
Cortex-M4 Thumb-2 Instruction Set Summary

<Operand2> may be one of the following:
 #imm8 One byte, zero-extended to 32 bits (a few other formats can also be produced)
 Rm Normal register operation
 Rm, <LSL|LSR|ASR|ROR> #imm5 Register operation with constant shift
 Rm, RRX Register operation with rotate right with extend

<S> (instruction mnemonic suffix) => Update the condition flags after the instruction has executed

MOV{S} Rd, <Operand2> Move Rd = Operand2
MVN{S} Rd, <Operand2> Move not Rd = 0xFFFFFFFF EOR Operand2
MOV Rd, #<imm16> Move wide Rd = imm16 (zero-extended)
MOVT Rd, #<imm16> Move top Rd[31:16] = imm16, bits Rd[15:0] are unaffected

ADD{S} Rd, Rn, <Operand2> Add Rd = Rn + Operand2
ADD Rd, Rn, #<imm12> Add wide Rd = Rn + Imm12
ADC{S} Rd, Rn, <Operand2> Add with carry Rd = Rn + Operand2 + Carry
SUB{S} Rd, Rn, <Operand2> Subtract Rd = Rn - <Operand 2>
SBC{S} Rd, Rn, <Operand2> Subtract with carry Rd = Rn – Operand2 - (1 - Carry)
SUB Rd, Rn, #<imm12> Subtract wide Rd = Rn - imm12
RSB{S} Rd, Rn, <Operand2> Reverse subtract Rd = <Operand 2> - Rn
RSC{S} Rd, Rn, <Operand2> Reverse subtract with carry Rd = Operand2 – Rn – (1 - Carry)

MUL{S} Rd, Rm, Rs Multiply Rd = Rn * Rm Returns the 32 least significant bits of the result
MLA Rd, Rm, Rs, Rn Multiply and accumulate Rd = (Rn + (Rm * Rs)) Returns the 32 least significant bits of the result
MLS Rd, Rm, Rs, Rn Multiply and subtract Rd = (Rn - (Rm * Rs)) Returns the 32 least significant bits of the result
UMULL RdLo, RdHi, Rm, Rs Multiply unsigned long, 64 bit result
SMULL RdLo, RdHi, Rm, Rs Multiply signed long, 64 bit result
SDIV Rd, Rn, Rm Signed division Rd = Rn/Rm (0x80000000 / 0xFFFFFFFF = 0x80000000, Rn / 0 = 0)
UDIV Rd, Rn, Rm Unsigned division Rd = Rn/Rm (Rn / 0 = 0)

ASR{S} Rd, Rm, <Rs|#imm5> Arithmetic shift right, canonical form of MOV{S} Rd, Rm, ASR <Rs|#imm5>
LSL{S} Rd, Rm, <Rs|#imm5> Logical shift left
LSR{S} Rd, Rm, <Rs|#imm5> Logical shift right
ROR{S} Rd, Rm, <Rs|#imm5> Rotate right
RRX{S} Rd, Rm Rotate right with extent, uses Carry as a 33rd bit

CMP Rn, <Operand2> Same as SUBS Rd, Rn, <Operand2>, but result not written to Rd, only the condition flags are updated
CMN Rn, <Operand2> Rn + <Operand2>
TST Rn, <Operand2> Rn AND <Operand2>
TEQ Rn, <Operand2> Rn EOR <Operand2>

AND{S} Rd, Rn, <Operand2> Bitwise AND, Rd = Rn AND <Operand2>
ORR{S} Rd, Rn, <Operand2> Bitwise OR, Rd = Rn OR <Operand2>
EOR{S} Rd, Rn, <Operand2> Bitwise Exclusive-OR. Rd = Rn EOR <Operand2>
ORN{S} Rd, Rn, <Operand2> Or not, Rd = Rn OR NOT <Operand2>
BIC{S} Rd, Rn, <Operand2> Bit clear, Rd = Rn AND NOT <Operand2>

B <label> Unconditional jump
BL <label> R14 = address of next instruction, then jump to label
BX Rm Branch and exchange (jump to address in Rm), use it to return from a function (BX LR)
BLX Rm R14 = address of next instruction, then jump to Rm
Bcc <label> Conditional jump, where cc is one of {EQ,NE,GE,GT,LE,LT,HS,HI,LS,LO,VS,VC,CS,CC,MI,PL}

<Address> can be one of the following Example Action
 [Rn] LDR R0,[R1] R0 = [R1 + 0]
 [Rn {, #<-imm8|+imm12>}] LDR R0, [R1, #8] R0 = [R1 + 8]
 [Rn {, #<+-imm8>}]! LDR R0, [R1, #8]! R1 = R1 + 8, R0 = [R1]
 [Rn], #<+-imm8> LDR R0, [R1], #4 R0 = [R1], R1 = R1 + 4
 [Rn, Rm {, <LSL #0-3>}] STR R0, [R1, R2, LSL #2] R0 = [R1 + (R2 * 4)]

LDR Rd, <Address> Load 32 bit word from memory
LDRH Rd, <Address> Load 16 bit half-word from memory
LDRSH Rd, <Address> Load signed 16 bit half-word from memory
LDRB Rd, <Address> Load 8 bit byte from memory
LDRSB Rd, <Address> Load signed 8 bit byte from memory
STR Rd, <Address> Store 32 bit word to memory
STRH Rd, <Address> Store 16-bit halfword to memory
STRB Rd, <Address> Store 8-bit byte to memory

LDR Rd,=Label Pseudo-Op: Load Rd with 32-bit address/constant equivalent to Label
LDR Rd,=Constant Pseudo-Op: Load Rd with 32-bit constant

PUSH <reglist> Push registers onto stack pointed to by SP, decrement address before each store;
 lowest-numbered register to the lowest memory address
POP <reglist> Restore registers from stack, increment address after each load. Be careful with registers SP and PC.

LDM{IA|IB|DA|DB} Rn{!}, <reglist> Load/store multiple, can transfer any list of registers, ! will update Rn to point to the address
 after/before the last register
STM{IA|IB|DA|DB} Rn{!}, <reglist> IA = increment after (default), IB = increment before, DA = decrement after, DB = decrement
 before (Action on address)

