
Interrupt-Driven Input/Output on the
STM32F407 Microcontroller

Textbook: Chapter 11 (Interrupts)

ARM Cortex-M4 User Guide (Interrupts, exceptions, NVIC)
Sections 2.1.4, 2.3 – Exceptions and interrupts
Section 4.2 – Nested Vectored Interrupt Controller

STM32F4xx Tech. Ref. Manual:
Chapter 8: External interrupt/wakeup lines
Chapter 9: SYSCFG external interrupt config. registers

Outline

2

 Interrupt vectors and vector table
 Interrupt masks and priorities
 Cortex Nested Vectored Interrupt Controller (NVIC)
 STM32F4 external interrupt signals (EXTI0 – EXTI15)
 System design when interrupts used

Prioritized, vectored interrupts

CPU

device 1 device 2 device n

V1 V2 .. Vn

interrupt
acknowledge

interrupt
requests

• Interrupt vectors determine what function is
executed for each type of interrupt request.

• Vector = address of interrupt handler
• Vectors arranged by interrupt # in the

“Vector Table”

• Priorities determine what interrupt gets the
CPU first.

3

Interrupt vectors
 Interrupt vector = address of handler function
 Allow different devices to be handled by different code.

 Interrupt vector table:
 Directly supported by CPU architecture and/or
 Supported by a separate interrupt-support device/function

address of handler 0
address of handler 1
address of handler 2
address of handler 3

Interrupt
vector table

head

4

Cortex-M CPU and peripheral exceptions
Priority1 IRQ#2 Notes

Reset -3/fixed Power-up or warm reset

NMI -2/fixed -14 Non-maskable interrupt from peripheral or software

HardFault -1/fixed -13 Error during exception processing or no other handler

MemManage 0/settable -12 Memory protection fault (MPU-detected)

BusFault 1/settable -11 AHB data/prefetch aborts

UsageFault 2/settable -10 Instruction execution fault - undefined instruction, illegal
unaligned access

SVCcall 3/settable -5 System service call (SVC) instruction

DebugMonitor 4/settable Break points/watch points/etc.

PendSV 5/settable -2 Interrupt-driven request for system service

SysTick 6/settable -1 System tick timer reaches 0

IRQ0 7/settable 0 Signaled by peripheral or by software request

IRQ1 (etc.) 8/settable 1 Signaled by peripheral or by software request

1 Lowest priority # = highest priority
2 IRQ# used in CMSIS function calls

Vendor peripheral interrupts
IRQ0 .. IRQ44

C
PU

 E
xc

ep
tio

ns

5

STM32F4xx
Peripherals:
Interrupt
Vector Table

Tech. Ref.
Manual:
Table 43

Also - refer
to startup
code

External
interrupts

Timer
interrupts

6

STM32F4 vector table from startup code (partial)
__Vectors

DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler

……
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window WatchDog
DCD PVD_IRQHandler ; PVD via EXTI Line detection
DCD TAMP_STAMP_IRQHandler ; Tamper/TimeStamps via EXTI
DCD RTC_WKUP_IRQHandler ; RTC Wakeup via EXTI line
DCD FLASH_IRQHandler ; FLASH
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line0
DCD EXTI1_IRQHandler ; EXTI Line1
DCD EXTI2_IRQHandler ; EXTI Line2
DCD EXTI3_IRQHandler ; EXTI Line3

Use these names
for interrupt
handler functions7

Prioritized interrupts

• Up to 256 priority levels
• 8-bit priority value
• Implementations may use fewer bits

STM32F4xx uses upper 4 bits of each
priority byte => 16 levels

• NMI & HardFault priorities are fixed
• Lowest # = Highest priority8

Special CPU registers

of current exception
(lower priority cannot interrupt)

PRIMASK = 1 prevents (masks) activation of all exceptions with configurable priority
PRIMASK = 0 permits (enables/unmasks) exceptions

