
Applying Contextual Design to Build a Course Scheduler:
A Case Study

Jean D’Amico, Teresa Hübscher-Younger, Roland Hübscher and N. Hari Narayanan
Dept. of Computer Science & Software Engineering

Auburn University
Auburn, AL 3849-5347

{damico,teresa,roland,narayan}@eng.auburn.edu

ABSTRACT
This paper describes the design of a course-scheduling tool that
assists professors in planning events such as tests, assignments
and lectures. It takes university calendar information along with
user inputs of course events, and translates these into algebraic
constraints, which are then solved by a linear programming
algorithm to generate a feasible schedule. We report on the
application of the Contextual Design [1] methodology to
generate requirements and architecture of this tool. First, a
contextual analysis was conducted to ensure that specifications
were adequately developed. This included conducting and
coding interviews with potential users, and gathering and
analyzing work artifacts. Then a prototype was implemented and
evaluated by means of a cognitive walkthrough. By describing
the design process and the resulting system, this paper makes
two contributions. First, it illustrates the contextual approach to
interactive system design in an educational domain. Second, it
presents the architecture of a course-scheduling tool, with a
constraint-solver based on the linear programming algorithm at
its heart, which allows the automatic creation of feasible event
schedules.

Categories and Subject Descriptors: D.2.2
[Software Engineering]: Design Tools and Techniques – user
interfaces. H.5.2 [Information Interfaces and Presentation]:
User Interfaces – evaluation/methodology, user-centered design.

General Terms: Design, Human Factors.

Keywords: contextual design, interactive systems,
scheduling, constraint satisfaction, linear programming.

1. INTRODUCTION
Planning and scheduling the various events involved in a
semester-long college course can be a tedious and time-intensive
task. This is especially true if the professor has several
constraints that the schedule must meet. For example, he may
need one week to grade assignments, wish to give one week to
students for doing each assignment, and plan to have two
assignments assigned, graded and returned at least one week

prior to the first exam, which has to take place no later than the
fifth week of classes. Clearly, the more events and constraints
there are, the more tedious manual scheduling becomes.

This paper describes a project on developing a course-
scheduling tool to assist professors. Our goal was to develop a
tool that professors can use to create and examine different
feasible schedules that conform to given constraints, once the
course events that the professor wants to schedule have all been
specified. This meant that the tool had to be interactive,
allowing the input of events and constraints, the computation
and display of feasible schedules, and subsequent examination,
selection and modification of the schedules. Given this fact, and
that there exists major individual differences among professors
in how they schedule course events, we chose to employ a
design method known as Contextual Design. Contextual Design
is a method for developing products that focuses on how the
user performs tasks within the context of the work environment
itself [1]. This approach was employed to (1) develop a detailed
picture of the process by which professors plan a college course
and schedule its activities and the factors that influence this
process, and (2) subsequently derive system requirements from
this picture.

The resulting system, called the Constraint-Based Course
Building Tool (CB2T) uses a series of user-defined and internal
system constraints in order to assist in course scheduling. These
constraints consist of dates (specifically course start and end
dates, break start and end dates, holidays, and mid-semester) as
well as the number of events (tests, assignments, lectures, and
extra-credit assignments) that will occur during the semester. It
uses a linear programming algorithm to determine a class
schedule that minimizes conflicts between events and allows for
adequate spacing between events. The goals of this paper are to
describe the design process, to serve as a case study in the
application of the Contextual Design technique, and to present
the architecture of this system.

2. CONTEXTUAL DESIGN
Contextual Design is a method for developing products that
focuses on how the user performs tasks within the context of the
work environment itself [1]. In our case, it meant looking at the
process of course development as it exists within a university
culture by gathering information from people who were
potential users of the tool. It was crucial to fully understand the
process and meaning of “creating a college course” from the
viewpoint of these potential users. It was also important to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Proceedings of the 41st ACM Southeast Conference, pp. 330-336.
Copyright 2003 ACM

understand the essential attributes of a course and the course
planning process.

The first step in the information-gathering process was
interviewing potential users of the CB2T system. The purpose of
these interviews was to determine how a professor developed a
course plan, how a syllabus was created and used, what role
calendars played in course development, and other time
management and course planning issues. The interview process
consisted of a short (less than 30 minutes) informal discussion
about what types of planning go into creating a college course.
We conducted five interviews with faculty members known to
have different teaching styles. We also collected and analyzed

artifacts used in planning and managing courses that further
demonstrated their procedure; primarily calendars, syllabi,
websites, schedules, and other related materials. The
information gathered was then coded and compiled into useable
models. Coding is a process that is used in qualitative research
to extract relevant data from observations [3]. Coding schemes
allow the data to be categorized and managed into useful
information themes.

