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Abstract.  We conducted eye-tracking studies of subjects solving the problem 
of finding shortest paths in a graph using a known procedure (Dijkstra’s algo-
rithm). The goal of these studies was to investigate how people reason about 
and solve graphically presented problems. First, we compared performance 
when the graphical display was animated to when the display was static. Sec-
ond, we compared performance when the display was initially sparse, with de-
tailed information being progressively revealed, to when the display presented 
all information simultaneously. Results suggest that while animation of the 
procedure or algorithm does not improve accuracy, animation coupled with 
progressively revealing objects of interest on the display does improve accu-
racy and other measures of performance.  

1   Introduction 

There is increasing research interest in the intelligent user interface community on 
interfaces that track and respond to the user’s attention. To develop such interfaces, 
we have to understand how people view, comprehend and respond to visual displays 
of information. One aspect of this issue that our research has addressed is how people 
solve problems drawn from domains with the following five characteristics: (1) ob-
jects of the domain are spatially distributed; (2) the domain is dynamic, i.e. objects 
and their properties change over time; (3) objects interact with each other; (4) such 
interactions can be traced along chains of dependency relationships that branch and 
merge in spatial and temporal dimensions; and (5) predicting the future evolution of a 
system or object configuration requires reasoning from a given set of initial condi-
tions and inferring chains of events along paths of dependency.  

Understanding the cognitive processes underlying such reasoning can provide in-
sights into the design of information displays that actively aid the problem solver and 
enhance performance. Given the increasing use of large format interactive displays 
for tasks such as weather forecasting, emergency management and military planning, 
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results from such research may find significant practical application. In this context, 
we report on two experiments that investigated how people reason about graphs. In 
addition to determining the accuracy of their answers, we measured their response 
times and collected data on their eye movements. Our goal was to understand the 
relations between accuracy, patterns of visual attention allocation across the display 
and response times.  
The rest of this paper is organized as follows. First, we summarize earlier work on 
diagrammatic reasoning that has a bearing on the present research. The next section 
explains Dijkstra’s algorithm or procedure for finding shortest paths in an undirected 
weighted graph with an example. This section also illustrates the operation of ani-
mated and progressively revealing displays of this procedure. The following section 
describes the experiments. Section 5 presents results and discussion. 

2   Prior Research 

Diagrams are often used as external representations in problem solving. Problem 
solving with a static pictorial representation such as a diagram sometimes involves 
mental simulation of the behavior of the system that it depicts, requiring the reasoner 
to mentally manipulate the configuration or situation depicted in the diagram. In this 
case, diagrammatic reasoning may involve several cognitive processes. Prior research 
on diagram-based problem solving falls into three groups: theoretical analyses, em-
pirically based cognitive modeling efforts, and empirical investigations of the prob-
lem solving process. 

Larkin and Simon undertook a theoretical analysis of diagrammatic versus senten-
tial representations and described features of diagrams that aid reasoning (Larkin & 
Simon, 1987). Extending this line of inquiry, Cheng proposed twelve functional roles 
of diagrams in problem solving (Cheng, 1996). These analyses suggest that diagrams 
of mechanical devices can aid a problem solver by explicating the structure, compo-
nents, relations, states and causal dependencies in the devices. 

Based on several experiments, Narayanan and Hegarty developed a cognitive 
model of multimodal comprehension and suggested guidelines for designing informa-
tion displays (Narayanan & Hegarty, 2002). They describe the process of how people 
construct a mental model during multimodal comprehension. First, a static mental 
model is constructed by diagram decomposition, making representational connec-
tions, building referential connections, applying knowledge about basic laws, and 
hypothesizing causality. Then, people construct a dynamic mental model by mental 
animation and inference. Based on several experiments, they showed that multimedia 
systems designed according to their cognitive model were better in terms of facilitat-
ing comprehension and learning. They suggest six principles for information display 
design: decomposition principle, prior knowledge principle, co-reference principle, 
basic laws principle, lines of action principle, and mental simulation principle. 

