
Lab 10. Speed Control of a
D.C. motor

Speed Measurement:
Tach Amplitude Method
References: STM32L100 Data Sheet (pin definitions)

STM32L100 Ref. Manual (ADC, GPIO, Clocks)

Motor Speed Control Project
1. Generate PWM waveform
2. Amplify the waveform to drive the motor
3. Measure motor speed
4. Measure motor parameters
5. Control speed with a PID controller

Computer
System

12v dc
Motor Tachometer

Frequency to
Voltage

Analog to
Digital

Amplifier
9 v

Power
Supply

ac-to-dc

Lab 10

Typical analog input subsystem

input
transducer

signal
conditioning

sample
& hold

Analog to
digital conv.

Property1

Digital value

mux

input
transducer

signal
conditioning

Property2

input
transducer

signal
conditioning

PropertyN

select channel

…

STM32L1xx

16 channels,
12-bit ADC

convert “property” to
electrical voltage/current

produce convenient
voltage/current levels
over range of interest

hold value during conversion

convert analog value to digital #

Signal conditioning

 Produce noise-free signal over A/D converter
input range
 Convert AC signal to DC form

 Needed in this lab to measure tachometer signal amplitude

 Amplify/attenuate voltage/current levels
 Tachometer voltage might be > max ADC input range

 Bias (shift levels to desired range)
 Filter to remove noise
 Common mode rejection for differential signals
 Isolation/protection (optical/transformer)

STM32L100-Discovery : [0v to 3v]

Example: AC to DC conversion
(Envelope Detector)

V(t)

t

V(t)

t

V(t)

t

Unrectified

Full-wave
Rectified

Rectified &
Filtered

(May also choose half-wave rectified form – consider “ripple” in DC level)

V(t)

t

V(t)

t

V(t)

t

Unrectified

Half-wave
Rectified

Rectified &
Filtered

larger RC

smaller RC

Example: AC to DC conversion
(Envelope Detector)

Tach signal

Rectified
Rectified signal:
Is output “ripple”
acceptable?

Is the DC level
acceptable?

Rectifier FilterTach
signal

Signal
conditioning
to measure
tach signal
amplitude

Tach signal

Rectified

Rectified signal:
Is output “ripple”
acceptable?

Is the DC level
acceptable?

Rectifier

Filter
Tach
signalSignal conditioning

to measure tach
signal amplitude

Analog to digital conversion

 Given: continuous-time electrical signal
v(t), t >=0

 Desired: sequence of discrete numeric values that
represent the signal at selected sampling times :

v(0), v(T), v(2T),…v(nT)
 v(nT) = v(t) value measured at the nth sample time

 Quantized to one of 2k discrete levels
 Produces a k-bit number

 T = “sampling time”
 v(t) is “sampled” every T seconds
 Sampling frequency Fsample = 1/T

A/D conversion process
v(t)

t

T 2T 3T 4T 5T 6T 7T 1 2 3 4 5 6 7

v(t*)

t* n

v(nT)

Input signal

Sampled signal
(3/4)Vref

Sampled & Quantized

Sampled data sequence:
n= 1 2 3 4 5 6 7
d=10, 10, 10, 10, 11, 11, 11

binary data
v(nT) = (d/4)Vref

(2/4)Vref

(1/4)Vref

(0/4)Vref

1

2

3

A/D conversion parameters
 Sampling rate, F (sampling interval T = 1/F)

 Nyquist rate ≥ 2 x (highest frequency in the signal)
 to reproduce sampled signals
 CD-quality music sampled at 44.1KHz

(ear can hear up to about 20-22KHz)
 Voice in digital telephone sampled at 8KHz

 Precision (# bits in sample value)
 k = # of bits used to represent sample values
 “precision” = step size between values = (1/2k)×Vrange

Ex. Temperatures [-20OC…+60OC]:
If k=8, precision = 80OC/256 = 0.3125OC

 Accuracy = degree to which converter discerns proper
level (error when rounding to nearest level)

Sample-and-hold

 Required if A/D conversion is slow relative to frequency
of signal:
 Close switch to “sample” Vin (charge capacitor C to Vin)

 Aperture (sampling) time = duration of switch closure
 Open switch to “hold” Vin on C
 Sample time often

programmable.

converterVin
C

Want ∆signal < ½ LSB

Digital to analog conversion

R-2R Ladder
Network

(Reference)

Equivalent
resistance = R I/2n+1

Equivalent
resistance = R

Current to
voltage
conversion

Number = bnbn-1…b1b0 = bn*2n + bn-1*2n-1 + …. + b1*21 + b0*20 = IO

Successive approximation analog to
digital converter (ADC)

