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Abstract

Despite the intuitively compelling adage “a picture is worth a thousand words,” attempts over the

past decade to use animations to explain algorithms to students have produced disappointing

results. In most cases interesting algorithm animations were designed, but no formal, systematic

evaluations were conducted. When such evaluations were performed the results were mixed, with

compelling evidence for the instructional superiority of algorithm animations failing to emerge. It

is in this context that we embarked on a research program to develop educationally effective

algorithm visualizations. This program was based on the premise that animations needed to be

embedded in a knowledge and context providing hypermedia environment in order to effectively

harness their power to enhance learning. This paper describes the architecture of the resulting

Hypermedia Algorithm Visualization system HalVis. Four empirical studies with HalVis are

described, which demonstrated that the extent of learning exhibited by students who used HalVis

was significantly greater than that of students who used means of traditional instruction or a

typical algorithm animation.
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1. Introduction

Computer science students generally find the analysis and design of algorithms to be a difficult subject. One reason

for this may be that an algorithm describes a process that is both abstract and dynamic, while the methods typically

used to teach algorithms are not. For more than a decade, researchers and educators have pursued the intuitively

compelling notion that using computer animations to illustrate the dynamic behavior of an algorithm will prove

effective in helping students overcome the difficult task of learning algorithms. Two implicit assumptions underlie

this pursuit: graphical representations are better than textual explanations, and dynamic graphics is better than static

graphics. But either of these is far from obvious [1]. For instance, Petre persuasively argues that “reading graphics”

is an acquired skill that experts are better at [2], a notion at odds with the often unstated assumption that novice

students will grasp an algorithm better if it is graphically presented.

Such concerns aside, most algorithm animation research papers present interesting algorithm animations or novel

systems for creating and viewing algorithm animations. For instance, AACE [3] is an early system with several

built-in algorithm animations constructed by experts. In contrast, Aladdin [4], AlgorithmExplorer [5] and Eliot [6]

are systems that teachers and students can use to build their own algorithm animations. Collaborative Active

Textbooks [7] and Internet Software Visualization Laboratory [8] are examples of systems that deliver animations

over a network such as the web to remote students. Declarative approaches to describing and constructing algorithm

animations are presented in [9,10]. However, even though such research is explicitly or implicitly aimed at

educational applications such as learning about algorithms or writing and debugging programs, system-oriented

papers are usually silent about whether the animations help students master the subject better than traditional means

of learning and instruction. From an educational perspective therefore, this leaves open the question of whether the

time and effort needed to build algorithm animations using such systems produce comparable learning benefits. This

question is important because the investment needed is non-trivial, as noted in an article on experiences in software

visualization based teaching at a major university [11].

Several researchers have indeed investigated the educational efficacy of algorithm animations. While pictures and

animations are almost always enthusiastically received by the students [12,13], these studies have not produced
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convincing proof that animations actually improve learning [13,14,15]. Hundhausen, Douglas and Stasko [16]

provide a comprehensive survey of the literature on algorithm animation and its evaluation. In a recent paper on

visual language design, Blackwell reports not finding evidence for the hypothesis that pictorial representations

provide significant assistance in forming mental images of abstract situations or processes. In some cases, pictorial

representations may in fact inhibit the formation of mental images of abstract situations [17]. Beyond the domains of

algorithms and visual programming, researchers have begun to question the purported benefits of animations in

general to aid comprehension when compared with informationally equivalent paper-based presentations such as a

series of diagrams illustrating the same phenomenon [18,19].

Given this background, the present paper focuses on the design and use of animations that do help students better

understand algorithms. We believe that previous attempts at using animation to teach algorithm behavior were

unsatisfactory not because of a flaw with animation as a tool for learning, but because of the approach used to

convey the animations. Our research is based on the hypothesis that animations are indeed powerful vehicles for

effectively conveying the dynamic behavior of algorithms, but that a rethinking of algorithm animation design is

required in order to harness its power to enhance learning. By enhanced learning, we mean a better understanding of

the description and behavior of an algorithm resulting in an increased ability to accurately answer questions about

the pseudocode (a step-wise description of an algorithm using a mixture of natural language and mathematical

notation) and operations of the algorithm. Building upon research in cognitive science and human-computer

interaction on multimedia design [20,21], we have developed an architecture for multimedia presentations of

algorithms, called Hypermedia Algorithm Visualization (HalVis). The term visualization suggests a richer process

than merely watching an animation, and the term hypermedia reflects the use of multiple media, semantic links and

other cognitive devices to help the student form accurate mental models of algorithms.

In the next section we present key features and the architecture of HalVis. Section 3 contains detailed descriptions of

four empirical studies involving over a hundred students. Results from these experiments indicate that learning by

interacting with hypermedia visualization of algorithms is significantly more effective than learning by reading a

textbook, listening to a lecture, or interacting with an algorithm animation typical of extant research on this topic. A

discussion of the implications of these experiments appears in Section 4.
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2. Hypermedia Algorithm Visualization

2.1. Key Features

This algorithm visualization architecture embodies several aspects of the learner-centered design approach [22]. We

consider an algorithm visualization to be more than an algorithm animation. A visualization provides an interactive

environment that elicits active student participation using a carefully orchestrated presentation of information in

various media (such as animations, text, static diagrams, aural narratives, etc.) with appropriate temporal, spatial and

hyperlink connections. Our position is that visualization involves more than the visual. In other words, attracting the

visual attention of a learner through engaging and informative animations is only one part of the visualization

process. Additionally, features of an interactive environment such as those described below designed to attract the

cognitive attention and engage the mind of the learner are also critical elements of an effective visualization. These

key features of the HalVis Architecture are described below.

(1) Embedding animations within a hypermedia environment that also employs textual descriptions, static diagrams

and interactive examples to provide contextual information. The focus is not on the animation, but on providing

relevant and sufficient information in cognitively appropriate media [23] to support the achievement of specific

learning objectives. The learning environment within which animations are embedded provides a context for

learning, a major characteristic of learner-centered design.

