
Predictors of success in diagrammatic problem solving 

Daesub Yoon & N. Hari Narayanan 

 Intelligent and Interactive Systems Laboratory, Department of Computer Science  
& Software Engineering, Auburn University, Auburn, AL 36849, USA 

{yoondae, narayan}@eng.auburn.edu 

Abstract. We conducted an eye-tracking study of mechanical problem solv-
ing from cross-sectional diagrams of devices. Response time, accuracy and 
eye movement data were collected and analyzed for 72 problem-solving epi-
sodes (9 subjects solving 8 problems each). Results indicate that longer re-
sponse times and visually attending to more components of a device do not 
necessarily lead to increased accuracy. However, more focus shifts, visually 
attending to components in the order of causal propagation, and longer dura-
tions of visual attention allocated to critical components of the devices appear 
to be characteristics that separate successful problem solvers from unsuccess-
ful ones. These findings throw light on effective diagrammatic reasoning 
strategies, provide empirical support to a cognitive model of comprehension, 
and suggest ideas for the design of information displays that support causal 
reasoning. 

1   Introduction 

How people reason about and solve graphically presented problems drawn from vis-
ual, spatial and causal domains has been a topic of interest in diagrammatic reason-
ing research. This interest stems from the fact that certain characteristics of systems 
in such domains lend themselves to graphical representations in which the visual 
properties and spatial distribution of components aid the problem solver in directing 
his or her reasoning along paths of causal propagation. These characteristics are: (1) 
components of a system are spatially distributed; (2) systems are dynamic, i.e. com-
ponents and their properties change over time; (3) system components causally in-
teract with each other; (4) such interactions can be traced along chains of cause-
effect relationships (which we call lines of action) that branch and merge in spatial 
and temporal dimensions; and (5) predicting the operation of a system requires rea-
soning from a given set of initial conditions to infer these causal chains of events. 
Reasoning about mechanical devices from cross-sectional diagrams is a case in 
point. Other examples of problems from visual, spatial and causal domains are cir-
cuit design, weather forecasting, emergency response coordination and military 
course-of-action planning. 

Understanding the cognitive processes underlying such reasoning, especially 
strategies that separate successful problem solvers from unsuccessful ones, can pro-
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vide insights into the design of information displays that actively aid the problem 
solver and enhance his or her performance. In the context of a research program on 
designing and evaluating such information displays (see Section 4 for details), we 
report on an experiment that investigated how people make predictions about the 
operation of a mechanical device, when given a labeled cross-sectional diagram of 
the device and an initial condition – specified as the behavior of one of the device’s 
components. In addition to determining the accuracy of their answers, we measured 
their response times and collected data on their eye movements across the stimulus 
display. Our goal was to understand the relations among accuracy, response time 
and patterns of visual attention allocation across the display.  

The rest of this paper is organized as follows. In Section 2 we summarize earlier 
work on mechanical reasoning from diagrams that has a bearing on the present re-
search. Section 3 describes the experiment and its results. In the final section, con-
clusions that can be drawn from the experiment’s results, their implications and our 
future research are discussed. 

2   Related Research 

Larkin and Simon (1987) undertook a computational analysis of diagrammatic ver-
sus sentential representations, and described features of diagrams that aid reasoning. 
Extending this line of enquiry, Cheng (1996) proposed twelve functional roles of 
diagrams in problem solving: (1) showing spatial structure and organization, (2) 
capturing physical relations, (3) showing physical assembly, (4) defining and distin-
guishing variables, terms and components, (5) displaying values, (6) depicting 
states, (7) depicting state spaces, (8) encoding temporal sequences and processes, (9) 
abstracting process flow and control, (10) capturing laws, (11) doing computations, 
and (12) computation sequencing. These analyses suggest that diagrams can aid a 
problem solver by explicating and facilitating inferences about the components, 
structure, states and spatio-temporal sequences of causally connected events of sys-
tems in visual, causal and spatial domains. 

