Programmable Logic Devices & Field-Programmable Gate Arrays

Victor P. Nelson

Text: Chapter 5 (combinational)
Chapter 11 (sequential)
History of Programmable Logic

- **Programmable Logic Arrays ~ 1970**
 - Incorporated in VLSI devices
 - Can implement any set of SOP logic equations
 - Outputs can share common product terms

- **Programmable Logic Devices ~ 1980**
 - MMI Programmable Array Logic (PAL)
 - 16L8 – combinational logic only
 - 8 outputs with 7 programmable PTs of 16 input variables
 - 16R8 – sequential logic only
 - 8 registered outputs with 8 programmable PTs of 16 input variables
 - Lattice 16V8
 - 8 outputs with 8 programmable PTs of 16 input variables
 - Each output programmable to use or bypass flip-flop
 - Complex PLDs – arrays of PLDs with routing network

- **Field Programmable Gate Arrays ~ 1985**
 - Xilinx Logic Cell Array (LCA)

- CPLD & FPGA architectures became similar ~ 2000
Programming Technologies

- PLAs were mask programmable
- PALs used fuses for programming
- Early PLDs & CPLDs used floating gate technology
 - Erasable Programmable Read Only Memory (EPROM)
 - Ultra-violet erasable (UVEPROM)
 - Electrically erasable (EEPROM)
 - Flash memory came later and was used for CPLDs
- FPGAs used RAM for programming
- Later trends
 - Fuses were replaced with anti-fuses
 - Better reliability
 - Large CPLDs went to RAM-based programming
Programmable logic array structure

Implement sum of products logic expressions

Each one “product” of the inputs

Each one “sum” of the products
NOR function in programmable logic

$X_i = 0$ turns transistor OFF (transistor = open circuit)
$X_i = 1$ turns transistor ON (transistor shorts Z to ground/0)
$+V$ pulls Z up to 1 if not shorted to ground

Truth Table:

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- both transistors OFF/Z pulled up to $+V$
- transistor 2 ON/shorts Z to ground
- transistor 1 ON/shorts Z to ground
- both transistors ON/short Z to ground

Manipulate sum of products form to use NOR-NOR structures
PLA with 3 inputs/5 products/4 sums

<table>
<thead>
<tr>
<th>Product Term</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>$A'B'$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC'</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>BC'</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>AC</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>
Compact representation of previous PLA circuit
PLD Basic Structure

- Programmable product terms (AND plane)
 - AND gates can connect to any input/FF bit or bit-bar
- Fixed OR plane determine maximum # PTs
- Programmable macrocell
 - XOR gate selects SOP or POS for fewer PTs
 - FF for sequential logic or bypass for combinational logic
 - Feedback current state into array for FSM design

Inputs and Current State from FFs (Bit & Bit-Bar)
Full adder with a PAL
PALs

16L8 – combinational logic

- 10 to 16 inputs, each with true and complement signal
- 2 to 8 outputs, each with
 - 7 product terms can AND any of up to 16 inputs or their complements
 - Tri-state control product term for inverting output buffer
- When output in tri-state, I/O pin can be used as input
- High impedance output with no signal driven
PALs

16R8 – sequential logic

- 8 inputs, each with true & complement
- 8 outputs, each with
 - D flip-flop
 - With feedback for FSMs
- 8 product terms that can AND any of:
 - 8 inputs or their complements
 - 8 feedbacks or their complements from D flip-flops
- One clock for all FFs
- One tri-state control for all outputs
Sequential circuit with a PAL
PLDs

22V10 replaced all PALs
- Combinational and/or sequential logic
 - Macrocell program bits C0, C1
- Up to 22 inputs w/complement
- Up to 10 outputs, each with
 - Macrocell
 - 8-16 product terms
 - Tri-state control product term
- Global
 - preset & clear PTs
 - clock
CPLD implementation of a Mealy machine
CPLDs