(2) Embedding an animated analogy in the very first view of the algorithm that a student sees. The motivation

behind this feature is two-fold. First, it has already been observed that students naturally tend to employ analogies in

describing how algorithms operate [24,25]. Second, analogies serve as scaffolding for comprehension of the

procedural details of an algorithm from subsequent visualizations. Scaffolding is the notion of providing support to a

learner to accomplish a learning task that he or she could not have successfully accomplished otherwise, a support

that eventually the learner will no longer need [26]. Scaffolding is another key aspect of learner-centered design.

(3) Providing three distinct kinds of animations to illustrate qualitatively different views of algorithm behavior.

Initially, an algorithm’s essential behavior is illustrated using animated analogies based on familiar situations. This

interactive presentation serves to ground the abstract components of the algorithm in a familiar real-world example.
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The animation of the analogy and accompanying textual explanations provide a bridge between events in the

analogy and abstract steps of the algorithm. The second kind of animation is a micro-level animation of specific

algorithmic operations on a small data set (about 10 elements) in tandem with pseudocode highlighting and textual

explanations. The third kind of animation is a macro-level animation that illustrates the algorithm’s aggregate

behavior and performance characteristics on a relatively large data set (about 50 elements). Learners can interact

with all three kinds of animations in various ways. Providing multiple and multimodal representations for learners to

peruse and manipulate is the third critical property of learner centered-design.

(4) Presenting algorithm animations in discrete segments accompanied by explanations of the specific actions being

accomplished. By segmenting animations into meaningful “bite-sized” pieces and providing logical pauses between

segments, the student is able to better digest the abstract, dynamic information being presented. Allowing the

student to adjust the level of segmenting tailors the flow of information to meet individual needs. Furthermore,

students can provide their own data for the animation or select between different kinds of data sets. All these

functionalities together form a flexible interface for the learner – this is the fourth important characteristic of learner-

centered design. This is in contrast with most current algorithm animation systems which present the detailed

dynamics of the algorithm as a one-shot, stand-alone show that is entertaining to watch but tends to obscure the very

details a student needs to learn.

(5) Encouraging student participation by allowing rich interactions with the animations and using probes or

questions that stimulate thinking and foster self-explanations. Students can (and are prompted to) explore algorithm

behavior more thoroughly by running the micro-level animation multiple times with data of their own choosing.

Students can also select from different data sets for the macro-level animation. HalVis periodically poses questions

to the student. There are two kinds of questions. One is called a “tickler”, which is a question that pops up in random

order but always in an appropriate context. Tickler questions are open-ended, focus student attention on specific

issues, challenge their understanding, and promote self-explanations [27] to improve comprehension. Their answers

are not entered into the computer nor is feedback provided. Multiple choice questions are placed at “articulation

points” between modules of the visualization. These require students to enter answers and immediate feedback is

provided by the system. Incorporating interactive devices to engage and motivate the learner is the fifth

characteristic of learner-centered design.
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2.2. System Architecture

Figure 1 shows the architecture of HalVis. It consists of four main components and two supporting components. The

first component explains the core operations of an algorithm and illustrates those using a familiar analogy. The

second component is designed to aid the student in understanding the pseudocode by presenting it side-by-side with

a textual explanation. Technical terms in this explanation are hyperlinked to definitions and additional illustrations

of fundamental algorithmic principles in one of the supporting components. The third component presents four

representations simultaneously. One is a detailed, or micro-level, animation of the algorithm on a small data set. The

second is the pseudocode of the algorithm in which steps are highlighted synchronously with the animation. The

third is a verbal explanation of the events occurring in the animation. The fourth is a panel of variables that

illustrates how their values change as the algorithm executes. These are qualitatively different representations of the

same process, intended to help with the construction of a dynamic mental model [20,21]. Occasionally, “tickler”

questions are generated and presented to the learner by this component while the animation is paused. The fourth

component is intended to reinforce the learner’s mental model by presenting a macro-level animation of the

algorithm’s operation on a much larger data set, without these other representations. It also allows the student to

make predictions about parameters of the algorithm’s behavior and compare predicted values against actual values.

Another supporting component provides different kinds of questions. The six components are grouped into five

modules, as explained below. This architecture was implemented using Asymetrix Toolbook.

Fig. 1. Architecture of HalVis
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 (1) Fundamentals: This module contains information about basic building blocks of algorithms common to virtually

all algorithms. Examples of concepts explained in this module include comparing & swapping data, looping

operation and recursion. This module is not directly accessible to the student. It can be accessed only through

hyperlinks from other modules, so that the basic information is presented on demand (in response to a learner

request in the form of clicking on a hyperlink) and in context (of algorithm-specific information within which the

hyperlink is embedded).

(2) Conceptual View: This module introduces a specific algorithm in very general terms using an analogy. For

instance, the analogy for the MergeSort algorithm is animated playing cards that divide and merge to create a sorted

sequence (Figure 2). This module uses animations, text, and interactivity to provide the student with an

understanding of the essential aspects of the algorithm.

Fig. 2. Conceptual View of the Merge Sort Algorithm
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(3) Detailed View: This module describes the algorithm at a very detailed level using two presentations. One

consists of a textual explanation of the algorithm alongside a pseudocode representation of it. Embedded in the text

are hyperlinks to related information in the Fundamentals module. The second presentation (Figure 3) contains four

windows that depict various aspects of the algorithm’s behavior. The Execution Animation window shows how

steps of the algorithm modify data using smooth animation. The animation is segmented at multiple levels of

granularity corresponding to meaningful units of the algorithm’s behavior, with the level of segmenting selectable

by the learner. At the lowest level, the animation displays the execution of an individual statement, pausing for the

learner’s signal to proceed. The next level corresponds to a logical operation, like completion of a single execution

of a loop. At the highest level, the animation proceeds to completion without pausing. The Execution Status