Special Cortex-M Assembly Language Instructions
CPSIE I ;Change Processor State/Enable Interrupts (sets PRIMASK = 0)
CPSID I ;Change Processor State/Disable Interrupts (sets PRIMASK = 1)

CMSIS1 C functions to clear/set PRIMASK
__enable_irq(); //enable interrupts (set PRIMASK=0)
__disable_irq(); //disable interrupts (set PRIMASK=1)
(double-underscore at beginning)

Processor Status Register (PSR)

Prioritized Interrupts Mask Register (PRIMASK)

1 Cortex Microcontroller Software Interface Standard – Functions for all
ARM Cortex-M CPUs, defined in project header files: core_cmFunc.h, core_cm3.h

PRIMASK

9

Interrupt Program Status Register (ISPR)

10

No active interrupt

User (vendor) interrupts IRQ0 – IRQ239

Cortex CPU interrupts

ARM Cortex-M Interrupts
In the Device:
 Each potential interrupt source has a separate arm (enable) bit

 Set for those devices from which interrupts, are to be accepted
 Deactivate in those devices from which interrupts are not allowed

 Each potential interrupt source has a separate flag bit
 hardware sets the flag when it wishes to request an interrupt (an “event” occurs)
 software clears the flag in ISR to signify it is processing the request
 flags can be tested by software if interrupts not desired

In the CPU:
 Cortex-M CPUs receive interrupt requests via the Nested Vectored

Interrupt Controller (NVIC)
 NVIC sends highest priority request to the CPU

 Interrupt enable conditions in processor
 Global interrupt enable bit, I, in PRIMASK register
 Priority level, BASEPRI, of allowed interrupts (0 = all)

SIE SF

&

Enable Flag

Interrupt
Request

Peripheral Device
Registers:

CPU

PRIMASK

&

Interrupt

NVIC

11

Interrupt Conditions
 Four conditions must be true simultaneously for an interrupt to occur:

1. Trigger: hardware action sets source-specific flag in the peripheral device
2. Arm: control bit for each possible source is set within the peripheral device
3. Level: interrupt level must be less than BASEPRI (base priority)
4. Enable: interrupts globally enabled in CPU (I=0 in PRIMASK)

 Interrupt remains pending if trigger is set but any other condition is
not true
 Interrupt serviced once all conditions become true

 Need to acknowledge interrupt
 Clear trigger flag to prevent endless interrupts!

12

Nested Vectored Interrupt Controller
 NVIC manages and prioritizes external interrupts in Cortex-M
 82 IRQ sources from STM32F4xx peripherals

 NVIC interrupts CPU with IRQ# of highest-priority IRQ signal
 CPU uses IRQ# to access the vector table & get intr. handler start address

13

Nested Vectored Interrupt Controller (NVIC)

 Hardware unit that coordinates interrupts from multiple sources
 Separate enable flag for each interrupt source
 Set/clear via NVIC_ISERx/ICERx registers

 Separate priority level for each interrupt source
 Define in NVIC_IPRx registers

 Set/clear interrupts to/from pending state
 Pending state entered when interrupt request detected
 Pending state cleared automatically when ISR complete, unless subsequent interrupt

request detected while in the ISR
 Manually set/clear pending state via NVIC_ISPRx/ICPRx registers
 Can also trigger interrupts through software if desired

 Higher priority interrupts can interrupt lower priority ones
 Lower priority interrupts are not sent to the CPU until higher priority

interrupt service has been completed

14

Nested Vectored Interrupt Controller (NVIC)

 Each interrupt source is in one of four states
 Inactive – no interrupt service requested or in progress
 Pending – interrupt request latched by NVIC; not yet serviced by CPU
 Become pending if interrupt signal HIGH and interrupt not active
 Also become pending if rising edge detected on interrupt signal

 Active – interrupt service by CPU is in progress
 State changes from Pending to Active when CPU enters the ISR
 State changes from Active to Inactive when CPU exits the ISR, unless:
 State changes from Active to Pending if interrupt signal still HIGH when CPU exits

the ISR or if state is “Pending and Active” (can re-enter the ISR)
 Pending and Active – new interrupt request detected (rising edge or

pulse) while CPU is servicing a previous request (IRQ can be re-
entered)