- An array of PLDs
 - Global routing resources for connections
 - PLDs to other PLDs
 - PLDs to/from I/O pins
- Example: Cypress 39K
 - Each Logic Block (LB) similar to a 22V10
 - Each cluster of 8 LBs has two 8K RAMs & one 4K dual-port RAM/FIFO
 - Programmable Interconnect Modules (PIMs) provide interconnections
 - Array of up to 24 clusters with global routing
Altera MAX architecture (PAL-based logic modules)
Basic FPGA architecture

programmable basic logic cell

programmable input/output cell

programmable interconnect
Basic FPGA Operation

- Writing configuration memory \(\Rightarrow\) defines system function
 - Input/Output Cells
 - Logic in PLBs
 - Connections between PLBs & I/O cells
- Changing configuration memory data \(\Rightarrow\) changes system function
 - Can change at anytime
 - Even while system function is in operation
Programmable ASIC logic cells

- Chip contains an array of basic logic cells
- Xilinx: “configurable logic block” (CLB) contains
 - SRAM lookup tables (LUTs) to implement combinational logic
 - D flip flops
 - Multiplexers to establish paths in the CLB
- Actel “ACT”: multiplexers implement logic
- Altera “Flex”: similar to Xilinx CLB
- Altera “MAX”: PALs implement logic
Actel ACT architecture (Fig. 5.1) (mux-based logic modules)
Xilinx FPGAs

- **Virtex and Spartan 2**
 - Array of 96 to 6,144 PLBs
 - 4 LUTs/RAMs (4-input)
 - 4 FF/latches
 - 4 to 32 4K-bit dual-port RAMs

- **Virtex II, Virtex II Pro**
 - Array of 352 to 11,204 PLBs
 - 8 LUTs/RAMs (4-input)
 - 8 FF/latches
 - 12 to 444 18K-bit dual-port RAMs
 - 12 to 444 18×18-bit multipliers
 - 0 to 2 PowerPC processor cores

- **Virtex 4**
 - Array of 1,536 to 22,272 PLBs
 - 4 LUTs/RAMs (4-input)
 - 4 LUTs (4-input)
 - 8 FF/latches
 - 48 to 552 18K-bit dual-port RAMs
 - Also operate as FIFOs
 - 32 to 512 DSP cores include:
 - 0 to 2 PowerPC processor cores

- **Spartan 3**
 - Array of 192 to 8,320 PLBs
 - 4 LUTs/RAMs (4-input)
 - 4 LUTs (4-input)
 - 8 FF/latches
 - 4 to 104 18K-bit dual-port RAMs
 - 4 to 104 18×18-bit multipliers
Xilinx Spartan 3 Family Architecture

Digital Clock Manager → DCM → IOB

Notes:
1. The two additional block RAM columns of the XC3S4000 and XC3S5000 devices are shown with dashed lines. The XC3S50 has only the block RAM column on the far left.
Xilinx “Spartan” FPGAs

<table>
<thead>
<tr>
<th>Spartan Family*</th>
<th>Gates</th>
<th>I/Os</th>
<th>Block RAM</th>
<th>Embedded Multipliers</th>
<th>DCM**</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan-3E</td>
<td>1.6M</td>
<td>376</td>
<td>648Kb</td>
<td>36 18x18</td>
<td>8</td>
<td>3.3V - 1.2V†</td>
</tr>
<tr>
<td>Spartan-3</td>
<td>5M</td>
<td>784</td>
<td>1872Kb</td>
<td>104 18x18</td>
<td>4</td>
<td>3.3V - 1.2V†</td>
</tr>
<tr>
<td>Spartan-3L</td>
<td>4M</td>
<td>633</td>
<td>1728Kb</td>
<td>96 18x18</td>
<td>4</td>
<td>3.3V - 1.2V†</td>
</tr>
<tr>
<td>Spartan-IIIE</td>
<td>600K</td>
<td>514</td>
<td>288Kb</td>
<td>–</td>
<td>4</td>
<td>3.3V - 1.5V†</td>
</tr>
<tr>
<td>Spartan-II</td>
<td>200K</td>
<td>284</td>
<td>56Kb</td>
<td>–</td>
<td>4</td>
<td>3.3V - 1.5V†</td>
</tr>
<tr>
<td>Spartan-XL</td>
<td>40K</td>
<td>224</td>
<td>25Kb</td>
<td>–</td>
<td>–</td>
<td>3.3V</td>
</tr>
</tbody>
</table>

*Note: * indicates a revision or a specific model within the family.