Message window provides comments and textual feedback to the student about key events and actions during

execution. The Pseudocode window shows the steps involved in the algorithm, which are highlighted synchronously

with the animation. Finally, the Execution Variables window displays a scoreboard-like panorama of the variables

involved in the algorithm and their changing values. Before launching the animation, students can change the data

input to the algorithm as well as the speed and granularity of animation and feedback. Execution of each step of the

algorithm affects the display in the four windows simultaneously. Figure 3 shows seven data elements to be sorted

using the MergeSort algorithm. When the user presses the ShowMe button, the four windows spring to life, moving

the seven data items as needed and pausing between animation segments until the execution is finished. HalVis

intentionally limits the number of data items in the Execution Animation window to focus attention on the micro-

level behavior of the algorithm.
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Fig. 3. Detailed View of the MergeSort Algorithm

(4) Populated View: This module provides an animated view of the algorithm on large data sets to make its macro-

level behavior explicit. In this view (Figure 4), many of the details presented in the Detailed View are removed to

allow the student to concentrate on the algorithm’s aggregate performance. Animations embedded in this view are

similar to algorithm animations found in earlier systems. A novel feature is a facility for the student to make

predictions about different parameters (such as the number of comparisons, swaps, or recursive calls) of algorithm

performance and then compare those against the actual performance when the animation is running. When the

learner presses the ShowMe button, the system prompts the learner to choose a data set (random, already sorted in

the ascending order or already sorted in the descending order) and to make predictions. Then the animation begins.

Color coding is used to convey information such as already processed data and data elements currently being

processed.
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(5) Questions: This module presents the student with several questions. A combination of multiple choice, true-false,

and algorithm step reordering questions are provided. Students get immediate feedback on their answers. Multiple

choice and true-false questions appear with radio buttons or check boxes for indicating answers. The pseudocode-

reordering question shows steps of an algorithm in a jumbled order (Figure 5). The student can then drag and drop

the steps into a different order and have his/her solution checked for correctness.



Hansen Narayanan & Hegarty

11

Fig. 5. An Example from the Questions Module

3. Experiments on Learning from Hypermedia Algorithm Visualization

3.1. Summary

We designed and conducted a series of experiments, summarized in Table 1, to evaluate the effectiveness of

hypermedia algorithm visualization, specifically to test our conjecture that such visualizations are more beneficial

than traditional teaching methods and algorithm animations. In these experiments we measured the learning of

students by their performance in pre-tests and post-tests. The first two experiments compared learning from HalVis

to learning from textbooks alone. The third experiment compared learning from HalVis to learning from lectures.

The fourth experiment compared learning from HalVis to learning from the combination of an algorithm animation

typical of extant research and a textbook description. Even though these experiments compared stand-alone learning

with HalVis, we do not intend HalVis as a stand-alone system. Rather, we believe that it needs to be incorporated

into the curriculum so that working with HalVis supplements other instructional activities such as reading the

textbook, attending lectures and doing labs. However, if in these controlled experiments HalVis proved to be

significantly more effective than other means of learning, then it would be likely that HalVis incorporated into a

curriculum would serve to enhance its overall effectiveness.

Table 1. Experiment Summary



Educationally effective algorithm visualizations

12

Level Comparison Groups Algorithm(s)
Experiment I sophomore HalVis Textbook MergeSort (MS)

Experiment II junior HalVis Textbook MergeSort
QuickSort (QS)

Experiment III sophomore HalVis Lectures SelectionSort
MergeSort

Experiment IV junior HalVis Textbook and
Animation

Shortest Path (SP)

3.2. General Procedure

In this section we describe procedures common to all four experiments. Deviations from these are explained when

discussing individual experiments. In all experiments, volunteer subjects received extra course credit for their

participation. They completed a demographic survey providing data on course performance, GPA, and ACT/SAT

scores. This information was used to rank the participants, and create a matched pair of experimental and control

groups.

The experimental group generally worked with HalVis. Members of this group met in a public computer laboratory.

Prior to the start of any experiment, the group was given a 5-minute introduction to HalVis, which oriented subjects

to the various screens they would encounter and provided them with basic navigational tips. The students were then

assigned to a computer and instructed to interact with the visualization until they felt they understood the algorithm

in question. The computers were Pentium-class systems with 15-inch color monitors. Members of this group were

not given any supplemental materials to study.

In all cases, we ensured that an experiment took place prior to the algorithms used being covered in the course from

which volunteers were drawn. No time limit was imposed for either group. After each subject indicated he/she was

done with the study phase, he/she was given a post-test. Upon completion of this test, the subject was thanked and

allowed to leave.

A pre-test/post-test combination was used to measure individual learning performance. These tests contained

questions that probed conceptual and procedural knowledge about the algorithms. Students were tested on their

ability to (1) recognize and reorder pseudocode descriptions of algorithms, (2) mentally simulate algorithmic



Hansen Narayanan & Hegarty

13

operations, and (3) predict resulting data structure changes. The pre-test measured prior knowledge about an

algorithm, and the post-test measured change in knowledge due to experimental treatments. Examples of each kind

of question are provided below for illustrative purposes.

Probing conceptual knowledge: “What is the name of the element used in QuickSort to partition the input array?”

Probing procedural knowledge: “Consider the pseudocode of the MergeSort algorithm (shown as part of the

question). Does it sort numbers in the input array in the ascending order or the descending order? Make necessary

changes to the pseudocode to make it produce ascending order sort (unless it already does so).” Recognizing and

reordering algorithm descriptions: “Consider the pseudocode description of an algorithm shown above. Which

sorting algorithm does it implement?” See Figure 5 for an example of the pseudocode-reordering question. Mentally

simulating algorithmic operations: “If the array of numbers {52, 91, 7, 41, 34, 10, 55} is passed to the MergeSort

algorithm as input, what is the array passed as input to the recursive call on line 5 (the pseudocode is given as part of

the question) when it is executed for the second time?” Predicting changes to data structures: “If the array {52, 91,

7, 41, 34, 10, 55} is passed as input parameter to the MergeSort algorithm, produce a diagram showing the sequence

of recursive calls. Show both the arrays passed as input parameters to each recursive call, and the resulting arrays

when the calls are completed.”

3.3. Experiment I: Do Novice Students Learn More from HalVis than from a Typical Textbook

Chapter?