Other research has delved into details of diagrammatic reasoning. Hegarty (1992) 
provides an account, based on reaction time and eye-fixation data, of how people in-
fer the motions of mechanical devices from diagrams. She found evidence for an in-
cremental reasoning process: the device is decomposed into its components and 
their behaviors are mentally animated in the direction of causality. However, mental 
animation is constrained by working memory capacity, such that people are only 
able to mentally animate one or two component motions at a given time. Further-
more, the eye-fixation data indicated that mental animation is accompanied by in-
spection of the relevant parts of the diagram. 

In earlier research Narayanan, Suwa and Motoda (1994) investigated how people 
solved mechanical reasoning problems presented as diagrams. Analysis of subjects’ 
verbal and gestural protocols supported the incremental reasoning model. It also 
suggested that shifts of the problem solver’s focus from component to component 
were mediated to a great extent by the connectivity of components, internal visuali-



zation of component behaviors, propagation of causality and search for information 
in the diagram.  

They further analyzed the intermediate hypotheses (extracted from verbal proto-
cols) of subjects who were reasoning about an “impossible” mechanical device (see 
problem 6, Figure 1, later in the paper). In this device’s operation, the causal chains 
of events branch and merge in the spatial dimension (within the device’s physical 
structure) and the temporal dimension (events occur concurrently as well as sequen-
tially). This analysis revealed that the trajectory of reasoning was mediated by the 
lines of action (Narayanan, Suwa & Motoda, 1995). However, instead of following a 
systematic strategy such as depth-first (traverse each branch fully before starting on 
another) or breadth-first (traverse all branches in an alternating fashion), subjects 
took a mixed approach with elements of both. They also retraced their reasoning 
paths multiple times, especially near the merging points of the lines of action. 

3   Experiment 

Prior research has thus identified several characteristics of mechanical reasoning 
from diagrams. Three important ones are decomposing the device into its compo-
nents and attending to each individually, reasoning along the lines of action, and fo-
cus shifts mediated by several factors. In the experiment reported here we investi-
gated whether successful and unsuccessful problem solvers could be separated in 
terms of these characteristics.  

Response time, accuracy and eye movement data were collected and analyzed for 
72 problem solving episodes: 9 subjects solving 8 problems of mechanical reasoning 
from cross-sectional and labeled diagrams. Components attended to, the direction of 
reasoning and focus shifts were determined from eye movement data.  

Our interpretation of eye movement data is based on the premise that fixations 
are likely indicators of what the problem solver is (or has been) thinking about. The 
assumption (called the eye-mind assumption) is that the locus of eye fixations corre-
sponds to the information being processed by the cognitive system. The eye-mind 
assumption is supported by two independent lines of research. Just and Carpenter 
(1976) discuss extensive evidence supporting this assumption for goal-directed tasks 
that require information to be encoded and processed from the visual environment. 
The problem solving tasks in our experiment were goal-directed (“given the initial 
motion of one component, predict the motion of another component further down-
stream”). Information needed to carry out these tasks had to be encoded and proc-
essed from a visual stimulus displayed on a computer monitor. Additional evidence 
that eye movement traces carry information about cognitive processes that underlie 
mechanical reasoning from device diagrams appears in (Rozenblit, Spivey & Wo-
jslawowicz, 1998). These researchers collected eye movement traces of subjects 
making predictions about mechanical devices presented as diagrams and gave the 
traces to independent raters. The traces alone were sufficient for the raters (who did 
not see the device diagrams) to reliably predict both the principal axes of orientation 
of the devices subjects saw, and whether the subjects solved each problem correctly. 