Several studies have focused on uncovering characteristics of the process of dia-
gram-based problem solving. Narayanan et al (1994) employed a protocol analysis 
approach to discover characteristics of subjects’ behaviors during diagrammatic rea-



 

soning. To explain how diagrams are used in reasoning, they proposed a process 
model of how people might solve mechanical reasoning problems from diagrams. 
They interpreted experimental results within the framework of this process model and 
found that diagrams aid the indexing and recall of relevant inferential knowledge. 
This research suggests that diagrams of systems are decomposed into components by 
reasoners, and that this decomposition is guided by spatial adjacency and causality. 
The model predicts that attention shifts across device components are mediated by 
spatial connections or contacts and causal dependencies. They found that diagram-
matic reasoning about mechanical devices proceeded along the direction of causality. 

In another experiment (Narayanan et al., 1995), these researchers further explored 
the role of the diagram in guiding the reasoning process. They used the diagram of an 
impossible or contradictory mechanical device. In that problem, the causal chain of 
events in the operation of the device split and merged at certain points. They postu-
lated that reasoning trajectories of diagram-based problem solving were influenced by 
device structure, inferred causation, search strategy, verification goals, and short-term 
memory needs. They found evidence in verbal protocols that search strategy, verifica-
tion goals and short-term memory support were factors that influenced focus shifts. 

One limitation of those experiments is that no eye movement data was collected to 
track focus shifts. Instead, the researchers used verbal reports and gestures to infer the 
components that subjects were focusing on. This is an indirect measure. Eye move-
ment data can provide direct information on focus shifts during diagrammatic prob-
lem solving.  

Rozenbilt and his colleagues (Rozenbilt et al., 1998) conducted three experiments 
to determine if eye movement data could provide crucial information about moment-
by-moment cognitive processes when subjects were reasoning about diagrammatic 
problems. They found that independent raters who did not participate in the experi-
ments were able to actually predict principal axes and principal directions of the vis-
ual stimuli presented to subjects simply by looking at subjects’ scan paths without the 
stimuli. In case of mechanical reasoning problems, raters predicted principal axes and 
principal direction more accurately than for non-mechanical reasoning problems. In 
another experiment, independent raters tried to predict subjects’ accuracy by observ-
ing their eye positions overlaid on the diagram of the device; more than 75% of the 
time, the raters correctly predicted subjects’ accuracy. This suggests that eye move-
ment patterns contain crucial information about how people are reasoning with a 
diagram.   

Grant and Spivey conducted two experiments to find out how people look at a dia-
gram and how their eye movement patterns correlate with inference making (Grant & 
Spivey, 2002). In the first experiment, they discovered that when people solve a dia-
grammatically presented medical problem, those who produced the correct solution 
looked at a particular area of the diagram for a long time. This area contained infor-
mation critical to solving the problem. They considered only the fixation time (i.e. 
how long someone looked at a specific area of the diagram), not gaze patterns. They 
did a second experiment with three different conditions, one of which was designed 
to attract subjects’ attention to this critical area using a blinking technique on the 
display. During the second experiment, they did not track subjects’ eye fixations. 



 

Subjects who saw the blinking diagram performed better than those who saw a static 
diagram. This result indicates that appropriate attention guidance can improve dia-
grammatic reasoning. But a deficiency of their experimental method is that they did 
not know whether the subjects actually looked at the blinking area during the experi-
ment because eye tracking was not done. 

Yoon and Narayanan conducted an eye tracking study of diagrammatic problem 
solving (Yoon & Narayanan, 2004) in the domain of mechanical devices. Their study 
revealed eye movements suggestive of the use of mental imagery to solve mechanical 
reasoning problems presented as diagrams. These researchers found that subjects who 
employed mental imagery during problem solving exhibited more eye fixations, 
looked at more components of the problem, spent more time looking at important 
components, and gazed across the diagram in a more systematic fashion. The implica-
tion is that interfaces that help users better guide their visual attention may improve 
problem solving performance.  

3   The Shortest Path Problem and Its Solution Procedure 

Many problem solving situations admit well-defined procedures that specify com-
ponents or elements of the problem that a successful problem solver must pay atten-
tion to. So it is reasonable to hypothesize that a display that guides the attention of the 
problem solver to these components, in a particular order if so specified by a proce-
dure that is available, can positively influence the user’s problem solving process and 
its results. 