3.3.1 Subjects

This experiment involved students relatively new to the topic of algorithms. Twenty-eight second-year

undergraduates enrolled in an introductory data structures and algorithms course at Auburn University volunteered

to participate. We chose to use the MergeSort algorithm for this experiment because novices find its recursive

structure somewhat challenging to comprehend. Subjects were assigned to a matched pair of groups: one group

(called the "Text" group) would learn about the MergeSort algorithm using textbook descriptions, and another group

(called the "Algorithm Visualization" (AV) group) would learn the MergeSort algorithm using the HalVis algorithm

visualization tool. Twelve students in the Text group and sixteen students in the AV group completed the

experiment.
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3.3.2 Materials

Text Group: The Text group received a photocopied 6-page section from their course textbook [28]. This section

contained a description of the MergeSort algorithm, its analysis, various diagrams, and program code. AV Group:

The AV group learned about the MergeSort algorithm using the HalVis system with no supplementary materials

provided.

3.3.3 Procedure

We timed the experiment to follow class lectures covering basic program design and fundamental data structures,

but precede lectures that covered sorting algorithms. Participants were first asked to complete a pre-test about the

MergeSort algorithm. The pre-test results helped us verify that the two groups were evenly balanced, and provided a

baseline against which to compare subsequent changes. The pre-test scores indicated that the subjects did not know

this algorithm and that the groups were matched (Average = 27% for the Text group and 28% for the AV group).

This was followed by the experimental treatment and post-test. No student in the AV group took more than 60

minutes for the entire experiment. No student in the text group took more than 45 minutes for the entire experiment.

3.3.4 Results

The overall results are shown in Figure 6. The pre-test results indicate that both groups were equally unfamiliar with

the MergeSort algorithm. The post-test averages show a significant improvement for the AV group over the Text

group. The AV post-test average was 74% compared to the Text group’s 43%, and the results are significant for both

the overall performance (F1,27)=10.9, p<0.003) and for pre- to post-test improvement (F(1,27)=6.7, p<0.015). The

statistical summary is shown in Table 2 (SD: Standard Deviation).
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Table 2. Experiment I Statistical Summary

Statistical Summary

Pre-Test Post-Test Improvement

Text Group 27%

(SD = 28.61)

43%

(SD = 31.08)

16%

AV Group 28%

(SD = 28.09)

74%

(SD = 19.77)

46%

F(1,27) 0.01 10.9 6.7

Significance level p<0.93 p<0.003 p<0.015

)LJ� �� ([SHULPHQW , %R[ 3ORWV

Another way of visualizing these results appears in Figure 7. In these box plots, the boxes indicate the range of

entries in the 25th through 75th quartile, and the lines extending to the left and right show the range of scores for the

entire group. The thick vertical line in a box indicates the mean, and the thin vertical line represents the median

value for each group.

3.3.5 Discussion

These results suggest that novice students better learned conceptual and procedural aspects of the MergeSort

algorithm after working with HalVis than after studying a typical textbook. However, there are some factors that

7H[W 3UH7HVW

7H[W 3RVW7HVW

$9 3UH7HVW

$9 3RVW7HVW

� �� �� �� ���

([SHULPHQW , &RPSDULVRQ �06�



Educationally effective algorithm visualizations

16

must be mentioned to keep these results in perspective. First, differences in student motivation between the groups

could have influenced the results. The level of enthusiasm observed in the HalVis group was much higher than that

of the Text group. The novelty of the visualization and the interactive features of HalVis seemed to engage the

students’ interest. In contrast, there was nothing new or uniquely motivating for the Text group. The motivational

argument in favor of algorithm animations has been made by other researchers as well [12].

Second, familiarity with the learning materials could have had an influence. The Text group did not have to acquaint

themselves with a new user interface, software system, or learning by interacting with visualizations. They were

already familiar with reading and learning from a textbook. The students in the AV group had to contend with a new

interface and a different way of learning. None of them had used an interactive visualization system before. If this

factor indeed played a role, the AV group still exhibited a higher level of comprehension despite any additional

cognitive effort involved in learning the interaction and navigation facilities of HalVis.

Third, one could argue that a different textbook could have led to different results. We chose a textbook that has

been in use at Auburn University for more than five years. During this time several faculty have taught the first

algorithms course that undergraduate computer science students take (about a hundred students go through this

course each year) using this textbook. The general opinion among faculty who have taught the course is that it is as

good as most other textbooks. We also know that this textbook is used at several other universities. These facts

support our belief that the textbook extract used in the experiment is a representative one.

Last, only novice students participated in this experiment. It is possible that more advanced students may be more

capable of learning from a textbook explanation of an algorithm. The next experiment investigated this.

3.4. Experiment II: Do Advanced Students Learn More from HalVis than from a Typical

Textbook Chapter?

This experiment was similar to Experiment I in that the goal was to compare the effectiveness of learning using

HalVis to learning from text. Our aim was to test whether the results of Experiment I could be replicated with more

sophisticated algorithms and more advanced students. In this experiment we asked third-year undergraduates to

learn two algorithms: MergeSort and QuickSort.
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3.4.1 Subjects

This experiment involved 22 undergraduate computer science students enrolled in a third year algorithm design and

analysis course at Auburn University. Participants were assigned to a matched pair of groups as before: a “Text”

group and an “Algorithm Visualization” (AV) group. Eleven students in the Text group and eleven students in the

AV group completed the experiment.

3.4.2 Materials

Text Group: The Text group received a ten page photocopied extract from the course textbook [29] that discussed

the MergeSort and QuickSort algorithms. AV Group: The AV group learned about MergeSort and QuickSort

algorithms using the HalVis system with no supplementary materials provided.

3.4.3 Procedure

A procedure similar to the previous experiment was used. Subjects in the AV group completed the experiment in

less than 120 minutes, and subjects in the Text group finished in less than 90 minutes.