1. Successive Approximation Register
(SAR) sets DN-1 = 1

2. SAR outputs DN-1 … D0, converted
by DAC to analog VDAC

3. VDAC is compared to VIN
4. Comparator output resets DN-1 to 0

in SAR if VDAC < VIN
5. Repeat 1-4 for DN-2 … D0

(one clock period per bit)

• Final SAR value DN-1 … D0 is
digital representation of VIN

End of
conversion

VIN captured in S/H

VDAC

• Determine one bit at a time, from MSB to LSB
Used in most microcontrollers (low cost)

VIN

Output

STM32L100RC Analog to Digital Converter
 Successive approximation ADC
 Input range: VREF- ≤ VIN ≤ VREF+ (3.6 v max)

 Discovery Board: VREF+ = VDDA pin, hard-wired to VDD (+3v)
VREF- = VSSA pin, hard-wired to GND (0v)

 Selectable resolution: 12, 10, 8, or 6 bits (default=12)
 TCONVERT = 12, 11, 9, 7 clock cycles, respectively

 Programmable sampling time TSAMPLE = 4 to 384 clock cycles
 Minimum conversion time 1µs (TSAMPLE + TCONVERT)
 22 input channels

 GPIO pins: ADC_IN[0:15], ADC_IN[18:21] - on designated GPIO pins
 Temperature sensor & voltage reference: ADC_IN[16:17]

 Single or continuous conversions
 Scan mode for conversion of multiple channels
 Interrupt at end of conversion or end of sequence
 Trigger conversions with software or hardware (timers/EXTI)

ADC System Components

Analog
inputs

ADC

Clock

Data register

Reference
voltage

Channel
selection Trigger

Using the ADC
 Setup

 Connect voltage reference (hard-wired to 3v on Discovery)
 Configure GPIO pin (select analog mode in MODER)
 Enable HSI clock (for ADC conversion)
 Enable ADC digital interface clock
 Enable ADC
 Select data format
 Select sample trigger source
 Select input channel(s)
 Select conversion mode

 Trigger conversion
 Read results
 Adjust results as needed (calibrate, average, etc.)

ADC initialization
 Configure GPIO pin(s) as analog signals

 Refer to Pin Definition Table in STM32L100 data sheet to determine
which GPIO pins correspond to ADC_IN0..ADC_IN21
 Example: GPIOA pins PA0 - PA7 = ADC_IN0 - ADC_IN7, respectively

 Enable GPIOx clock in RCC->AHB1ENR
 Select analog mode in GPIOx->MODER (disables pull-up/down resistors)

 Enable HSI clock in RCC->CR, which runs ADC conversions
 RCC->CR |= RCC_CR_HSION; //HSION = bit 0 of RCC->CR

 Enable ADC1 clock in RCC->APB2ENR (for ADC digital interface)
 Power up the ADC

 Set ADON bit in ADC1->CR2 (control register 2)
 Wait until ADONS = 1 in ADC1->SR (takes 3.5 - 4 µsec)
 For power efficiency, shut off the ADC when not used

 Configure ADC options (data format, conversion mode, etc.)

Data format

 16-bit data register: ADC1->DR
 Read as a 16-bit unsigned variable

 Data resolution can be 12, 10, 8 or 6 bits
 Select via RES bits in ADC1->CR1 (default RES = 00 => 12 bits)
 12-10-8-6 bits take 12-11-9-7 clock cycles, respectively, to convert

(trade off resolution for speed)
 Data can be left or right-aligned within the data register

 Select via ALIGN bit in ADC1->CR2
 Right alignment (ALIGN = 0): 0000dddddddddddd (default)
 Left alignment (ALIGN = 1): dddddddddddd0000

Conversion modes
 Single conversion (default: SCAN=0 in CR1, CONT=0 in CR2)

 Select an input channel (SQ1 field in in ADC1->SQR5)
 Start the conversion (software start or hardware trigger)
 EOC sets when conversion is complete
 Read the result in the DR

 Scan mode (enable with SCAN=1 in CR1)
 Perform a sequence of conversions of designated input channels

 Define sequence length in ADC1->SQR1
 Select channels in ADC1->SQR1…ADC1->SQR5 (channels can be in any order)

 Start the conversion sequence (software start or hardware trigger)
 EOC sets after each conversion (EOCS = 0) or after the entire sequence is

complete (EOCS = 1). (EOCS in ADC1->CR2)