The problem we chose to investigate this hypothesis is the shortest path problem: 
given a graph G with edge costs and a starting node s, find the shortest cost paths 
from s to every other node in G. Many practical problems, such as route planning and 
project planning, can be represented as shortest path problems. An approach to solv-
ing such problems is given by Dijkstra’s algorithm. This algorithm, invented by Ed-
gar Dijkstra, solves the problem in stages. In the first stage, it considers edges to all 
nodes adjacent to s one at a time. The cost of the path to each adjacent node (from s), 
which is nothing but the cost of the edge connecting it with s, is then attached to that 
node. In the second and following stages, the algorithm picks one node, say j, from 
among all nodes with a finite cost attached to them – j will be the node with the 
smallest cost. Then the algorithm declares that the shortest path from s to j is now 
known, and proceeds to consider, in turn, each node adjacent to j to see if a smaller 
cost path from s through j to this adjacent node can be found. If so, the attached cost 
of that node is appropriately updated. Then, as before, the algorithm picks the next 
node j to declare that the shortest path to it is now known. When this declaration has 
been made for all nodes in the graph, the algorithm terminates. This is an efficient 
and systematic way to find shortest paths from s to all other nodes. It can be shown 
that n to the power 3 is an upper bound for the number of steps needed to solve this 
problem for a graph with n nodes. 

It is obvious that the algorithm considers elements of the problem (i.e. nodes and 
edges of a graph) in a systematic fashion, and produces and updates relevant informa-



 

tion (changing path costs from s to various nodes), during the course of problem 
solving. What we investigated was the question of whether users trained on applying 
(i.e. mentally simulating) Dijkstra’s algorithm on graphs are helped to different ex-
tents by different kinds of information displays that present shortest path problems to 
them. 

One possible display to present a shortest path problem to a user is a static one – 
the picture of the graph with all relevant node and edge information included. A sec-
ond possible display is one that graphically animates the various steps of the algo-
rithm. Figure 2 shows various snapshots of an animated display that illustrates the 
operation of Dijkstra’s algorithm on an undirected weighted graph (shown in Figure 
1).  
 

 
 
 
 
 
 
 
 
 
 
Read Figure 2 column by column (left to right) and each column top to bottom. It 

shows a 4 node graph with node 1 being the start node s. Each edge has a cost at-
tached to it. Each node has an information triple attached to it. The first item of this 
triple is either 0 (indicating that the shortest path to it is not yet known) or 1 (indicat-
ing that the algorithm has declared that the shortest path to this node is known). This 
item is 1 for node 1 since it is the start node, and therefore the shortest path from it to 
itself is already known. This node is also colored blue to indicate this (in the black 
and white figures we use a horizontal pattern to indicate a blue colored node). The 
second item of the triple is the cost of the shortest path to this node found thus far. 
This item is 0 for node 1 since it is the start node. The third item is the previous node 
in this shortest path. This item is S for node 1 since it is the start node. 

In the first stage, the algorithm considers edges to all nodes adjacent to node 1 one 
at a time. So it first considers the edge 1-2, which is indicated by that edge turning red 
from its default black color. Next, the algorithm computes the cost of the path from 
node 1 to node 2 (which, in this case, is simply 4). This is indicated by node 2 turning 
red (in the black and white figures we use a diamond pattern to indicate a red colored 
node). Now the cost of this path is attached to node 2. This is indicated by the infor-
mation triplet [0,4,1] appearing beside node 2, indicating that while the shortest path 
to node 2 is not yet known, a path of cost 4 is known and the previous node in that 
path is node 1. All these can be seen in the second graph of Figure 2. After these 
operations, edge 1-2 reverts to black color. When this process is repeated for edge 1-3 
and node 3, and edge 1-4 and node 4, the graph will appear as in the third graph of 
Figure 2. Now there are three nodes, 2, 3 & 4, with finite path costs. So in the second 
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Fig. 1. A simple undirected weighted graph 



 

stage the algorithm picks node 4, which has the smallest path cost of 1, and declares 
that the shortest path from node 1 to node 4 is now known. This is indicated by the 
edge 1-4, node 4 and its information triplet turning blue, with the first item of the 
triplet changing from 0 to 1, as can be seen in graph 4 of Figure 2. 

Now the process repeats for node 4. Its edges 4-2 and 4-3 and adjacent nodes 2 and 
3 are considered in turn. Note that the edge 4-1 and node 1 are not considered further 
as these are parts of a known shortest path already. The cost of a path from node 1 to 
node 2 through node 4 is 1+2=3, which is less than the cost of the previously com-
puted path to node 2 (of cost 4), so the information triplet of node 2 is updated from 
[0,4,1] to [0,3,4]. The cost of a path from node 1 to node 3 through node 4 is 1+7=8, 
which is more than the cost of the previously computed path to node 3 (of cost 7), so 
its information triplet is not updated. These operations can again be illustrated by the 
appropriate edges, nodes and information triplets changing color and the values 
changing. This situation is depicted by graph 5 in Figure 2. 