3.4.4 Results

The overall results are shown in Figure 8. Pre-test results indicate that both groups were equally unfamiliar with

both algorithms. Post-test averages show a significant improvement for the AV group over the Text group. The AV

post-test average was 63% compared to the Text group’s 44%, and the results are significant for both the overall

results (F(1,21)=4.96, p<0.038) and for improvement (F(1,21)=9.29, p<0.006). The statistical summary is given in

Table 3, showing both aggregate and algorithm-specific results for each group.
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Fig. 8. Experiment II Overall Summary

Table 3. Experiment II Statistical Summary

Statistical Summary
Pre-test Post-test Improvement

Text (MS) 44% 53% 9%
AV (MS) 48% 71% 23%

Text (QS) 10% 35% 25%
AV (QS) 4% 55% 51%

Text (MS+QS) 27% 44% 17%
AV (MS+QS) 26% 63% 37%
F(1,21) 0.02 4.96 9.29
Significance level p<0.89 p<0.038 p<0.006

Fig. 9. Experiment II Box Plots
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The results are summarized as box plots in Figure 9. The box indicates the range of entries in the 25th through 75th

quartile, and the lines extending to the left and right show the range of scores for the entire group. The thick vertical

line in the box indicates the mean, and the thin line represents the median value for the group.

3.4.5 Discussion

These results parallel those of Experiment I in suggesting that students perform better in answering conceptual and

procedural questions about the MergeSort and QuickSort algorithms after using HalVis to learn than after studying a

typical textbook. As Table 3 indicates, AV groups improved their performance by nearly three times (from 26% to

63% correct). It is interesting to note that in both experiments, students spent more time with the visualization than

with the textbook. In the second experiment, they spent almost twice as much time. As they had complete control

over how long they wanted to study, this indicates a higher level of motivation, translating into longer study times

and better learning. As shown in Table 4, the more advanced status of the students led to higher prior knowledge (as

indicated by the pre-test scores) of the MergeSort algorithm, compared to the pre-test levels observed in the novice

students of Experiment I. Another noteworthy point is that the AV groups in both experiments reached the same

level of performance on MergeSort in the post-test after interacting with HalVis though they started off with

different levels of prior knowledge. These two experiments together suggest that interactive visualization is a more

effective method for individual self-paced learning than learning from a textbook regardless of the level of students.

Table 4. Comparison of Results of Experiments I and II

Experiment I Experiment II

Pre-test Post-test Pre-test Post-test

Text Group 27% 43% 44% 53%

AV Group 28% 74% 48% 71%

3.5. Experiment III: Do Novice Students Learn More from HalVis than from a Lecture?

This experiment was designed to compare HalVis with classroom lectures, and also to investigate how HalVis and

lectures together contribute to learning. Our hypothesis was that HalVis would facilitate learning better than a

lecture because the system provided animated illustrations of algorithms that a lecturer cannot, and it allowed
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students to pace their learning whereas the pace of a lecture was beyond the control of individual students. In

addition, we predicted that HalVis used in conjunction with lectures would assist learning even more because of the

redundant exposure to the subject matter through two different instructional methods. The third issue investigated in

this experiment was whether the order (HalVis before lecture, or vice versa) would make a difference in

performance when students learned by both methods. Participants in this experiment were novice computer science

students, and the algorithms used were SelectionSort and MergeSort.

3.5.1 Subjects

This experiment involved 20 second-year undergraduates enrolled in an introductory data structures and

programming course at Auburn University. Students were assigned to a matched pair of groups, a Lecture-

Visualization (LV) group and a Visualization-Lecture (VL) group. The LV group received a class lecture discussing

the algorithms, then interacted with visualizations of the two algorithms in a computer laboratory. The VL group

interacted first with HalVis, and then attended the class lecture covering the algorithms. There were nine students in

the LV group and eleven students in the VL group.

3.5.2 Materials

Lecture: All participants attended the same two lecture sessions conducted by an Auburn University computer

science faculty member. These sessions consisted of 100 minutes of verbal instruction accompanied by pictures

drawn on the blackboard, overhead transparencies, and a lecture summary handout. The lecturer also responded to

several questions from students in the class during the sessions.

Visualization: Both groups interacted with the same visualizations of the SelectionSort and MergeSort algorithms,

with no supplementary materials provided.

Test Questions: Three tests were used. A pre-test was given prior to the experiment, a mid-test was given after the

first treatment, and a post-test was given after the second treatment.

3.5.3 Procedure

The phases of this experiment were carefully synchronized with the class syllabus. Students were given the pre-test

a week before the scheduled lecture about sorting algorithms. The day before the lecture, the VL group met in a
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computer laboratory on campus, interacted with HalVis to learn the two algorithms, and completed the mid-test.

Both groups then attended the same lecture. We chose to use a live classroom lecture instead of presenting a

videotaped lecture to students in order to allow student interaction with the instructor and to simulate a realistic

learning environment. Having both groups attend the same lecture eliminated variations between separate lectures

covering the same topic. The day after the lecture, the LV group met in a computer laboratory on campus and first

completed the same mid-test taken by the VL group. Then the group was asked to interact with HalVis to learn the

two algorithms, followed by the post-test. On this same day, the VL group met in a classroom and completed the

same post-test.

Fig. 10. Comparison of Group Pre-Test, Mid-Test and Post-Test Scores

We designed the experiment to minimize outside interactions that might affect the results. We asked students to

refrain from discussing any aspect of the experiment during its course. We did not explicitly prevent students from

reading the course textbook or trying to learn more about the algorithms from other sources. However, only one of

the algorithms was discussed in the course textbook. A question in the mid- and post-tests asked students whether

they had attempted to learn about the algorithms on their own during the experiment. None of the students indicated

that they had done so in the mid-test, and four indicated that they read the textbook description of one algorithm in

the post-test.

3.5.4 Results

Examining the results depicted in Figure 10, we see that both groups were relatively unfamiliar with the algorithms
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based on their pre-test averages (7% for the VL group and 19% for the LV group). The mid-test results show that the

VL group learned more than the LV group. Following the session with HalVis, the VL group average score was

70% compared to 44% for the LV group after the lecture. Despite having less prior knowledge about the algorithms,

the VL group (after interacting with HalVis) significantly outperformed the LV group (that received the lecture) in

the mid-test. However, HalVis helped the LV group catch up with the VL group by the time of the post-test, whereas

additional knowledge gained by the VL group from the lecture session was relatively small. The VL group

experienced a 63% improvement after the visualization, and the following lecture provided an improvement of 2%.