3.1   Procedure 

Nine engineering graduate students volunteered to participate. They were compen-
sated with a payment of $10 each. Each subject solved 8 problems. Each problem 
was displayed as a labeled cross-sectional diagram of a device with an accompany-
ing question and possible answers (Figure 1 shows the 8 stimuli exactly as displayed 
to subjects). The first three problems involve simple mechanical devices. The fourth 
is a Rube Goldberg-like device for frying an egg. These four problems have been 
used in prior research (Narayanan, Suwa & Motoda, 1994). The fifth is a pulley sys-
tem previously used by Hegarty in her experiments (1992). The sixth is an “impos-
sible” problem, also used in prior research (Narayanan, Suwa & Motoda, 1995). It 
involves branching and merging causal event chains, unlike the previous five prob-
lems. The seventh and eighth problems are about the flushing cistern, the most com-
plex of all seven devices used in this experiment. The operation of this device also 
involves branching and merging causal event chains. Furthermore, in previous stud-
ies of comprehension of this device from interactive graphical presentations, it was 
found that while subjects were able to infer behaviors of components within each 
causal chain, they had difficulty integrating information between the two causal 
chains (Hegarty, Quilici, Narayanan, Holmquist & Moreno, 1999).  

The experiment was conducted one subject at a time in an eye tracking laboratory 
equipped with a head-mounted eye tracker, eye tracking computer and a stimulus 
display computer. The eye tracker we used is the Eye Link model from SMI Inc. It 
consists of a headband, to which two infrared sources and cameras (one for each 
eye) are attached. It is a video-based eye tracker that detects pupil and corneal re-
flections from infrared illumination to compute screen coordinates of the subject’s 
gaze point on the stimulus display monitor once every 4 milliseconds. The headband 
is attached by cable to a PC which functions as an experiment control station as well 
as carries out the necessary computations. This PC communicates with the stimulus 
display computer via an Ethernet link. The problems were presented as static pic-
tures on the monitor of the stimulus display computer. Subjects sat in a high-backed 
chair, and viewed the problem on a 20-inch monitor mounted on a wall at eye level, 
at a distance of approximately 3 feet. The experimenter sat behind the subject and 
controlled the experiment through the eye-tracking computer.  

First, a subject solved three practice problems with piston, pulley and gear sys-
tems. The devices in the practice problems were much simpler than the devices in 
the experimental problems. A 10-minute break and calibration of the eye tracker fol-
lowed. The actual experiment began by the subject clicking the left mouse button to 
display the first stimulus. When ready to make the prediction, the subject depressed 
a number key on the keyboard to indicate his or her answer. This automatically 
brought up the next stimulus. The key presses were used to compute and record re-
sponse times and determine accuracy. The specific problem to be solved, in the 
form of a question, appeared as part of each stimulus. This text also specified the 
number keys corresponding to possible answers. Each problem had two or three pos-
sible answers, of which only one was correct. Eye movement data was collected and 
recorded for all problems. 
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Fig. 1. Eight experimental problems. The bar chart below each problem shows the mean du-
ration (as a percentage of total time on task) of visual attention on each component of the 
device in that problem by successful (light bars) and unsuccessful (dark bars) subjects.  
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The eighth problem showed the same device as in Problem 7, a flushing 
cistern, with the question: “After answering Question 7, will the water 
level rise until objectB reaches levelD?” 
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3.2   Results 

We computed five dependent measures: accuracy, response time, coverage, number 
of focus shifts and (causal) order. Accuracy is a nominal variable categorizing a sub-
ject’s answer to a problem as correct or incorrect. The correct answers to the 8 prob-
lems are: Question 1 – No; Question 2 – Yes; Question 3 – Can’t say; Question 4 – 
Yes; Question 5 – No; Question 6 – No; Question 7 – No; Question 8 – Yes. The ac-
curacies of the nine subjects were 62.5% (the first subject was correct in 5 out of the 
8 problems), 50% (4/8), 50% (4/8), 62.5% (5/8), 12.5% (1/8), 87.5% (7/8), 50% 
(4/8), 62.5% (5/8) and 75% (6/8) respectively. The accuracies for each of the 8 
problems were 44.4% (4 subjects out of 9 were correct), 22.2% (2/9), 22.2% (2/9), 
88.9% (8/9), 66.7% (6/9), 88.9% (8/9), 66.7% (6/9), and 55.6% (5/9) respectively. 
Response times were automatically recorded by the stimulus display computer using 
subjects’ key presses.  