15

NVIC Interrupt Enable Registers
 Three “set interrupt enable” registers –
NVIC_ISER0 , NVIC_ISER1 , NVIC_ISER2
 One “enable” bit per IRQ - with 32 per register
 Write 1 to a bit to set the corresponding interrupt enable bit
 Writing 0 has no effect

 Three corresponding “clear interrupt enable” registers
NVIC_ICER0 , NVIC_ICER1 , NVIC_ICER2
 Write 1 to clear the interrupt enable bit (disable the interrupt)
 Writing 0 has no effect

Registers IRQ numbers Interrupt numbers

NVIC_ISER0/NVIC_ICER0 0-31 16-47

NVIC_ISER1/NVIC_ICER1 32-63 48-79

NVIC_ISER2/NVIC_ICER2 64-95 80-111

16

NVIC Set-Clear Pending Registers
 Three interrupt “clear-pending” registers –
NVIC_ICPR0, NVIC_ICPR1, NVIC_ICPR2
 One “pending” flag for each IRQ (32 in each register)
 Write 1 to a bit to remove a pending state from an interrupt
 Writing 0 has no effect

 Pending state normally cleared automatically when the processor
enters the interrupt handler (ISR)

 If interrupt signal still active when CPU returns from the ISR, the state changes to
pending again (new interrupt triggered)

 If interrupt signal pulses while CPU is in the ISR, the state changes to pending
again (new interrupt triggered)

 Three corresponding interrupt “set-pending” registers
NVIC_ISPR0 , NVIC_ISPR1, NVIC_ISPR2
 Write 1 to force the interrupt state to pending
 Writing 0 has no effect17

NVIC interrupt priority registers
Interrupt Priority Registers NVIC_IPRx (x=0..20)
 8-bit priority field for each interrupts (4-bit field in STM32F4)
 Four 8-bit priority values per register
 STMicroelectronics uses upper 4 bits of each byte
 0 = highest priority level
 IPR Register# x = IRQ# DIV 4
 Byte offset within the IPR register = IRQ# MOD 4
Example: IRQ45

 45/4 = 11 with remainder 1 (register NVIC_IPR11, byte offset 1)

Write priority<<8 to NVIC_IPR11

 45/32 = 1 with remainder 13:
Write 1<<13 to NVIC_ISER1 to enable the interrupt

18

byte 3 byte 2 byte 1 byte 0

NVIC register addresses

19

NVIC_ISER0/1/2 = 0xE000E100/104/108
NVIC_ICER0/1/2 = 0xE000E180/184/188
NVIC_ISPR0/1/2 = 0xE000E200/204/208
NVIC_ICPR0/1/2 = 0xE000E280/284/288
NVIC_IPR0/1/2/…/20 = 0xE00E400/404/408/40C/…./500

;Example – Enable EXTI0 with priority 5 (EXTI0 = IRQ6)
NVIC_ISER0 EQU 0xE000E100 ;bit 6 enables EXTI0
NVIC_IPR1 EQU 0xE000E404 ;3rd byte = EXTI0 priority

ldr r0,=NVIC_ISER0
mov r1,#0x0040 ;Set bit 6 of ISER0 for EXTI0
str r1,[r0]
ldr r0,=NVIC_IPR1 ;IRQ6 priority in IPR1[23:16]
ldr r1,[r0] ;Read IPR1
bic r1,#0x00ff0000 ;Clear [23:16] for IRQ6
orr r1,#0x00500000 ;Bits [23:20] = 5
str r1,[r0] ;Upper 4 bits of byte = priority

CMSIS1 functions
 NVIC_Enable(IRQn_Type IRQn)
 NVIC_Disable(IRQn_Type IRQn)
 NVIC_SetPending(IRQn_Type IRQn)
 NVIC_ClearPending(IRQn_Type IRQn)
 NVIC_GetPending(IRQn_Type IRQn)
 NVIC_SetPriority(IRQn_Type IRQn,unit32_t priority)
 NVIC_GetPriority(IRQn_Type IRQn)

1CMSIS = Cortex Microcontroller Software Interface Standard
 Vendor-independent hardware abstraction layer for Cortex-M
 Facilitates software reuse
 Other CMSIS functions: System tick timer, Debug interface, etc.