Now there are two nodes, 2 and 3, whose shortest paths from node 1, the start node, 
are not yet known. So in the third stage the algorithm picks node 2, which has the 
smallest path cost of 4, and declares that the shortest path from node 1 to node 2 is 
now known. This is indicated by the edge 4-2, node 2 and its information triplet turn-
ing blue, with the first item of the triplet changing from 0 to 1, as can be seen in graph 
6 of Figure 2. Now the algorithm considers nodes adjacent to node 2. In this case 
there is only one node, 4, that is left and the rest of this process, therefore, should be 
obvious. Graph 7 in Figure 2 indicates the consideration of edge 2-3, and the updating 
of the information triplet of node 3. Graph 8 shows the final state, when the shortest 
paths from node 1 to all other nodes are found (these paths are 1-4, 1-4-2 and 1-4-2-
3). What we have illustrated here are both Dijkstra’s procedure and how an animated 
display of the procedure might operate. 

One might conceive of an alternate display that not only shows this animation of 
the shortest path finding procedure but also takes a “just in time” approach by only 
revealing components of the graph that the animation is illustrating at any moment. 
So, initially, only node 1 and its state are displayed (Figure 3; read this figure also left 
to right column-wise and each column top to bottom). Then, when the procedure 
considers node 2, it and the edge to it are revealed with appropriate color codings as 
described above. Similarly, other nodes and edges are also revealed only when they 
are considered for the first time by the procedure. This will result in a progressive 
revealing of information as shown in Figure3. 
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Fig. 2. Illustration of Dijkstra’s algorithm operating on a simple graph, showing stages of an ani-
mated display; discussed in text column-wise left-to-right and top-to-bottom in each column. 

Fig. 3. Snapshots of a progressively revealing animated display of Dijkstra’s algorithm operating 
on a simple graph; discussed in text column-wise left-to-right and top-to-bottom in each column. 
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4   Experiments 

4.1   Comparing an animated display to a static display 

Cognitive and computational modeling in the mechanical domain (Hegarty, 1992; 
Narayanan, Suva & Motoda, 1994; 1995) suggest that construction of a dynamic 
mental model of a system is often accomplished by considering components indi-
vidually, inferring their behaviors due to influences from other connected or causally 
related components, and then inferring how these behaviors will in turn affect other 
components. This can involve both rule-based inferences that utilize prior conceptual 
knowledge and visualization processes for mentally simulating component behaviors 
(Narayanan, Suwa & Motoda, 1994; 1995; Schwartz & Black, 1996; Sims & Hegarty, 
1997). In the domain of machines, a spatial visualization process called mental 
animation (Hegarty, 1992) is involved in the simulation of component behaviors. 
Mental animation appears to be constrained by working memory capacity such that 
people are only able to mentally animate one or two component motions at a given 
time (Hegarty, 1992). Working memory demands are imposed when several 
mechanical components constrain each other’s motions, so that the motion of 
components cannot be inferred one by one (Hegarty & Kozhevnikow, 1999) or if 
imagining the motion of a component changes the configuration of components so 
that it no longer corresponds to the external display (Narayanan, Suwa & Motoda, 
1994). Furthermore, this type of mechanical reasoning is particularly demanding of 
spatial working memory processes (Sims & Hegarty, 1997). This evidence suggests 
that an adaptive display that can provide local animation or other kinds of 
visualizations showing the behaviors of individual components of a system is likely to 
improve problem solving performance by reducing working memory demands and 
freeing up more mental resources to meet processing demands of the problem at 
hand. This prediction was tested. 

In this study, we had two conditions. Subjects in both conditions were given train-
ing on Dijkstra’s algorithm prior to start of the experiment. The experimental condi-
tion showed subjects an animation of how to find shortest path in a weighted undi-
rected graph according to Dijkstra’s algorithm as explained in Section 3. Figure 4 
shows the stimulus used. The animation did not run to completion. Instead, it was 
stopped in the middle and subjects were asked to predict the next step (the problem to 
be solved appears in Figure 4). The control condition showed a static diagram of the 
state of the graph at the point at which animation stopped (Figure 4 shows the state of 
the graph at this point). 