In each device diagram, individual components were delineated by bounding 
boxes. Once the co-ordinates of these bounding boxes were determined, we could 
associate fixations with components, and calculate the duration of each subject’s 
gaze on each component as a percentage of the total time the subject spent on that 
problem. Coverage for a problem and a subject was computed as the percentage of 
components of the corresponding device that attracted at least one fixation by the 
subject.  

Using the bounding box technique, we could also determine a subject’s shifts of 
visual focus from component to component in each problem from raw eye move-
ment data. We derived S, an ordered sequence of device components that a subject 
attended to during a session, for each subject and each problem. This was done by 
aggregating consecutive fixations inside the bounding box of a component and de-
tecting when another component was fixated upon. S begins with the first device 
component attended to, and ends with the last component attended to before the sub-
ject pressed a number key indicating his or her solution. Number of focus shifts by a 
subject for a problem is then the number of transitions in S, i.e., (the size of S) – 1. 
Fixations on the question and blank display regions were ignored in this analysis.  

In the sequence S, if component j appears immediately after component i, and if i 
can causally influence j according to the lines of action in the device, then i-j repre-
sents a causal link in the sequence S. Consecutive causal links represent causal sub-
sequences of S. The length of a causal subsequence is the number of causal links in 
it. The measure order is defined as the sum of squares of the lengths of causal sub-
sequences in S. This captures the total number of correct cause-effect pairs of com-
ponents that a subject considered, weighted by the length of unbroken lines of action 
that the subject considered (i.e. if subjects A and B both considered the same num-
ber of causal links, but if A looked at longer causal link chains than B, the value of 
order would be higher for A than B).  

Analyses were conducted to compare response times, coverage, focus shifts and 
order of successful problem solvers with those of unsuccessful problem solvers. The 



goal was to discover whether successful problem solvers could be characterized by 
longer response times, higher coverage, more focus shifts or larger values of order. 

Statistical analyses (t-tests) were carried out to compare the mean values of re-
sponse time, coverage, number of focus shifts and order. Two groups of problem 
solving episodes from the total of 72 (9 subjects X 8 problems) were compared: a 
group of 41 in which the subjects provided the correct answer and another group of 
31 in which the subjects were wrong. We found no significant difference between 
the mean response times of successful and unsuccessful subjects across all 8 prob-
lems, t(71) = 1.138, p < 0.26. The top-left bar chart in Figure 2 shows the mean re-
sponse times of successful and unsuccessful subjects for each problem. For problems 
1, 2, 4 and 8 subjects who provided the correct answer had lower mean response 
times than subjects who were wrong. For problems 3, 5, 6 and 7 this reversed.  

 
 

 
 

 
 
 

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 2. These bar charts show, for each problem (on the x-axis), the means (on the y-axis) of 
response time (seconds), coverage, number of focus shifts and order for successful (light 
bars) and unsuccessful (dark bars) subjects. 
 

There was no significant difference between the mean percentage of components 
that successful and unsuccessful subjects attended to across all 8 problems, t(71) = -
1.414, p < 0.16. The top-right bar chart in Figure 2 shows the mean coverage of suc-
cessful and unsuccessful subjects for each problem. For problems 1, 3, 4, 5, 6 and 7 
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subjects who provided the correct answer had lower mean component coverage than 
subjects who were wrong. For problems 2 and 8 successful subjects exhibited a 
higher mean coverage than unsuccessful ones. 

We found marginal significance in the difference between the means of the num-
ber of focus shifts of successful and unsuccessful subjects across all 8 problems, 
t(71) = 1.792, p < 0.08. The bottom-left bar chart in Figure 2 shows the mean num-
ber of focus shifts of successful and unsuccessful subjects for each problem. For 
problems 2, 4 and 5 subjects who provided the correct answer exhibited lower num-
ber of focus shifts on average than subjects who were wrong. For problems 1, 3, 6, 7 
and 8 successful subjects made more focus shifts on average than unsuccessful ones.  