The LV group experienced a 25% improvement in average score after receiving the lecture, then improved another

28% following the AV interaction. Both groups eventually reached similar levels (72%) of performance. The LV

group showed steady improvements following the lecture and then the visualization. The VL group showed a

significant increase resulting from visualization alone, to which the lecture did not add considerably.

Statistical data are provided in Tables 5, 6 and 7. Table 5 shows the between-group statistical results. Post-test

results show that the order in which lectures and visualizations are presented does not appear to make a difference,

as both groups scored the same (72% for the VL group and 72% for the LV group; (F(1,19)=0.001, p<0.97). While

these post-test results are not significantly in favor of either group, Table 5 shows that the mid-test scores are in

favor of the group that interacted with the visualization first (VL group) compared to the group receiving the lecture,

(F(1,19)=5.3, p<0.033).

Table 5. Experiment III Statistical Summary: Between Groups (Overall Performance)

Pre-test Mid-test Post-test
LV 19% 44% 72%
VL 7% 70% 72%
F(1,19) 1.78 5.3 0.001
Significance p<0.198 p<0.033 p<0.97

Table 6 shows that the score improvement from the pre-test to the mid-test favored the group receiving the

visualization, which for this first phase of the experiment was the VL group (F(1,19)=26.89, p<0.0001).
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Table 6. Experiment III Statistical Summary: Between Groups (Improvement)

Pre-to-Mid-

Test

Improvement

Pre-to-Post-

Test

Improvement

LV 25% 53%

VL 63% 65%

F(1,19) 26.89 1.16

Significance p<0.00001 p<0.29

These results are summarized as box plots in Figure 11. The box indicates the range of entries in the 25th through 75th

quartile, and the lines extending to the left and right show the range of scores for the entire group. The thick vertical

line in the box indicates the mean, and the thin line represents the median value for the group.

Fig. 11. Experiment III Box Plots
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3.5.5 Discussion

This experiment shed light on the three aspects of learning that we set out to investigate. First, the results support the

hypothesis that learning by visualization is more effective than learning by lecture alone. Second, these results

suggest that the combination of learning by visualization and lecture leads to improvements over learning by

visualization or lecture alone. Both groups improved after both phases were completed. The improvement due to

providing the visualization to the LV group was large and statistically significant. However, the improvement due to

providing the lecture to the VL group was only 2% and not statistically significant. The third conclusion is that if

students learn from both lectures and algorithm visualizations, the order of the instructional methods is not

important. After completing both phases, the two groups performed at about the same level.

There are some issues to consider regarding these results. The most obvious one is the quality of the lectures, for

which no objective measure exists. The lecturer had several years of experience teaching introductory computer

science courses and had a record of consistently receiving high course evaluations. He received the “best teacher”

award from the college of engineering twice, and had taught the introductory data structures and programming

course, from which the subjects were drawn, many times. We designed the experiment so that all participants would

attend the same lecture sessions, to avoid the possibility that different sessions could have covered the same material

in different ways. We also chose to have a live lecture instead of a videotaped one, to allow teacher-student

interaction more typical of a classroom environment. Another factor we did not control for was that some students

might have tried to learn more about the algorithms during, but outside of the experiment. To reduce this possibility

we intentionally used the SelectionSort algorithm, which was not discussed in the course textbook. The MergeSort

algorithm was discussed in the textbook. We asked the subjects a question about this in the mid- and post-tests. Only

four indicated in the post-test that they had read the text. We did not detect any significant differences in student

performance between the algorithm discussed in the textbook and the algorithm not covered in the textbook.

3.6. Experiment IV: Do Advanced Students Learn More from HalVis than from a Typical

Algorithm Animation?

The goal of this experiment was to compare the effectiveness of learning from hypermedia algorithm visualization

in the style of HalVis to learning from a typical algorithm animation. The algorithm used was Shortest Path, to find
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shortest paths from one node to all other nodes in a graph. It is conceptually more difficult, and is different in style,

from the algorithms used in the previous experiments. Correspondingly, we chose more advanced students as

subjects.

3.6.1 Subjects

This experiment involved 40 undergraduate computer science students enrolled in a third year algorithm design and

analysis course at Auburn University. Like previous experiments, participants were assigned to two matched groups:

a “Tango” group and a “HalVis” group.

3.6.2 Materials

Algorithm Animation: One of the most mature and widely available algorithm animation platforms is the software

suite developed by Stasko [25] – Tango, Polka and Samba – publicly available from Georgia Institute of

Technology. This software distribution executes on Windows 95 systems and includes a library of algorithm

animations created by researchers and students. We carefully examined eight animations of the Shortest Path

algorithm available in this distribution, and selected one that appeared to be easiest to understand and which had the

most features in common with the HalVis system. Figure 12 shows a screenshot of this animation. The Tango group

worked with this animation. Algorithm Visualization: The HalVis group worked with a visualization of the Shortest

Path algorithm in HalVis.

