code (partial)
__Vectors

DCD __initial_sp ; Pointer to top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler

……
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window WatchDog
DCD PVD_IRQHandler ; PVD via EXTI Line detection
DCD TAMP_STAMP_IRQHandler ; Tamper/TimeStamps via EXTI
DCD RTC_WKUP_IRQHandler ; RTC Wakeup via EXTI line
DCD FLASH_IRQHandler ; FLASH
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line0
DCD EXTI1_IRQHandler ; EXTI Line1
DCD EXTI2_IRQHandler ; EXTI Line2
DCD EXTI3_IRQHandler ; EXTI Line3
DCD EXTI4_IRQHandler ; EXTI Line4

Use these names
for your interrupt
handler functions

9

Interrupt signal: from device to CPU
In each peripheral device:
 Each potential interrupt source has a separate enable bit

 Set to enable the peripheral to send an interrupt signal to the CPU
 Clear to prevent the peripheral from interrupting the CPU

 Each potential interrupt source has a separate flag bit
 Flag set by hardware when an “event” occurs
 Interrupt request = (flag & enable)
 Test flag in software if interrupt not desired
 ISR software must clear the flag to acknowledge the request

Nested Vectored Interrupt Controller (NVIC)
 Receives all interrupt requests
 Each has an enable bit and a priority within the NVIC
 # of highest-priority enabled interrupt sent to the CPU

Within the CPU:
 Global interrupt enable bit in PRIMASK register
 Interrupt if priority of IRQ < that of current thread
 Access interrupt vector table with IRQ#

xIE xF

&

Enable Flag

IRQn

Peripheral Device
Registers:

CPU

PRIMASK

&

Interrupt

NVIC

10

(“Enabled” in three places)

n

Nested Vectored Interrupt Controller (NVIC)
 NVIC manages and prioritizes external interrupts in Cortex-M
 45 IRQ sources from STM32L1xx peripherals

 NVIC interrupts CPU with IRQ# of highest-priority IRQ signal
 CPU uses IRQ# to access the vector table & get intr. handler start address

11

NVIC setup: enable interrupts

 Each IRQ has its own enable bit within the NVIC
 NVIC only considers IRQs whose enable bits are set
 Interrupt Set Enable Register: each bit enables one interrupt
 CMSIS function: NVIC_EnableIRQ(n); //set bit n to enable IRQn

 Interrupt Clear Enable Register: each bit disables one interrupt
 CMSIS function: NVIC_DisableIRQ(n); //set bit n to disable IRQn

 For convenience, stm32l1xx.h defines symbols for each IRQn
Examples: EXTI0_IRQn = 6 ; //External interrupt EXTI0 is IRQ #6

TIM3_IRQn = 29 ; //Timer TIM3 interrupt is IRQ #29

Usage:
NVIC_EnableIRQ(EXTI0_IRQn); //enable external interrupt EXTI0
NVIC_DisableIRQ(TIM3_IRQn); //disable interrupt from timer TIM3

12

NVIC: interrupt pending flags

 Each IRQ has an interrupt pending flag within the NVIC
 Pending flag set by NVIC when it detects IRQn request, and IRQn status

changed to “pending”
 IRQn status changes to “active” when its interrupt handler is entered
 NVIC clears pending flag when handler exited, changing status to “inactive”

 If IRQn still active when exiting handler, or IRQn reactivates while executing the
handler, the pending flag remains set and triggers another interrupt
Avoid duplicate service by clearing IRQn pending flag in software:

CMSIS function: NVIC_ClearPendingIRQ(IRQn);

 Pending status can be checked:
 CMSIS function: NVIC_GetPendingIRQ(IRQn);

 Software can force IRQn into pending state to simulate an IRQn request
 CMSIS function: NVIC_SetPendingIRQ(IRQn);

13

NVIC: interrupt priorities

 Each IRQn assigned a priority within the NVIC
 NVIC selects highest-priority pending IRQ to send to CPU
 Lower priority# = higher priority (default value = 0)
 Higher priority interrupt can interrupt lower priority one
 Lower priority interrupt not sent to CPU until higher priority interrupt

service completed
 If equal priorities, lower IRQ# selected

 Priorities stored in NVIC Interrupt Priority Registers
 STM32L1xx uses 4-bit priority value (0..15)

(NVIC registers allocate 8 bits per IRQ#, but vendors may use fewer bits)

 Set priority via CMSIS function: NVIC_SetPriority(IRQn, priority);
Ex: NVIC_SetPriority(EXTI0_IRQn, 1); //set ext. intr. EXTI0 priority = 1

14

STM32L1xx external interrupt/event controller
• External devices can interrupt CPU via GPIO pins