However, t-test comparisons of the mean value of order indicated that subjects 
who were accurate considered significantly more causal connections and longer 
lines of action than subjects who provided wrong answers did, across all 8 problems, 
t(71) = 2.934, p < 0.0045. The bottom-right bar chart in Figure 2 shows the mean 
values of order for successful and unsuccessful subjects for each problem. For all 
problems except the fifth, successful subjects had higher mean values of order than 
subjects who were inaccurate.  

Next, we investigated the relation between gazing on particular components and 
accuracy. Even though no significant differences between successful and unsuccess-
ful problem solvers were discovered in terms of their response times and the per-
centage of components of each device they visually attended to during problem 
solving, we explored this further by calculating the gaze durations of each subject 
on each component of each device as a percentage of that subject’s response time 
for that device. From this data we calculated the mean gaze duration percentages of 
successful and unsuccessful problem solvers for each component of the eight prob-
lems. These are shown as bar charts appearing under each of the 8 problems in Fig-
ure 1. Note that gaze duration percentages are computed and shown in the bar charts 
for all major components of a device, even if only some of these components are la-
beled in the device’s diagram that subjects saw. For example, the label “nholeB” in 
bar charts corresponding to problems 2 and 3 refers to the spring and surrounding 
area inside the cylinder below holeB in the corresponding two devices, though this 
label does not appear in the device diagrams. 

The bar charts in Figure 1 illustrate one consistent pattern across all problems. 
Successful problem solvers are differentiated from unsuccessful ones by the fact that 
they spent more time, as a percentage of total time to solve the problem, on average 
on components that are critical to solving the problem. For problem 1, rodB is the 
important component. For problems 2 and 3, it is holeB. For problem 4, the last 
components in the line of action – pulleyB, knife and egg – are the critical ones. For 
problem 5 the various string segments are the critical components. For problem 6, 
its “impossibility” becomes evident when one considers the combination of three 
circular gears: gearRight, gearLeft and gearCenter. For problem 7 the critical com-
ponents are in the region of the small arm of the siphon pipe (components joint1 and 
joint2). For correctly answering the eighth problem’s question, the eventual closing 
of the inlet valve (component pipe3) is a critical inference. As can be seen in Figure 
1, successful problem solvers spent a higher percentage of time fixating on these 



components. Just and Carpenter (1976) suggest that gaze duration provides a meas-
ure of the time spent processing the corresponding symbol. Therefore it is reason-
able to conclude that a longer duration (relative to time on task) of visual attention 
allocated to critical components of the devices is a characteristic that separates suc-
cessful problem solvers from unsuccessful ones. 

4   Discussion: Implications and Future Research 

This paper described an experiment on diagrammatic reasoning about mechanical 
devices in which we investigated characteristics that differentiate successful and un-
successful problem solvers. One outcome measure (accuracy) and five process 
measures (response time, coverage, number of focus shifts, causal order of process-
ing and relative gaze durations on individual components), four of which were de-
rived from eye movements, were analyzed to examine whether successful problem 
solvers could be characterized in these terms.  

The results support several conclusions regarding effective diagrammatic reason-
ing strategies. Spending more time on the task and visually attending to more com-
ponents do not necessarily lead to success in mechanical reasoning from device dia-
grams. On the other hand, considering more component pairs that are causally 
related and attending to longer causal chains of components can lead to better accu-
racy. Concentrating on critical components for relatively longer durations also ap-
pears to improve accuracy in problem solving. Increased shifting of one’s focus of 
visual attention from component to component during problem solving is marginally 
positively related to accuracy, but clearly which components are attended to and in 
which order are more significant predictors.  

These findings suggest that in training novices to qualitatively and successfully 
reason about mechanical systems from diagrams, it is important for instruction to 
focus on developing skills of determining and following causal chains of events in 
the operation of the device, and identifying components that are critical to solving 
the problem at hand. An important characteristic of the mechanical domain is that it 
consists of dynamic systems with spatially distributed components that causally in-
teract and give rise to event chains that branch and merge in spatial and temporal 
dimensions. Several other domains share this characteristic. Therefore we postulate 
that the pedagogical implications of our findings extend to these domains, such as 
meteorology, as well. 