20

STM32F4xx external interrupt/event controller
• External devices can interrupt CPU via GPIO pins

(Some microcontrollers have dedicated interrupt pins)
• Up to 16 external interrupts (EXTI0-EXTI15), plus 7 internal events

External
interrupt
signal
(GPIO pin)

IRQ
to

NVIC

PR IMR RTSR FTSR

21

STM32F4xx external interrupt sources
(select in System Configuration Module – SYSCFG)

Example: Select pin PC2 as external interrupt EXTI2
SYSCFG->EXTICR[0] &= 0xF0FF; //clear EXTI2 bit field
SYSCFG->EXTICR[0] |= 0x0200; //set EXTI2 = 2 to select PC2

SYSCFG_EXTICR1 is
SYSCFG->EXTICR[0]

15 12 11 8 7 4 3 0
EXTI3 EXTI2 EXTI1 EXTI0

• 16 multiplexers select GPIO pins as external interrupts EXTI0..EXTI15
• Mux inputs selected via 4-bit fields of EXTICR[k] registers (k=0..3)

• EXTIx = 0 selects PAx, 1 selects PBx, 2 selects PCx, etc.
• EXTICR[0] selects EXTI3-EXTI0; EXTICR[1] selects EXTI7-EXTI4, etc

22

STM32L1xx EXTI configuration registers
 Register bits 15-0 control EXTI15-EXTI0, respectively
 EXTI_IMR – interrupt mask register
 1 unmasks (enables) the corresponding interrupt
 0 masks (disables) the interrupt

 EXTI_RTSR/FTSR – rising/falling trigger selection register
 1 to enable rising/falling edge to trigger the interrupt/event
 0 to ignore the rising/falling edge

 EXTI_PR – interrupt pending register
 bit set to 1 by hardware if interrupt/event occurred (bit is readable)
 clear bit by writing 1 (writing 0 has no effect)
 interrupt handler must write 1 to this bit to clear the pending state of the

interrupt (to cancel the IRQn request)

Example: Configure EXTI2 as rising-edge triggered
EXTI->RTSR |= 0x0004; //Bit2=1 to make EXTI2 rising-edge trig.
EXTI->IMR = 0x0004; //Bit2=1 to enable EXTI2
EXTI->PR |= 0x0004; //Bit2=1 to clear EXTI2 pending status

Clearing pending status needs to be done in the interrupt handler after every interrupt.23

24

;System Configuration Registers
SYSCFG EQU 0x40013800
EXTICR1 EQU 0x08
;External Interrupt Registers
EXTI EQU 0x40013C00
IMR EQU 0x00 ;Interrupt Mask Register
RTSR EQU 0x08 ;Rising Trigger Select
FTSR EQU 0x0C ;Falling Trigger Select
PR EQU 0x14 ;Pending Register

;select PC0 as EXTI0
ldr r1,=SYSCFG ;SYSCFG selects EXTI sources
ldrh r2,[r1,#EXTICR1] ;EXTICR1 = sources for EXTI0 - EXTI3
bic r2,#0x000f ;Clear EXTICR1[3-0] for EXTI0 source
orr r2,#0x0002 ;EXTICR1[3-0] = 2 to select PC0 as EXTI0 source
strh r2,[r1,#EXTICR1] ;Write to select PC0 as EXTI0
;configure and enable EXTI0 as rising-edge triggered
ldr r1,=EXTI ;EXTI register block
mov r2,#1 ;bit #0 for EXTI0 in each of the following registers
str r2,[r1,#RTSR] ;Select rising-edge trigger for EXTI0
str r2,[r1,#PR] ;Clear any pending event on EXTI0
str r2,[r1,#IMR] ;Enable EXTI0

Example: Enable EXTI0 as rising-edge triggered,
selecting PC0 as EXTI0.