The Contextual Design process involves building a series of
work models that are used to characterize the task that is being
completed. The Cultural Model investigates the overall culture
of the workplace. The Sequence Model is used to show how a
sequence of events unfolds over time. The Artifact Model looks

at how actual objects are used in the work process. These three
models were developed.

The Cultural Model (Figure 1) encoded how various people,
institutions, and influences impacted the course planning
process. Obviously, professors and students most heavily impact
a college course. Beyond these influences there are other, less
obvious, components that impact a course. For instance, there is
the immediate influence of the department and the university on
the class. They influence how the class is structured through
factors such as the schedule for the school year, vacations, and
the criteria by which the course will be evaluated. Other factors
include accreditation boards, who determine what information
should be covered in a course; the book vendors, who often
impact which book is chosen which in turn determines the
sequence of the material to be covered; teaching assistants, who
influence how quickly grades are returned to students and the
course load the professor is able to assign; and industry trends,
which impact, over the long-term, the types of courses that are
taught in universities.

The Sequence Model is used to show how a sequence of events
unfolds over time. From the interviews, we could determine a
generalized method that professors were using to develop
courses. This series of events was broken down into three main
parts: (1) Developing initial course material; (2) Developing a
syllabus and class schedule; (3) Teaching the class and
managing/modifying course content. Developing initial course
material involved such things as researching and choosing the
appropriate book, readings and other materials relevant for
teaching the class. From this information users would typically
develop a set of requirements (either formally or informally) in
order to determine and schedule a combination of activities that
are most appropriate for teaching the material, such as lectures,
quizzes, in-class exercises, tests, and assignments.

Different professors used various approaches to determine the
dates for scheduling various activities. The Sequence Model
outlined three different approaches that could be taken regarding
event scheduling: (1) Events such as tests occur after a given
period of time and are fixed; (2) Events occur after a given
period of time but can be moved within reason; (3) Events occur
after a given amount of material has been covered. The final
step of the Sequence Model outlined how professors would
perform routine maintenance on a course. This included making
daily changes to the schedule and format of the class for
teaching the same course at a future time.

The Artifact Model was created by analyzing artifacts collected
from the faculty members who were interviewed, coding this
information, and creating a single document that explicated the
purpose, characteristics and components of the three types of
artifacts that we discovered were being used by the interviewed
faculty: planning documents, syllabi and calendars. These
documents brought to light a great deal of information that was
often not available directly in the interviews, besides illustrating
how professors tangibly laid out their courses. For instance, one
planning document was a flow chart of a step-by-step iterative
process that thoroughly described how a course schedule was
constructed by a particular professor. The resulting model thus

Figure 1. Cultural model.

provided additional insights into how a typical user carried out
the task under analysis.

In particular, planning documents revealed interesting individual
differences. Some professors, when building a course, use a
highly structured method in which every class period is planned
out at the beginning of the semester and leaves very little
margin for change within the schedule. Such professors develop
what we call a static calendar. It is developed at the beginning of
the semester and defines all lectures, assignments, tests, and
extra-credit assignments. It is often included as a part of the
syllabus. Other professors take a more flexible approach in
which the topics are described generally within the syllabus,
which provides a general outline for the course. They create
what we call a dynamic calendar, which is actually a schedule of
events that is created with the deliberate intent of being altered
as necessary during the semester. Such a calendar might
schedule specific events at the beginning of the semester, but
with the implicit understanding (by professors and students) that
the events may be moved as the course progresses.

3. REQUIREMENTS SPECIFICATION
The steps of user interviews, artifact collection, information
analysis and coding, and model development yielded several
system requirements.

Requirement 1:The system should include daily, weekly, monthly
and semester calendar views of the course plan, with a provision
for entering and flexibly displaying (i.e. with more or less
details) event information such as title, time, location and
description. One interesting aspect revealed by the artifacts was
that types of calendar views the professors created took many
different forms. Some professors would use a weekly or
monthly calendar view with only the event name and title (i.e.
lecture 12 or exam 1). Other professors would use a daily view
that would show the details of every class event. Still other
professors would just have a course outline that showed the
sequence of topics to be covered with no details, defined events,
or dates.