Another implication of this research is that it has provided new empirical evi-
dence supporting a previously reported cognitive process model of causal system 
comprehension from text and diagrams. Narayanan and Hegarty describe this cogni-
tive model of multimodal comprehension (Narayanan & Hegarty, 1998), based on 
which they argue that an information display with the following six characteristics is 
likely to enhance comprehension (Narayanan & Hegarty, 2002). It should aid the 
viewer in decomposing the system being described, enable the viewer to invoke 
relevant prior knowledge, point out the common referents of external representa-
tions in different modalities, explain domain laws that govern the system, explicate 



the lines of action in the operation of the system, and encourage mental animation. 
While they discuss empirical support for some of these characteristics, the efficacy 
of a display that supports reasoning along the lines of action has not been experi-
mentally investigated. Our finding that successful problem solvers exhibit signifi-
cantly higher values of the measure order, indicating consideration of more causal 
links along longer lines of action, does indeed suggest that a display that facilitates 
reasoning along the lines of action can enhance comprehension. 

Understanding the cognitive processes underlying causal reasoning from visual 
displays, especially strategies that separate successful problem solvers from unsuc-
cessful ones, can provide insights into the design of displays that actively aid the 
problem solver and improve his or her problem solving performance. For instance, 
Grant and Spivey (2002) studied Karl Duncker’s radiation problem, by first showing 
a diagram of the problem to subjects and determining the part of the diagram that 
received most attention from successful problem solvers. In a subsequent experi-
ment, they attracted subjects’ attention to that part through a blinking action, and 
found that merely attracting the problem solver’s attention to that part of the display 
dramatically improved accuracy. But can the display regions that are critical, and 
the optimal order of visual attention allocation, for a problem be determined a pri-
ori?  

Our research suggests that, for problems drawn from domains with the five char-
acteristics listed in the introduction of this paper, lines of action in the operation of 
the system provide spatial pathways of optimal visual attention allocation. Further-
more, components at the merge points in these pathways and components most 
closely associated with the problem being solved are critical, and allocating more at-
tention to these can improve accuracy. This leads naturally to a research program on 
displays that track and guide a problem solver’s visual attention, and provide rele-
vant information at the right time and in the right place, to support causal reasoning. 
We term displays that thus exploit the trajectory of a viewer’s focus shifts during 
problem solving “Reactive Information Displays” (Narayanan & Yoon, 2003). To be 
effective, such displays must have knowledge about the system/domain that is being 
displayed, knowledge about the problem solving task that the user is engaged in, 
knowledge regarding an applicable problem solving model and knowledge about the 
trajectory of the user’s attention shifts.  

An introduction to Reactive Information Displays and an empirical study of four 
reactive strategies are presented in (Narayanan & Yoon, 2003). This study showed 
that a display that guides the user’s visual attention along paths of causal propaga-
tion while demonstrating potential behaviors of individual components significantly 
improved the accuracy of mechanical problem solving. In another experiment (Yoon 
and Narayanan, 2004), we discovered that when subjects were first shown a me-
chanical reasoning problem and then given a second problem on the same device, 
but without any diagram, about half had fixations on the blank region of the display 
that the device diagram occupied in the first problem. While these subjects were no 
more accurate than those who did not exhibit any eye movements on the blank part 
of the display, they looked at more “virtual” components and had significantly 
higher values of the measure order, indicating that their eye movements on the blank 



region were systematic, along the lines of action (i.e. examining causally related 
chains of components). This suggests that Reactive Information Displays may be 
particularly useful for this kind of users, whose eye movements reflect cognitive 
processes even in the absence of an external stimulus. In current work, we are 
evaluating several reactive display strategies in the domain of algorithmic problem 
solving. Pursuing these lines of enquiry will remain the focus of our future research. 
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