DCM: Digital Clock Manager

†Voltage range indicates the ability to operate at lower voltages for power savings.
Xilinx FPGA families (2013)

FPGA Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>Spartan-6</th>
<th>Artix-7</th>
<th>Kintex-7</th>
<th>Virtex-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Cells</td>
<td>150,000</td>
<td>215,000</td>
<td>480,000</td>
<td>2,000,000</td>
</tr>
<tr>
<td>BlockRAM</td>
<td>4.8Mb</td>
<td>13Mb</td>
<td>34Mb</td>
<td>68Mb</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>180</td>
<td>740</td>
<td>1,920</td>
<td>3,600</td>
</tr>
<tr>
<td>DSP Performance</td>
<td>140GMACs</td>
<td>930GMACs</td>
<td>2,845GMACs</td>
<td>5,335GMACs</td>
</tr>
<tr>
<td>Transceiver Count</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>95</td>
</tr>
<tr>
<td>Transceiver Speed</td>
<td>3.2Gb/s</td>
<td>6.6Gb/s</td>
<td>12.5Gb/s</td>
<td>23.05Gb/s</td>
</tr>
<tr>
<td>Total Transceiver Bandwidth</td>
<td>50Gb/s</td>
<td>211Gb/s</td>
<td>800Gb/s</td>
<td>2.784Gb/s</td>
</tr>
<tr>
<td>Memory Interface</td>
<td>800Mb/s</td>
<td>1,066Mb/s</td>
<td>1,866Mb/s</td>
<td>1,866Mb/s</td>
</tr>
<tr>
<td>PCI Express® Interface</td>
<td>x1 Gen1</td>
<td>x4 Gen2</td>
<td>x8 Gen2</td>
<td>x8 Gen3</td>
</tr>
<tr>
<td>Analog Mixed Signal (AMS)/XADC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Configuration Signal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>576</td>
<td>500</td>
<td>500</td>
<td>1,200</td>
</tr>
<tr>
<td>I/O Voltage</td>
<td>1.2V, 1.5V, 1.8V, 2.5V, 3.3V</td>
<td>1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V</td>
<td>1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V</td>
<td>1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V</td>
</tr>
<tr>
<td>EasyPath™ Cost Reduction Solution</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Digikey.com (11/15/13):
- Spartan3 XC3S50A: $6.10
- Spartan6 XC6SLX4: $10.90
- Virtex7 XC7V2000T: $39,452.20
In this diagram, the Spartan-6 LX45 FPGA is used in an automotive infotainment system. The FPGA supports audio/video acceleration, graphics subsystem, and vehicle networking functions. The diagram illustrates the integration of various components such as ADC, Host DSP/µC, and Video Input interfaces, among others.
Xilinx: Basic CLB Architecture

- Look-up Table (LUT) implements truth table
- Memory elements:
 - Flip-flop/latch
 - Some FPGAs - LUTs can also implement small RAMs
- Carry & control logic implements fast adders/subtractors
Look-up Tables

- Configuration memory holds outputs for truth table.
- Internal signals connect to control signals of multiplexers to select value of truth table for any given input value.
A Simple PLB

Two 3-input LUTs
- Can implement any 4-input combinational logic function

1 flip-flop
- Programmable:
 - Active levels
 - Clock edge
 - Set/reset

22 configuration memory bits
- 8 per LUT
 - C0-7
 - S0-7
- 6 controls
 - CB0-7
Example PLB