 Continuous mode (enable with CONT=1 in CR2)
 Start 1st conversion/sequence (software start or hardware trigger)
 Next conversion/sequence starts automatically after a conversion/sequence

completes

ADC timing

ADC stabilizes

sample + convert End conversion,
DR ready

Set in CR2

Turn on ADC in CR2

In SR: ADC ready

Power
on

Data
sample

ADC conversion time

 Total conversion time = Tsampling + Tconversion
 Tconversion = 12/11/9/7 cycles for 12/10/8/6 bit resolution
 Tsampling = sampling time, specified for each channel

 Options: 4, 9, 16, 24, 48, 96, 192, 384 clock cycles
 3-bit value SMPn[2:0] sets sample time for channel n

 ADC1->SMPR3 configures channels 9-0
 ADC1->SMPR2 configures channels 19-10
 ADC1->SMPR1 configures channels 29-20

Example: Fastest conversion rate for 12-bit data
fADCCLK = 16MHz; min Tsampling = 4; max res. = 12 bits
Ttotal = (4 + 12)/16MHz = 1us (1 Msamples/sec)

Example: Set Tsampling = 24 clock cycles for ADC_IN8

ADC1->SMPR3 (reset value = 0x00000000)

SMPx[2:0]: Channel x Sample time selection (# clock cycles)
000: 4 cycles, 010: 16 cycles, 100: 48 cycles, 110: 192 cycles
010: 9 cycles, 011: 24 cycles, 101: 96 cycles, 111: 384 cycles

Default is 4 cycles for each channel

// Set sample time for ADC_IN8 to 24 cycles
ADC1->SMPR3 &= ~ADC_SMPR3_SMP8; //Clear SMP8 bits*
ADC1->SMPR3 |= 0x03000000; //SMP8 = 3

*ADC_SMPR3_SMP8 = 0x03000000

ADC control register 1 (ADC1->CR1)

RES[1:0]: resolution
00: 12-bit, TCONV = 12 cycles
01: 10-bit, TCONV = 11 cycles
10: 8-bit, TCONV = 9 cycles
11: 6-bit, TCONV = 7 cycles

EOCIE: end of conversion
interrupt enable:

0: disable the interrupt
1: enable ADC interrupt

when EOC sets

Reset value = 0x0000 0000 (bold values below)

SCAN: enable scan mode
0: disable Scan mode
1: enable Scan mode

(convert inputs selected in ADC_SQRx)

Default setup:
• 12-bit sample
• single channel (no scan)
• no interrupt

ADC control register 2 (ADC1->CR2)

ADON: Turn ADC on/off
0: Disable ADC
1: Enable ADC

CONT:
0: single conversion mode
1: continuous conversion mode

SWSTART: Software “start” signal
Write 1 to start conversion
Resets when conversion starts

ALIGN: Data alignment in 16-bit result register
0: Right alignment (upper bits = 0)
1: Left alignment (lower bits = 0)

EOCS: End of conversion selection
0: EOC bit set at end of conversion sequence
1: EOC bit set at end of each conversion

Reset value = 0x0000 0000

//Turn on ADC
ADC1->CR2 |= 1;

ADC status register (ADC1->SR)

Other status bits:
RCNR: Regular Channel Not Ready

1 = Regular conversion can be done
HW sets/clears

EOC: End of Conversion
1 = Conversion complete (if EOCS = 0)

Sequence complete (if EOCS = 1)
Set by HW.
Clear by SW or by reading DR

//Wait for end of conversion (EOC=1)
while ((ADC1->SR & 0x02) == 0);

ADONS: ADC ON state
1 = ADC ready to convert
Set/cleared by HW

STRT: Start status
1 = Regular channel conversion

has started
HW sets/clears

OVR: Overrun detected
1 = Regular conversion data lost

(DR overwritten before read)
Clear in SW

Channel Selection
 Sequence of conversions (up to 28) can

be done on any channel(s), in any order
 Specify #conversions in sequence via

L[4:0] bits in the ADC1->SQR1 register
 Default is one conversion (L = 0)

 Specify channels in seq. by configuring
the ADC1_SQRx sequence registers
 ADC1->SQR5: conversions 1-6
 ADC1->SQR4: conversions 7-12
 ADC1->SQR3: conversions 13-18
 ADC1->SQR2: conversions 19-24
 ADC1->SQR1: conversions 25-28
 In these registers, bits SQn[4:0] select

channel # for the nth conversion in the
sequence.