Interrupt Rituals
 Things you must do in every ritual
 Initialize data structures (counters, pointers)
 Arm interrupt in the peripheral device
 Enable a flag to trigger an interrupt (ex. IMR of the EXTI module)
 Clear the flag (to ignore any previous events) (ex. PR of the EXTI module)

 Configure NVIC
 Enable interrupt (set bit of NVIC_ISERx)
 Set priority (set bits of NVIC_IPRx)

 Enable CPU Interrupts
 Assembly code CPSIE I
 C code EnableInterrupts();

25

Project setup for interrupt-driven applications
 Write the interrupt handler for each peripheral

 Clear the flag that requested the interrupt (acknowledge the intr. request)
 Perform the desired actions, communicating with other functions via shared global

variables
 Use function names from the vector table

Example: void EXTI4_IRQHandler () { statements }
 Perform all initialization for each peripheral device:

 Initialize the device, “arm” its interrupt, and clear its “flag”
Example: External interrupt EXTIn
 Configure GPIO pin as a digital input
 Select the pin as the EXTIn source (in SYSCFG module)
 Enable interrupt to be requested when a flag is set by the desired event (rising/falling edge)
 Clear the pending flag (to ignore any previous events)

 NVIC
 Enable interrupt: NVIC_EnableIRQ (IRQn);
 Set priority: NVIC_SetPriority (IRQn, priority);
 Clear pending status: NVIC_ClearPendingIRQ (IRQn);

 Initialize counters, pointers, global variables, etc.
 Enable CPU Interrupts: __enable_irq();

26 (diagram on next slide)

27

Interrupt Service Routine (ISR)

 Interrupt service routine (interrupt handler) name must be in
the interrupt vector table (ex. EXTI0_IRQHandler)

 Things you must do in every interrupt service routine
 Acknowledge
 clear the flag that requested the interrupt (ex. PR of EXTI module)
 SysTick is exception; automatic acknowledge

 Save/restore contents of R4-R11, if used. (AAPCS)
 Perform the requested service
 Communicate via shared global variables

28

Sources of interrupt “overhead”

 Handler execution time.
 Interrupt mechanism overhead.
 Register save/restore.
 Pipeline-related penalties (advanced processors).
 Cache-related penalties (advanced processors).
 Interrupt “latency” = time from activation of interrupt signal until

event serviced.
 ARM worst-case latency to respond to interrupt is 27 cycles:
 2 cycles to synchronize external request.
 Up to 20 cycles to complete current instruction (worst are LDM/STM).
 3 cycles for data abort.
 2 cycles to enter interrupt handling state.

29

	Interrupt-Driven Input/Output on the STM32F407 Microcontroller
	Outline
	Prioritized, vectored interrupts
	Interrupt vectors
	Cortex-M CPU and peripheral exceptions
	Slide Number 6
	STM32F4 vector table from startup code (partial)
	Prioritized interrupts
	Special CPU registers
	Interrupt Program Status Register (ISPR)
	ARM Cortex-M Interrupts
	Interrupt Conditions
	Nested Vectored Interrupt Controller
	Nested Vectored Interrupt Controller (NVIC)
	Nested Vectored Interrupt Controller (NVIC)
	NVIC Interrupt Enable Registers
	NVIC Set-Clear Pending Registers
	NVIC interrupt priority registers
	NVIC register addresses
	CMSIS1 functions
	STM32F4xx external interrupt/event controller
	STM32F4xx external interrupt sources�(select in System Configuration Module – SYSCFG)
	STM32L1xx EXTI configuration registers
	Example: Enable EXTI0 as rising-edge triggered,�	 selecting PC0 as EXTI0.
	Interrupt Rituals
	Project setup for interrupt-driven applications
	Slide Number 27
	Interrupt Service Routine (ISR)
	Sources of interrupt “overhead”