 
 
 

 



 

 

 

 

4.2   Comparing a progressively revealing animated display to an animated 
display that presents all information simultaneously 

The cognitive process model of Narayanan and Hegarty predicts that successful de-
composition of a system into its constituents is a necessary precursor to accurate men-
tal model construction. This process can be hindered if the display is dense, with 
many variables shown, or if the problem solver lacks the necessary background 
knowledge of the domain and representational conventions to successfully parse the 
display. For example, Hegarty and Shimozawa (2001) reported the following findings 
from the meteorology domain: (1) it takes longer to verify a fact about a specific 
variable from a weather map if the map shows multiple variables; (2) the number of 
variables displayed on a weather map influences both encoding and inferences from 
weather maps; and (3) performance is slower and less accurate for maps that included 
irrelevant variables. Visual clutter is a problem in at least two ways. When both rele-
vant and irrelevant visual information are present, separating the two and focusing 
only on the relevant is a comprehension challenge. Even when most of the informa-
tion present in the display is relevant (as is the case in our stimulus), focusing only on 
the right display objects at the right time during various stages of the problem solving 
process is not an easy task. Therefore, a display that progressively reveals relevant 

Fig. 4. Graph used in the experiments 



 

information instead of showing all information at once is likely to improve problem-
solving performance. This prediction was tested. 

We used the graph in Figure 4. The control condition display was the animated dis-
play from the previous experiment. The experimental condition display showed the 
same animation, but with the additional property that an initially blank display pro-
gressively revealed each component (in a fashion similar to the illustration in Figure 
3) as the animation progressed. 

 

4.3 Procedure 

Fifty five undergraduate students of engineering volunteered to participate in the 
experiment, in return for a nominal payment. They were recruited from an under-
graduate algorithm class in the Computer Science & Software Engineering Depart-
ment at Auburn University. Subjects were assigned to two matched groups based on 
their GPA, one assigned to a control condition and the other to an experimental con-
dition. The experiment was conducted one subject at a time in an eye tracking labora-
tory equipped with the SMI head-mounted eye tracker, eye tracking computer, and a 
stimulus display computer. 

First, subjects studied Dijkstra’s algorithm for finding the shortest path with a 
printed tutorial, and then watched an animation of the procedure (similar to Figure 2) 
as many times as they wanted. No time limit was imposed in this training phase. 
When a subject indicated that he or she was ready, the person was asked to sit on a 
chair, and watched the stimulus display on a 20-inch monitor at eye level at a distance 
of approximately 3 feet. The experimenter sat behind the subject and controlled the 
experiment through the eye-tracking computer. The experiment proper began by the 
subject pressing number key 1. After watching the stimulus display corresponding to 
the experimental or control condition, the subject depressed number key 3 to indicate 
that he or she had the answer, and then wrote it on a printed picture of the graph that 
the experimenter provided. Eye movement data was collected and recorded between 
these two key presses.  

 

4.4 Process and outcome measures 

We collected two process measures (eye movements and response times) and one 
outcome measure (accuracy of answer provided to the question in Figure 4, scored on 
a scale of 0-6). Response time and accuracy are commonly used metrics of problem 
solving performance. However, not all problems in visuo-spatial domains have an-
swers that can be unequivocally classified as correct or incorrect. A case in point is 
developing an action plan for an emergency evacuation from an information display 
that shows factors such as population distribution, layout of roads, features of the 
terrain and weather conditions. Here it is as important to ensure that the problem 
solver has considered all critical elements of the domain as it is to create a feasible 
plan. We employed two measures called coverage and order, besides accuracy and 
response time, to characterize the quality of problem solving. Coverage and order are 
derived from eye movement data, as explained below.  



 

Coverage is defined as the percentage of objects in the display that were attended to 
for more than a certain threshold. We set the threshold to 200 milliseconds, approxi-
mately equal to two fixations. Coverage is therefore a number between 0 and 100. 

A good strategist will not only attend to all relevant objects in the display, but also 
consider them in the order that best supports reasoning. For example, a crucial feature 
that separates expert and novice problem solving in meteorological reasoning with 
weather maps is that novices attend to objects that are perceptually salient whereas 
experts attend to objects that are thematically relevant (Lowe 1999). Therefore, we 
developed a metric called order that measures how systematically a subject attended 
to causally related elements of the display. This metric is explained next. 