Requirement 2: The system should support the creation and
maintenance of private (can be seen only by the user) and public
(can be made publicly viewable, say, over the web) calendars,
with facilities for easy migration of events from the private to
the public calendar. The Artifact Model indicated that a
calendar or schedule could either be a privately held document
by the professor alone or a public document that is shared
between the students and professor. In many cases, professors
will keep two separate documents: a public one that is openly
available to the class and a private one that is used for planning
and revising before adding items to the public one. The private
calendar may contain course information that is intended for the
personal use of the professor and not for consumption by the
class at large. Some events first appear in the private calendar
and later appear in the class calendar. Further analysis revealed
that this is an indication of background planning and revision
that takes place before information is posted publicly.

Requirement 3: The system should allow the user to hide and
show course activities by type and by detail. The interviews and

the Artifact Model indicated that users would like to view their
daily, weekly or monthly schedules in different ways based on
type and desired level of detail. For instance, sometimes they
may want to see all tests that are scheduled for the current day,
week or month. They may also just want to see the titles of all
lectures scheduled for a week or see the detailed descriptions of
all lectures scheduled for the day.

Requirement 4: A course calendar should be easily changeable
at any time. The Sequence and Artifact Models indicated that
the content and timing of course events are often changed as the
semester progresses, sometimes affecting the current offering of
the course and sometimes with an eye toward the next offering
of the course. These maintenance activities indicated the need
for highly customizable course content while the course is being
taught.

Requirement 5: Allow course plans to be saved as reusable
templates. From the Cultural Model we identified the impact of
previous offerings of a course on its current content and
schedule. This indicated the desirability of a template feature
that would allow course information to be saved as a template
for future modification and/or reuse.

Requirement 6: The system should allow the user to create and
maintain multiple calendars for the same semester, and
calendars of the same course over several semesters. The
Sequence Model indicated that professors created and
maintained separate plans for all the courses they were teaching,
and also revised and maintained course plans over several
semesters.

Requirement 7: The system should separately maintain data for
each user and each course. Since it is common for the same
course to be taught by different professors at the same or
different semesters, and for the same professor to teach separate
courses in any given semester, the data need to be kept separate
and access needs to be controlled through a password-protected
user login facility.

Requirement 8: The system should maintain an easily searchable
and printable database of all course information. The Cultural
Model also highlighted the importance of accreditation concerns
to course planning. Typically, an accreditation board will visit a
university and ask to see syllabi and other course related
material from the courses that have been taught since the last
certification. So a system that captures and archives the
complete schedule, syllabus and content (i.e. topics covered in
each lecture) from multiple offerings of a course in a uniform
format can be invaluable in preparing reports for accreditation
boards.

Requirement 9: The system should not enforce a single approach
to planning and scheduling; instead, it should be as flexible as
possible. The Sequence Model revealed an inherent difficulty in
developing a tool like CB2T: there are large individual
differences and no single approach fits everyone. The Artifact
Model suggested that a course schedule must be flexible and
dynamic, to be used in different ways depending on the nature
of the user. For example, detailed planners construct a complete
and detailed schedule at the beginning of a semester and adhere

to it as much as possible through the semester, but flexible
planners construct just an outline at the beginning and fill in
details and dates as the semester progresses. In order for a
system like CB2T to fit the variety of approaches that people
could potentially use, this flexibility requirement needs to be
further refined as follows. (9.1) The system should allow a user
to input as many, or as few, course events and constrains as
he/she wishes. (9.2) It should allow the user to choose between
automatic scheduling of the events entered or manually
constructing a schedule. (9.3) For automatic scheduling, instead
of generating and showing the “optimal” schedule or a single
feasible schedule, the system should support the user in
developing a schedule that best fits his or her approach to course
planning. (9.4) This means that the system should support an
iterative approach to scheduling: (9.4.1) Calculate and display
all or several feasible schedules; (9.4.2) Then allow the user to
choose (and modify if desired) one of these schedules; (9.4.3) It
should also allow the user to reject all offered schedules and
instead change some of the events and constraints for the next
iteration.

Requirement 10: The system should incorporate, and allow the
user to enter and modify, a variety of constraints or
relationships among various course events. The Artifact Model
provided information regarding several types of constraints that
are applied during course planning. First, there are hard
constraints. For example, no formal course event can be
scheduled on a Sunday or a university holiday. Similarly,
universities generally require final exams to be held on specific
dates and times. Second, there are soft constraints. For example,
a professor may want the initial schedule to meet a constraint
that the default length of time to grade an assignment is a week.
Another example is that an assignment due date cannot be
scheduled within a week of a test. These are soft constraints
because they are user-defined and therefore can be modified or
relaxed by the user. Given this distinction between hard and soft
constraints, this requirement can be further refined as follows.
(10.1) The system should automatically acquire hard constraints
such as the start and end dates of the semester, scheduled
holidays, final exam schedule etc. (10.2) The system should
allow the user to enter additional soft constraints and modify or
relax them as needed during iterative scheduling.

