
Interrupt-Driven Input/Output

1

Textbook: Chapter 11 (Interrupts)

ARM Cortex-M4 User Guide (Interrupts, exceptions, NVIC)
Sections 2.1.4, 2.3 – Exceptions and interrupts
Section 4.2 – Nested Vectored Interrupt Controller

STM32F4xx Tech. Ref. Manual:
Chapter 8: External interrupt/wakeup lines
Chapter 9: SYSCFG external interrupt config. registers

Interrupt-driven operations
 An interrupt is an event that initiates the automatic transfer of

software execution from one program thread to an interrupt
handler (or interrupt service routine)

 Event types:
 Signal from a “device” (keyboard, data converter, etc.)
 Device external to the CPU (possibly within a microcontroller)
 Signals that a device needs, or is able to provide service

(i.e. device goes from “busy” to “ready”)
 Asynchronous to the current program thread
 Allow CPU to do other work until device needs service!

 An internal event or “exception” caused by an instruction
Ex. invalid memory address, divide by 0, invalid op code

 A software interrupt instruction
Ex. ARM Cortex SVC (supervisor call) instruction

2

Interrupt I/O
 Busy/wait very inefficient.
CPU can’t do other work while testing device.
Hard to do simultaneous I/O.
 But – OK if the CPU has nothing else to do, or if the

program cannot otherwise continue
 An interrupt handler is executed if, and only if, a

device requires service

Interrupt Processing

Hardware

Hardware
needs
service

ISR
provides
service

Busy Done Busy

Saves
execution
state

Restores
execution
stateInterrupt

Thread

Main
Thread

time

Bard, Gerstlauer, Valvano, Yerraballi

[image: image1.wmf]H

a

r

d

w

a

r

e

H

a

r

d

w

a

r

e

n

e

e

d

s

s

e

r

v

i

c

e

I

S

R

p

r

o

v

i

d

e

s

s

e

r

v

i

c

e

B

u

s

y

D

o

n

e

B

u

s

y

S

a

v

e

s

e

x

e

c

u

t

i

o

n

s

t

a

t

e

R

e

s

t

o

r

e

s

e

x

e

c

u

t

i

o

n

s

t

a

t

e

I

n

t

e

r

r

u

p

t

T

h

r

e

a

d

M

a

i

n

T

h

r

e

a

d

t

i

m

e

Interrupts in control systems
Continuous loop With interrupts

Hardware
actions

Interrupt
signalmain

main

Interrupt
handler

1. Suspend main thread
2. Save state and jump to handler
3. Execute interrupt handler
4. Restore state and return to main
5. Resume main thread

Handling an interrupt request

1
2

3

5
4

CPU in
“Thread Mode”

CPU in
“Handler
Mode”

5

Interrupt interface

CPU

status
reg

data
reg m

ec
ha

ni
sm

intr request

intr ack

data/address

CPU and device handshake:
• device asserts interrupt request to signal the CPU;
• CPU asserts interrupt acknowledge when it responds to the

interrupt; (assert a signal or perform some action)
• device de-asserts interrupt request.

PC

SP

Cortex-M structure

Nested Vectored
Interrupt Controller

Coordinates multiple
Interrupt sources

Cortex CPU registers

Process SP, Main SP (selected at reset)

• Two processor modes:
• Thread mode for User tasks
• Handler mode for O/S tasks and exceptions

• Stack-based exception model
• Vector table contains addresses

PSR has priority of current process
PRIMASK has intr. enable (I) bit
BASEPRI has allowed intr. priority

Cortex-M4 processor operating modes
• Thread mode – normal processing
• Handler mode – interrupt/exception processing
• Privilege levels = User and Privileged

• Supports basic “security” & memory access protection
• Supervisor/operating system usually privileged
• “Secure” systems often have additional protections

Cortex-M Interrupt Processing
(much of this transparent when using C)