Similarities and differences between the two: Like HalVis, the Tango animation provides multiple representations: a

pictorial representation of the graph in which the shortest path is being computed and a textual representation of the

pseudocode of the Shortest Path algorithm. The animation, similar to HalVis, shows various steps of the algorithm

on the graph through color coding, and the line of the pseudocode that is being executed in the animation is

highlighted. Controls for stepping through the animation (which will pause after each step has been executed) and

speeding it up or slowing it down are also available in both systems.
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There are also several differences between the animation and the visualization. One is that the animation, typical of

algorithm animations produced in prior research, provides just one module that shows the animation with additional

representations such as pseudocode. The module in HalVis that presents a similar animation, the Populated View

which contains a macro-level (large-scale) animation, is preceded by a bridging analogy that is animated (the

Conceptual View) and a micro-level animation module called the Detailed View. Thus, HalVis provides three kinds

of animations. Second, HalVis presents textual explanations, with hyperlinks to additional explanations of the basics

of algorithmics in a Fundamentals module at several points. Thus, the animations do not stand-alone; instead, they

are contextually embedded in a knowledge-providing hypermedia environment. The third difference is that HalVis

poses thought provoking “tickler” questions to students during the course of the animations, and provides

“articulation points” consisting of additional questions between modules, in order to give students a way to self-

assess their knowledge. Fourth, the algorithm animation in HalVis’s Detailed View is accompanied not only by

synchronously highlighted pseudocode, but also by brief explanatory messages about the operations being executed

and a view of the changing values of important variables utilized by the algorithm. Fifth, the student has more

control over HalVis’s animation in the Detailed View. Besides similar speed controls and a stepping-through

)LJ� ��� $OJRULWKP $QLPDWLRQ
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facility, the student can also segment the animation at different levels such as pausing after each loop execution.

Finally, in the Populated View, the student is given an opportunity to make predictions about the performance of the

algorithm. If he or she chooses to do so, the animation will display the predicted and actual values, thus providing

informative feedback.

Handout: The Tango group also received a supplement, a 5-page section describing the Shortest Path algorithm

photocopied from their textbook [29]. This was done to mimic conditions under which algorithm animations were

previously experimentally evaluated [e.g. 14,15], where the animation groups generally had access to supplementary

materials. Members of the HalVis group were not given any supplementary materials.

3.6.3 Procedure

The experiment preceded course lectures that covered the subject of graph algorithms. Twenty students each in the

Tango group and the HalVis group completed the experiment. Pre-test results helped verify that the two groups were

evenly balanced in terms or prior knowledge. In the following week, both groups met in the same public computer

laboratory on campus, but at different times. Both groups received a brief, navigation-only orientation to the

visualization software they were to use prior to being assigned individually to computers. No student in the HalVis

group took more than 90 minutes for the entire experiment. No student in the Tango group took more than 60

minutes for the entire experiment.

3.6.4 Results

Examining the results shown in Table 8 and Figure 13, we see that both groups were relatively unfamiliar with the

algorithm based on the pre-test averages. In the post-test the HalVis group scored on average 89% and the Tango

group scored on average 71% (F(1,37)=12.75, p<0.001). The pre- to post-test improvement observed in the HalVis

group was also significantly greater than that shown by the Tango group (F(1,37)=4.79, p<0.035). These results are

also summarized as box plots in Figure 14. The distribution of scores is interesting. The HalVis pre-test score

distribution is tight and normal-looking, but there are two outliers (shown as black dots) that scored very well,

indicating prior knowledge of the Shortest Path algorithm. The distribution of the HalVis group’s post-test scores

indicates a tighter clustering compared to the post-test score distribution of the Tango group, with one outlier at 69%

(shown as a black dot). The post-test score distribution of the Tango group also shows (as a black dot) the presence

of one outlier who scored extremely poorly.
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Table 8. Experiment IV Statistical Summary

Statistical Summary
Pre-test Post-test Improvement

Tango 23% 71% 48%
HalVis 22% 89% 68%
F(1,37) 0.01 12.75 4.79
p p<0.91 p<0.001 p<0.035

Fig. 13. Experiment IV Overall Summary

Fig. 14. Experiment IV Box Plots

3.6.5 Discussion

This experiment compared the HalVis algorithm visualization framework with an algorithm animation built using a
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popular algorithm animation system. Similar algorithm animations have been the focus of several experimental

analyses reported in the literature [e.g. 12,13,14,15]. The algorithm animation was well-paced, showed good use of

color to highlight algorithm actions, included a brief textual introduction, and provided the student with the

algorithm’s pseudocode, whose lines were highlighted synchronously as the animation proceeded. We supplemented

this animation with pages describing the algorithm from the course textbook in order to provide the student with as

much information about the algorithm as possible in a stand-alone setting, and to replicate as closely as possible the

conditions of algorithm animation experiments reported by other researchers. The results indicate that our

hypermedia algorithm visualization design is more effective, as a stand-alone self-paced learning environment, than

an algorithm animation representative of current approaches.

As with the other experiments, there are several relevant factors to note. The quality of the algorithm animation is

one issue. We attempted to address this by selecting the most explanatory and most similar (in features to HalVis)

algorithm animation from the eight different animations of the Shortest Path algorithm supplied with the software

distribution. It is possible that a different algorithm animation might have led to different results for the Tango

group. A similar argument could be made regarding the textual supplement (photocopied pages from the course

textbook) that was provided to the Tango group.

4. General Discussion

Our experiments were designed to evaluate a novel approach to the design of educationally effective algorithm

visualizations, one in which analogies and animations are embedded in a context and knowledge providing

hypermedia environment. Comparisons with learning from a textbook, learning from lectures, and learning by

interacting with an algorithm animation representative of current research on the topic demonstrated the benefits of

HalVis for self-directed and self-paced learning. Significant learning effects were found for different algorithms and

undergraduate students at different levels.

We are aware of only one other system, ALGONET, that takes a similar approach of including algorithm animations

in a larger context in which other “cognitive media” such as definitions, examples, pseudocode, questions and case

studies are provided [23]. But the authors present data from only an empirical comparison of two versions of

ALGONET, rather than comparing ALGONET against other means of instruction or other algorithm visualizations.
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There are also significant differences between the architectures of HalVis and ALGONET. At the very beginning,

HalVis introduces key aspects of an algorithm with an analogy, and in work reported elsewhere [30] we have

demonstrated that these analogies significantly prime learning from subsequent visualizations. The case studies in

ALGONET are like analogies, but they are not explicitly designed to be bridges to better comprehension of the more

detailed animations to follow. ALGONET animations are accompanied by textual explanations, but not also by

synchronously highlighted pseudocode and changing variable values as in the Detailed View of HalVis. ALGONET

does not present “tickler” questions to promote self-explanations during animation viewing. There is also no facility

for the learner to enter his or her predictions regarding performance parameters of the algorithm and compare those

against actual values as the animation progresses.