Let S be an ordered sequence of display objects that a user attended to during a 
problem solving session. So S begins with the first display item attended to, and ends 
with the last item attended to before the solution to the problem is produced. This 
sequence is generated from eye movement data. In this sequence, if object j appears 
immediately after object i, and if i can influence j in the event chains of the system, 
then i-j represents an ordered dependent pair in the sequence S. Consecutive ordered 
dependent pairs represent ordered subsequences of S. The length of a subsequence is 
the number of dependent pairs in it. Order of S is defined as the sum of squares of the 
lengths of subsequences in S. This captures the correctness of the sequential order in 
which the user visually scanned the display (i.e. each dependent pair indicates that the 
problem solver considered one pair of display objects in the direction of dependency 
or causality) weighted by the number of consecutive dependent pairs that have been 
considered (i.e. if subjects A and B both considered the same number of dependent 
pairs, but if A looked at longer subsequences than B, the value of order will be higher 
for A than B). Order is a number greater than or equal to zero.  

From the raw eye movement data we also computed the total fixation duration on 
each component using a bounding box technique. We additionally determined the 
total number of fixations of each subject for each problem (excluding fixations on the 
question and on blank areas of the screen). 

 

5 Results and Discussion 

5.1   Comparing an animated display to a static display 

In this experiment, the experimental condition showed subjects an animation of how 
to find the shortest path in a graph and the control condition showed a static picture 
as described in Section 4.1. 

We expected that, though subjects in both conditions knew of Dijkstra’s procedure, 
the animated display that showed the operation of the procedure until a certain point 
would produce better accuracy than a static display that showed only the state of the 
graph that resulted from partial operation of the procedure. We expected response 
time for the animated display to be more since the animation was likely to encourage 
more systematic scans of the display than a static picture. We also expected that the 
animated display would produce more coverage and higher order than the static dis-
play. 



 

Table 1 shows results of answer accuracy (Ans), response time (RT), coverage 
(Co), number of focus shifts (F/S) and order. We used only 48 subjects’ eye move-
ment data (24 in each condition) for the data analysis due to problems with collecting 
good quality eye movement data from all subjects. In terms of accuracy, there was no 
significant difference between the two conditions. In terms of response time, the 
animated display increased response times (T-test = 2.113, p-value = 0.04).  It also 
produced higher coverage (T-test = 7.253, p-value = 0.0001). Also, the animated 
display produced more focus shifts (T-test = 7.363, p-value = 0.00001) and a higher 
value of order (T-test = 4.257, p-value=0.00001).  

Even though there was no significant difference in accuracy between the animated 
and static displays, there were significant differences in response time, coverage, 
number of focus shifts and order. This suggests that animated displays induce viewers 
to look longer at them, look at and across more display objects, and follow the anima-
tions systematically, but these visual behaviors do not necessarily lead to more accu-
rate problem solving. One possible explanation for the animated display not improv-
ing accuracy is that subjects did not have control over the animation once it started 
(except to repeat it if desired). So there could have been a speed mismatch between 
the external animation and the internal simulation of Dijkstra’s procedure. This result 
therefore adds to the extant literature (e.g., Tversky et al. 2002) indicating that anima-
tions do not necessarily improve comprehension. 

Table 1. Overall results of experiment 1  

  Ans RT Co F/S Order 
Exp 1 Mean 1.42 102.6 74.27 166.7 7.29 
N(24) SD 0.5 30.8 13.07 60.49 5.36 
Con 1 Mean 1.27 67.89 46.08 61.2 2 
N(24) SD 0.68 74.35 13.84 35.61 2.89 
T-test 0.848 2.113 7.253 7.363 4.257 
P-value 0.401 0.04 0.0001 0.00001 0.00001 

 

5.2    Comparing a progressively revealing animated display to an animated 
display that presents all information simultaneously 

Here the experimental condition showed an animated graph in which information was 
progressively revealed and the control condition was an animated display that showed 
the complete graph.  

We expected that the progressively revealing display would produce better accu-
racy and lower coverage (because this display followed a just in time approach to 
revealing information), and higher order, than the animated display. 