1. Interrupt signal detected by CPU
2. Suspend main program execution

 finish current instruction
 save CPU state (push registers onto stack)
 set LR to 0xFFFFFFF9 (indicates interrupt return)
 set IPSR to interrupt number
 load PC with ISR address from vector table

3. Execute interrupt service routine (ISR)
 save other registers to be used in the ISR1

 clear the “condition” that requested the interrupt
 perform the requested service
 communicate with other routines via global variables
 restore any registers saved by the ISR1

4. Return to and resume main program by executing BX LR
 saved state is restored from the stack, including PC (see next slide)

Pre-IRQ
top of stack

IRQ
top of stack

1 C compiler takes care of saving/restoring registers10

When LR =
0xFFFFFFF9

Exception return
 The exception mechanism detects when the processor has

completed an exception handler.
 EXC_RETURN value (0xFFFFFFF9) was loaded into LR on

exception entry (after stacking PC and original LR)
 Exception return occurs when:

1. Processor is in Handler mode
2. EXC_RETURN loaded to PC by executing one of these

instructions:
 LDM or POP that loads the PC
 LDR with PC as the destination
 BX using any register

Example: Interrupt-driven printing

DATA8-1

STRB*

BUSY

ACK*

PB7-0

PB8

PB9

PB10

Printer

DATA8-1

STRB*

BUSY

ACK*

STB* tells printer to begin printing character on DATA8-1

Printer
finished

Initialize PB pins for printer

13

InitPrinter
;enable clock to GPIOB

ldr r0,=RCC ;clock control registers
ldr r1,[r0,#AHB1ENR] ;get current values
orr r1,#0x02 ;enable GPIOB clock
str r1,[r0,#AHB1ENR] ;update values

;PB7-0=outputs (data), PB8=output (STRB*), PB9-10 inputs
ldr r0,=GPIOB
ldr r1,[r0,#MODER] ;get current MODER
ldr r2,=0x003fffff ;clear bits for PB10-0
bic r1,r2 ;clear bits
ldr r2,=0x00015555 ;PB10-9 input, PB8-0 output
orr r1,r2 ;set bits
str r1,[r0,#MODER] ;update MODER

;Set initial value of STRB* = 1
mov r1,#0x0100 ;select pin PB8 (STRB*)
strh r1,[r0,#BSRRL] ;PB8 = STRB* = 1 initially
bx lr ;return

Program-controlled solution
(no interrupt)

ldr r0,=GPIOB
ldr r1,=string ;string = char array

Loop: ldrb r2,[r1],#1 ;get next character
cmp r2,#0 ;NULL?
beq Return ;quit on NULL
strb r2,[r0,#ODR] ;character to printer (PB7-PB0)
mov r2,#0x0100 ;strobe = PB8
strh r2,[r0,#BSRRH] ;Reset PB8=0 (strobe pulse high-to-low)
strh r2,[r0,#BSRRL] ;Set PB8=1 (strobe pulse low-to-high)

Wait: ldrh r2,[r0,#IDR] ;check PB9 (BUSY)
tst r2,#0x0200 ;test BUSY bit
bne Wait ;repeat while BUSY=1
b Loop ;next character

Return: bx lr

Time “lost”
waiting for
BUSY = 0.

Interrupt-driven solution
;Printer ISR – Send next character when ACK received from printer.
; Saved_Pointer variable contains address of next character
PrintISR ldr r0,=Saved_Pointer ;pointer variable address

ldr r1,[r0] ;retrieve saved data pointer
ldrb r2,[r1],#1 ;get next character
str r1,[r0] ;save pointer for next interrupt
cmp r2,#0 ;NULL character?
beq Return ;quit on NULL
ldr r0,=GPIOB ;GPIOB register address block
strb r2,[r0,#ODR] ;character to printer (PB7-PB0)
mov r2,#0x0100 ;strobe = PB8
strh r2,[r0,#BSRRH] ;Reset PB8=0 strobe pulse high->low
strh r2,[r0,#BSRRL] ;Set PB8=1 strobe pulse low->high

Return bx lr ;return from ISR

No new interrupt request if no new strobe pulse.