- ¼ of a PLB (called a slice) from Xilinx Spartan 3
 - Two 4-input Look-Up Tables (LUTs)
 - Can perform any combinational logic function of up to 4 inputs
 - Can function as small RAM (16x1-bit) or shift register (up to 16-bit)
 - Two D-type flip-flops
 - Programmable as level sensitive latches
 - Programmable clock edge, clock enable, set/reset
 - Extra logic
 - Fast carry for adders
 - MUXs for Shannon expansion
 - And more
Functions of more variables than # of LUT inputs
Input/Output Cells

- Bi-directional buffers
 - Programmable for input or output
 - Tri-state control for bi-directional operation
 - Flip-flops/latches for improved timing
 - Set-up and hold times
 - Clock-to-output delay
 - Pull-up/down resistors
- Routing resources
 - Connections to core of array
- Programmable I/O voltage & current levels
Interconnect Network

- Wire segments of varying length
 - \(xN \) = \(N \) PLBs in length
 - 1, 2, 4, and 6 are most common
 - \(xH \) = half the array in length
 - \(xL \) = length of full array

- Programmable Interconnect Points (PIPs)
 - Also known as Configurable Interconnect Points (CIPs)
 - Transmission gate connects to 2 wire segments
 - Controlled by configuration memory bit
 - 0 = wires disconnected
 - 1 = wires connected
Xilinx interconnect structures

(a)

(b)

(c)
Spartan 3 Routing Resources

PLB consists of 4 slices
over 2,400 PIPs mostly MUX PIPs

x6 wire segments
x2 wire segments
xH & xL wire segments

over 450 total wire segments in PLB
Lab 0 – in Spartan 6
(routing details)
Ex: modulo7 counter (device xc6slx25t)
Recent Trends

- Incorporate specialized cores
 - RAMs – single-port, dual-port, FIFOs
 - 128 bits to 36K bits per RAM
 - 4 to 575 RAM cores per FPGA
 - DSPs – 18x18-bit multiplier, 48-bit accumulator, etc.
 - up to 512 per FPGA
 - Microprocessors and/or microcontrollers
 - up to 2 per FPGA
 - Hard core processor
 - Support soft core processors
 - Synthesized from HDL into programmable resources
Spartan 3 (XC3S200)

- 24 rows
- x 20 columns
- = 480 PLBs
- 4 slices/PLB
- 2 LUTs&FFs/slice

- 12 18K-bit dual port RAMs
- 12 18x18-bit multipliers
Ranges of Resources

<table>
<thead>
<tr>
<th>FPGA Resource</th>
<th>Small FPGA</th>
<th>Large FPGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLBs per FPGA</td>
<td>256</td>
<td>25,920</td>
</tr>
<tr>
<td>LUTs and flip-flops per PLB</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire segments per PLB</td>
<td>45</td>
<td>406</td>
</tr>
<tr>
<td>PIPs per PLB</td>
<td>139</td>
<td>3,462</td>
</tr>
<tr>
<td>Specialized Cores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bits per memory core</td>
<td>128</td>
<td>36,864</td>
</tr>
<tr>
<td>Memory cores per FPGA</td>
<td>16</td>
<td>576</td>
</tr>
<tr>
<td>DSP cores</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/output cells</td>
<td>62</td>
<td>1,200</td>
</tr>
<tr>
<td>Configuration memory bits</td>
<td>42,104</td>
<td>79,704,832</td>
</tr>
</tbody>
</table>
Configuration Interfaces

- **Master** – FPGA retrieves its own configuration from ROM after power-up
 - Serial or Parallel options
- **Slave** – FPGA configured by external source (i.e., a µP)
 - Serial or Parallel options
 - Used for dynamic reconfiguration
 - Can also read configuration memory contents
- **Boundary Scan Interface**
 - 4-wire IEEE standard serial interface for testing
 - Write and read access to configuration memory
 - Not available in all FPGAs
 - Used for dynamic partial reconfiguration
 - Interfaces to FPGA core
 - Not available in all FPGAs
 - Connections between Boundary Scan Interface and internal routing network and PLBs (Xilinx provides 2 of these ports)
- **Other configuration interfaces in some FPGAs**
Daisy Chain Configuration