Initially, we assigned 28 subjects to the experimental condition and 27 subjects to 
the control condition but we could only use data from 19 subjects in the experimental 
condition and data from 24 in the control condition due to bad calibration of the eye 
tracker. Table 2 shows results of comparing answer accuracy, response time, cover-
age, number of focus shifts and order. The progressively revealing display produced 
better accuracy (T-test = 2.06, p-value = 0.0458). There was not a significant differ-



 

ence in response time between groups. The control condition had significantly higher 
coverage (T-test = 2.067, p-value = 0.0451). There was no significant difference in 
the number of focus shifts between groups. The experimental condition had a signifi-
cantly higher value of order (T-test = 2.238, p-value = 0.0307).  

These results suggest that progressively revealing information helps viewers to be 
more accurate (compared to static and animated displays), scan the display more 
systematically (compared to static and animated displays), and be more efficient (im-
prove accuracy while viewing a smaller percentage of display objects compared to an 
animated display), without increasing response time (compared to an animated dis-
play). 

One can use the notion of visual search (Larkin & Simon, 1987) to explain the bet-
ter performance observed with a progressively revealing display, i.e. less information 
on the display requires less search to find what is relevant. But note that at any stage 
of solving the shortest path problem, one actually needs to focus only on a few adja-
cent nodes and their edges regardless of how big the graph is. Therefore, scope of 
visual search is not affected by whether the rest of the graph is visible or not. The-
matic relevance of parts of the graph varies as one executes Dijkstra’s procedure, and 
it is possible that subjects in the animated display condition wasted attentional re-
sources on parts that are irrelevant whereas the progressively revealing display helped 
them identify relevant display objects at different stages of problem solving. The 
implication is that animation does not necessarily induce efficient allocation of visual 
attention, but accuracy and efficiency can be improved through display techniques 
such as progressive revealing. 

Table 2.  Overall results of experiment 2   

  Ans RT Co F/S Order 
Exp 2 Mean 5 160.6 64.54 209.2 9.26 
N(19) SD 2 69.41 9.9 82.83 6.43 
Con 2 Mean 3.71 161.5 71.05 213.4 6.08 
N(24) SD 2.07 86.27 10.52 115.1 2.41 
T-test 2.060 0.038 2.067 0.134 2.238 
p-value 0.0458 0.97 0.0451 0.894 0.0307 

5.3   Discussion 

This paper describes experiments on diagrammatic reasoning with graphs in which 
we compared process and outcome measures of problem solving when the display 
showed local processes through visualization techniques such as animation, to when 
the display was static; and when the display was initially sparse, with detailed infor-
mation being progressively revealed, to when the display presented all information 
simultaneously. One outcome measure (accuracy) and four process measures (re-
sponse time, coverage, number of focus shifts and order), three of which were derived 
from eye movements, were analyzed to compare problem solving performance. Re-
sults indicate that animations induce viewers to look longer at the display, look at and 
across more display objects, and follow the animations systematically, but these vis-
ual behaviors do not necessarily lead to more accurate problem solving. On the other 



 

hand, an information display that, besides being animated, also progressively reveals 
relevant information improves problem solving performance in terms of accuracy, 
systematicity and efficiency. 

This research has implications for the design of information displays that actively 
track the viewer’s visual attention in order to support reasoning and problem solving. 
Grant and Spivey (2002) report that merely attracting the problem solver’s attention 
to relevant regions of a display through an attention attracting mechanism can dra-
matically improve accuracy. The problem they studied was Duncker’s radiation prob-
lem, which was not a problem that required reasoning from initial conditions along 
pathways of dependencies unlike the shortest path problem. In complex domains 
where objects participate in spatially distributed events or operations, our results 
provide guidance on how dynamic displays could be designed to better support dia-
grammatic reasoning.  

However, additional research is required before concrete design recommendations 
can be made. One limitation of current work is that while the reasoning process that 
subjects engaged in (a mental simulation of Dijkstra’s procedure) is dynamic, the 
underlying graph does not change, and the procedure itself is well-defined. Real-life 
problems such as planning the evacuation of a city while viewing traffic maps can be 
modeled as finding shortest paths in a weighted graph, but such problems are solved 
under competing constraints and rapid changes in underlying conditions. Therefore, 
our future work will focus on diagrammatic reasoning with less well-defined, heuris-
tic approaches and more flux in relevant variables. 
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