 For single-channel conversion, specify
channel # in SQ1 of ADC1->SQR5

• ADC_IN16 connected to internal
temperature sensor

• ADC_IN17 connected to internal
reference voltage VREFINT

Example on next slide

Example: Select single conversion of ADC_IN8

ADC1->SQR1 (reset value = 0x00000000)

#conversions in the sequence = L+1 (default L=0 selects a single conversion)
ADC1->SQR1 &= ~ADC_SQR1_L; //set L=0 (ADC_SQR1_L = 0x01F00000)
(but - not really necessary, since L=0 is the default)

ADC1->SQR5 (reset value = 0x00000000)

SQ1=x selects ADC_INx as first channel in a sequence
ADC1->SQR5 &= ~ADC_SQR5_SQ1; //clear SQ1 bits (ADC_SQR5_SQ1 = 0x0000001F)
ADC1->SQR5 |= 0x00000008; //SQ1=8 for ADC_IN8

Conversion Trigger Selection
(configure in ADC1->CR2)

 Software trigger:
//Set SWSTART bit to 1
ADC->CR2 |= ADC_CR2_SWSTART;

(0x40000000)

 External trigger
 Select trigger detection mode

via EXTEN bits (rising and/or
falling edge of trigger)

 Specify the trigger source via
EXTSEL bits
Ex. EXTSEL = 0111 for

TIM3_CC1 event

Using the ADC (summary)
 Setup

 Connect voltage reference (hard-wired to 3v on Discovery)
 Configure GPIO pin (select analog mode in MODER, turn on GPIO clk)
 Enable HSI clock for ADC conversion (RCC->CR)
 Enable ADC digital interface clock (RCC-<APB2ENR)
 Power on ADC (CR2)
 Select data format (CR1,CR2)
 Select conversion mode (CR1,CR2)
 Select sample time (SMPR3)
 Select input channel(s) (SQR1,SQR5)

 Trigger conversion (Software: CR2, or External: CR2)
 Read results (DR)
 Adjust results as needed (calibrate, average, etc.)

Working with ADC data samples

𝐴𝐴𝐴𝐴𝐴𝐴𝐴 → 𝐷𝐷𝐷𝐷 =
𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

× 2#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 Several conversions may be needed
 Average several samples of N to filter out noise
 Compute approximate input voltage Vin from N
 For a sensor, use sensor’s transfer function to compute the physical

parameter value (e.g. pressure) from Vin
 Do additional computations based on this physical parameter (e.g. compute

depth based on pressure)
 Convert data to some other form (eg. ASCII characters, to send to a display)

 Numeric considerations
 Consider resolution of measured data (eg. 12 bits) vs resolution of other data

involved in calculations
 Consider measurement errors in the ADC
 Some program data may be in floating-point format

Lab Procedure
 Design and incorporate a rectifier & filter into your circuit to

convert the tachometer output to a DC voltage level
 Model in PSPICE to verify design.
 Measure tachometer signal and rectifier/filter output with o’scope.
 EEBoard waveform generator can be used to test the circuit without

the motor.

 Modify software to add ADC initialization function and ADC input
function (trigger conversion, wait for EOC, read result)
 Consider averaging some # of samples
 EEBoard waveform generator can be used to test the circuit without

the motor.

 Measure: tachometer signal amplitude, rectifier/filter voltage
output & ADC value for each of the 10 speed settings

 Plot:
 ADC value vs tachometer output amplitude
 ADC value vs. ATD input voltage (rectifier/filter output)
 ADC value vs. PWM signal duty cycle

	Lab 10. Speed Control of a D.C. motor
	Motor Speed Control Project
	Typical analog input subsystem
	Signal conditioning
	Example: AC to DC conversion�(Envelope Detector)
	Example: AC to DC conversion�(Envelope Detector)
	Slide Number 7
	Slide Number 8
	Analog to digital conversion
	A/D conversion process
	A/D conversion parameters
	Sample-and-hold
	Digital to analog conversion
	Successive approximation analog to digital converter (ADC)
	STM32L100RC Analog to Digital Converter
	ADC System Components
	Using the ADC
	ADC initialization
	Data format
	Conversion modes
	ADC timing
	ADC conversion time
	Example: Set Tsampling = 24 clock cycles for ADC_IN8
	ADC control register 1 (ADC1->CR1)
	ADC control register 2 (ADC1->CR2)
	ADC status register (ADC1->SR)
	Channel Selection
	Example: Select single conversion of ADC_IN8
	Conversion Trigger Selection �(configure in ADC1->CR2)
	Using the ADC (summary)
	Working with ADC data samples
	Lab Procedure