Example: Interrupt-driven keyboard

DATA8-1

DATA_VALID

PA7-0

PA8

Keyboard

DATA8-1

DATA_VALID

DATA8-1 = pressed key# while DATA_VALID = 1

Initialize PA pins for keyboard

17

InitKeyboard
;enable clock to GPIOA

ldr r0,=RCC ;clock control registers
ldr r1,[r0,#AHB1ENR] ;get current values
orr r1,#0x01 ;enable GPIOA clock
str r1,[r0,#AHB1ENR] ;update values

;PA7-0=inputs (data), PA8=input (DATA_VALID)
ldr r0,=GPIOA
ldr r1,[r0,#MODER] ;get current MODER
ldr r2,=0x0003ffff ;clear bits for PA8-0
bic r1,r2 ;clear bits for input mode
str r1,[r0,#MODER] ;update MODER
bx lr ;return

Program-controlled solution
(no interrupt)

;Read key numbers and store in String array until ENTER pressed
ldr r0,=GPIOA
ldr r1,=String ;String = char array

Wait: ldrh r2,[r0,#IDR] ;check PA8 = DATA_VALID
tst r2,#0x0100 ;test DAVA_VALID bit
beq Wait ;repeat while DATA_VALID = 0
and r2,#0x00ff ;mask DATA_VALID (key# = PA7-PA0)

;Homework problem: returned code in r0 instead of the following
mov r3,#0 ;NULL character
strb r3,[r1] ;save NULL in String (for now)
cmp r2,#0x0D ;ENTER key?
beq Return ;quit on ENTER
strb r2,[r1],#1 ;replace NULL with key#
b Wait ;next character

Return: bx lr

Time “lost”
waiting for
key press.

Interrupt-driven solution
;(Extra initialization was requited to initiate an interrupt)
;Key ISR – Get character when DATA_VALID pulsed.
;Saved_Pointer variable contains address at which to store next character
KeyISR ldr r0,=Saved_Pointer ;pointer variable address

ldr r1,[r0] ;retrieve saved pointer
ldr r2,=GPIOA
ldrb r3,[r2,#IDR] ;read key# = PA7-PA0
mov r4,#0 ;NULL character code
strb r4,[r1] ;save NULL in String (for now)
cmp r3,#0x0D ;ENTER key (ASCII code for ENTER)
beq Return ;quit on ENTER
strb r3,[r1],#1 ;replace NULL with key#
str r1,[r0] ;save incremented pointer

Return bx lr ;return from ISR

Main program setup
__main

; Configure the I/O ports

; Set up printing of a character string
ldr r0,=String ; pointer to character string
ldr r1,=Saved_Pointer ; variable address
str r0,[r1] ; save string pointer for ISR
cpsie i ; enable interrupts
bl PrintISR ; print the 1st character

; others printed when CPU interrupted
; when printer changes BUSY->READY

;****** rest of the program

AREA D1,DATA
Saved_Pointer dcd 0
String dcb “This is a string”,0

	Interrupt-Driven Input/Output
	Interrupt-driven operations
	Interrupt I/O
	Interrupt Processing
	Interrupts in control systems
	Interrupt interface
	Cortex-M structure
	Cortex CPU registers
	Cortex-M4 processor operating modes
	Cortex-M Interrupt Processing�(much of this transparent when using C)
	Exception return
	Example: Interrupt-driven printing
	Initialize PB pins for printer
	Program-controlled solution�(no interrupt)
	Interrupt-driven solution
	Example: Interrupt-driven keyboard
	Initialize PA pins for keyboard
	Program-controlled solution�(no interrupt)
	Interrupt-driven solution
	Main program setup