(Some microcontrollers have dedicated interrupt pins)
• Up to 16 external interrupts (EXTI0-EXTI15), plus 7 internal events

External
interrupt
signal
(GPIO pin)

IRQ
to

NVIC

PR IMR RTSR FTSR

15

STM32L1xx external interrupt sources
(Select in System Configuration Module – SYSCFG)

Example: Select pin PC2 as external interrupt EXTI2
SYSCFG->EXTICR[0] &= 0xF0FF; //clear EXTI2 bit field
SYSCFG->EXTICR[0] |= 0x0200; //set EXTI2 = 2 to select PC2

SYSCFG_EXTICR1 is
SYSCFG->EXTICR[0]

15 12 11 8 7 4 3 0
EXTI3 EXTI2 EXTI1 EXTI0

• 16 multiplexers select GPIO pins as external interrupts EXTI0..EXTI15
• Mux inputs selected via 4-bit fields of EXTICR[k] registers (k=0..3)

• EXTIx = 0 selects PAx, 1 selects PBx, 2 selects PCx, etc.
• EXTICR[0] selects EXTI3-EXTI0; EXTICR[1] selects EXTI7-EXTI4, etc

16

STM32L1xx EXTI configuration registers
 Register bits 15-0 control EXTI15-EXTI0, respectively
 EXTI_RTSR/FTSR – rising/falling trigger selection register

 1 to enable rising/falling edge to trigger the interrupt/event
 0 to ignore the rising/falling edge

 EXTI_IMR – interrupt mask register
 1 enables (“unmasks”) the corresponding interrupt
 0 disables (“masks”) the interrupt

 EXTI_PR – interrupt pending register
 bit set to 1 by hardware if interrupt/event occurred (bit is readable)
 clear bit by writing 1 (writing 0 has no effect)
 interrupt handler must write 1 to this bit to clear the pending state of the

interrupt (to cancel the IRQn request)

Example: Configure EXTI2 as rising-edge triggered
EXTI->RTSR |= 0x0004; //Bit2=1 to make EXTI2 rising-edge trig.
EXTI->IMR |= 0x0004; //Bit2=1 to enable EXTI2
EXTI->PR |= 0x0004; //Bit2=1 to clear EXTI2 pending status

Clearing pending status needs to be done in the interrupt handler after every interrupt.17

Project setup for interrupt-driven applications
1. Write an interrupt handler for each peripheral

 Clear the flag that requested the interrupt (acknowledge the intr. request)
 Perform the desired action(s)

 communicate with other functions via shared global variables
 Use function names from the startup file vector table

Example: void EXTI4_IRQHandler () { statements }
2. Perform all initialization for each peripheral device:

 Initialize the device, “enable” its interrupt, and clear its “flag”
Example: External interrupt EXTIn
 Configure GPIO pin n as a digital input
 Select the pin as the EXTIn source (in SYSCFG module)
 Enable interrupt to be requested when a flag is set by the desired event (rising/falling edge)
 Clear the pending flag (to ignore any previous events)

 NVIC
 Enable interrupt: NVIC_EnableIRQ (IRQn);
 Set priority (if desired): NVIC_SetPriority (IRQn, priority);
 Clear pending status: NVIC_ClearPendingIRQ (IRQn);

3. Initialize counters, pointers, global variables, etc.
4. Enable CPU Interrupts: __enable_irq();

18 (diagram on next slide)

19

Lab experiment

20

 Main program displays two counting sequences on LEDs,
 First increases at period ½ second from 0-9 & repeat
 Second increases at period 1 second from 0-9 & repeat

 If user button (connected to PA0) pressed, interrupt the
main program and change count direction to decreasing

 If “Static IO” button (connect to PA1) pressed, interrupt
the main program and change count direction to increasing

(no change if new direction = old direction)
 Each interrupt should toggle one of the on-board LEDs
 Interrupt routines can set a global “direction” variable

	Lab 4 – Interrupt-driven operations
	Interrupt-driven operations
	Interrupts in control systems
	Cortex-M Interrupt Process�(much of this is transparent when using C)
	Special CPU registers
	Prioritized, vectored interrupts
	Cortex-M CPU and peripheral exceptions
	Slide Number 8
	STM32L1 vector table in startup code (partial)
	Interrupt signal: from device to CPU
	Nested Vectored Interrupt Controller (NVIC)
	NVIC setup: enable interrupts
	NVIC: interrupt pending flags
	NVIC: interrupt priorities
	STM32L1xx external interrupt/event controller
	STM32L1xx external interrupt sources�(Select in System Configuration Module – SYSCFG)
	STM32L1xx EXTI configuration registers
	Project setup for interrupt-driven applications
	Slide Number 19
	Lab experiment