In addition to examining student performance, we captured a log of user activity and collected student comments.

Preliminary analysis of the user logs showed that students executed the micro-level animations (embedded in the

Detailed View) an average of three times and viewed the macro-level animations (embedded in the Populated View)

an average of four times. We found that over half of the students experimented with entering their own data for at

least one execution of the algorithm animation at the detailed level, and every student elected to make performance

predictions for at least one animation execution at the populated level. The student surveys overwhelmingly favored

HalVis over the other learning methods. Extracts of some of the positive comments include: “Animation made it

easier to understand ... more interesting ... much better than reading a book”. Students liked “…being able to rerun

the animation until you understand ... step by step…,” as well as the questions and facility to make predictions. One

student said, “ I liked being able to see [efficiency] … I didn't realize that there was that much difference.” There

were some negative comments as well. Students provided constructive criticisms like: “It could use more sound,”

and “The recurring textual explanations [in the Execution Status Message window of the Detailed View] were

annoying.” There were also conflicting comments like one who said, “It was too detailed,” while another that

observed, “It was too simplistic.”

In a meta-analysis of empirical studies of algorithm animations, Gurka and Citrin [31] state that “there is a danger

… as more experiments produce inconclusive data, which may result in algorithm animation failing to become an

important educational mechanism”. Therefore, the algorithm visualization architecture and positive evaluation

results presented in this paper are important steps toward revealing the educational effectiveness of algorithm
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animation. While these experiments represent a large-scale systematic effort to uncover the learning benefits of

contextually embedded algorithm animations, others have also reported on positive outcomes from algorithm

animation. For instance, Crosby and Stelovsky [32] compared the learning of second semester computer science

undergraduates from a visualization system and traditional instruction (view graphs and blackboard). The students

learned several algorithms in a four-week period. The visualization system displayed either three simultaneous

presentations of some algorithms (pseudocode in which steps are highlighted as they are executed, changing variable

values and comments, but no graphical animation) or a typical animation (for other algorithms). They found that the

visualizations resulted in significantly higher post-test scores (82.69% correct versus 51.41% correct). Kann and

colleagues compared post-test scores of students who learned a recursive algorithm for the Knapsack problem from

a textual description, and from a very simple animation and the textual description [33]. They found that viewing the

animation resulted in significantly higher post-test scores (79% correct versus 64% correct). In a large study

involving 300 novice participants (non-computer science majors), Seay and Catrambone [34] found that the

transitional motion contained in a smooth animation of the steps of an algorithm is helpful to those who are not

exposed to well-designed textual explanations. In the study, students who had access to a textbook extract and

viewed an animation performed better on far transfer problems than those who had access to the textbook extract

and saw a series of static pictures as well as those who saw only the textbook extract.

5. Conclusion

The general conclusion is that interactive hypermedia algorithm visualization, modeled after the HalVis framework

(a system in which analogies and animations are embedded within a knowledge and context providing hypermedia

environment), can provide significant benefits to learners as an educational tool for self-directed and self-paced

learning, either in a stand-alone mode or even more so in combination with other instructional techniques.

There are a number of possible reasons for the observed advantages of algorithm visualizations over traditional

algorithm animations. First, in comparison with previous animation systems that only presented animations with

some textual feedback, HalVis allows the student to learn incrementally by starting from a real world analogy and

then transitioning to the algorithm. Second, the hypermedia structure provides a student access to fundamental

building blocks of algorithmic knowledge in-context and on-demand. Third, we divide dynamic presentations into

manageable and meaningful segments, with pauses and self-explanation inducing questions in-between. This makes
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it easier for students to stop and reflect, repeat, or access other relevant information through hyperlinks while

watching animations. Furthermore, animation segments are presented in synchrony with other representations in

other media. This combination of features, we believe, results in the dynamic information being conveyed better in

context, and therefore in a more comprehensible fashion. Fourth, rather than providing just one view of an animation

as has been the typical approach, HalVis presents three kinds of animations (analogical, micro-level and macro-

level), so that the macro behavior is seen after the micro behavior is seen and understood, both following an

analogical introduction to the algorithm. Fifth, our framework allows students to actively engage themselves in the

visualization by changing data inputs and making performance predictions, contributing to better learning. Sixth, we

believe that the different kinds of questions provided by HalVis promote reflection and self-explanation, thereby

improving learning.

The following list summarizes conclusions that can be drawn from the reported experiments.

¾ Advanced as well as novice students perform better in answering conceptual and procedural questions about

fundamental algorithms after interacting with hypermedia algorithm visualization than after studying

explanations found in typical textbooks.

¾ Novice students gain more knowledge after interacting with hypermedia algorithm visualization than after

hearing a typical classroom lecture. Furthermore, lectures and visualizations supplementing each other provide

the best learning scenario, and the order of presentation does not seem to influence extent of learning.

¾ It appears that interactive hypermedia algorithm visualization is most effective when prior knowledge is limited.

However, students with some amount of prior knowledge also derive a significant learning benefit from

algorithm visualizations.

¾ Individual differences in learning from algorithm visualizations exist. These differences may be compensated

by the use of multiple modes of instruction. This argues for hypermedia algorithm visualizations supplementing,

rather than replacing, traditional instructional methods.

¾ The framework for algorithm visualization design that HalVis exemplifies is more effective than previous

algorithm animation designs.

In conclusion, the research reported in this paper illustrates the benefits of visualizations, conceived as different

kinds of animations immersed in contextual knowledge, over simple animations and traditional means of learning.
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Thus, it begins to provide a methodology for the design of visualizations to effectively communicate abstract

process knowledge to students. Perhaps disheartened by the preponderance of negative evidence regarding the

educational effectiveness of algorithm animations, the research community has of late begun to investigate students

constructing animations [25,35] and other expository representations [36]. While constructivism in algorithm

learning is a pedagogical strategy sorely in need of further research, the message of this paper is that abandoning the

design and use of interactive expert-constructed algorithm visualizations as instructional aids in the classroom, or as

aids for self-paced learning, is not warranted.
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