Requirement 11: The system should support manual and
automatic emailing of students with course information and
reminders about upcoming deadlines. The interviews revealed
that this is a highly desired functionality that paper-based
calendars cannot provide.

4. SYSTEM ARCHITECTURE
Based on the requirements generated from the Contextual
Design process, we developed a three-level architecture for
CB2T (Figure 2). The highest level is a PHP/HTML user
interface level that presents information to, and collects
information from, the user. At the next level, a Java program
translates this information into a linear program which is then
solved by a constraint solver at the lowest level. Once the solver
is done, the middle level interprets the output of the constraint
solver and translates it into a form that can be used by the

interface level. All of the data that is used throughout the levels
are stored and retrieved by a MySQL database.

A prototype of this architecture has been implemented. Feasible
schedules are successfully generated in real time.

4.1 User Interface
The user interface provides five main functionalities: user login,
creating a course, entering constraints, viewing a course
schedule by day, week or month, and creating, editing and
deleting individual course events. In order to create a new
course, the user can enter the following information: course
title, instructor name, instructor email address, instructor
telephone number, instructor office location, instructor office
hours, GTA name, GTA email address, GTA office location,
GTA office hours, course description, location (classroom and
building), and lecture time. They can also input (implicit)
constraints: semester begin date, semester end date, holidays,
and any breaks (e.g., spring break), class rotation
(Monday/Wednesday/Friday or Tuesday/Thursday), the number
of assignments, the number of extra-credit assignments, and the
number of tests. From this, the system computes information

such as the actual number of lecture days in the semester.

The system defines four types of events. An assignment is an
event that is defined as a class activity with a due date attached
to it. A test is an event that occurs during a lecture on a date
assigned by the professor. An extra-credit assignment is an
optional assignment. Lectures are hour-long events that take
place during the class period. These occur every class day with
the exception of days that tests are scheduled. Events have
associated features such as type, name, date, description and
notification schedule (i.e. to schedule automatic email reminders
for students). The user can manually add a new event and edit or
delete an existing one at any time. The system automatically
checks each new or modified event against the course calendar
for a variety of conflicts. Conflicts include events being held on
weekends, holidays, breaks, or overlaps with existing events. If
a conflict is detected, the user is asked to modify the conflicting
feature. After all conflicts are resolved, the event is added to the
calendar.

The course calendar is viewable by day, week, or month. All
views, by default, show events associated with all courses for
the current semester created by the current user. The user can
toggle individual courses on and off, thereby restricting the

Figure 2. System architecture.

views to events associated with a specific course or courses. The
default view is the current day view. Events can be clicked on to
bring up full descriptions.

4.2 The Translator
The Java program at the middle level takes the specification
inputted into the PHP/HTML form as input from the interface
level using shell scripting through PHP and translates them from
domain specific constraints as described in the previous section
linear inequalities as follows. First, more general domain
constraints specifying the length of the semester, holidays, etc.
are added to the user’s specification. Then, all constraints are
translated into a set temporal constraints which, in turn, are
directly translated into a linear program. This two-step
translation allows reduces the translation to two simple steps.
An example will better clarify this translation process.

Suppose a user enters the following course information: Course
dates: August 19 2002 - December 6 2002; Holidays: September
2 2002; Break: November 25 2002 - December 1 2002;
Schedule: MWF; Tests: 2; Assignments: 2; Extra-credit
Assignments: 0; Mid-term date: October 9 2002.

The total number of days between the start and end date, 109, is
first calculated. Then a determination of which are weekdays
and which are actual class days (Mondays, Wednesdays and
Fridays excluding holidays and break) is made. Then this level
constructs algebraic equations representing constraints implicit
in the information entered by the user and several predefined
system constraints. One predefined system constraint is that a
test and an assignment event cannot occur on the same day. This
results in 4 inequalities of the form Ti-Aj • 0 where Ti is the day
of the ith test and Aj is the day of the jth assignment. The system
also has predefined constraints of the form event-i must occur
before event-i+1 for any event type. This generates inequalities
T1-T2 < 0 and A1-A2 < 0. Another predefined constraint is that
the first test cannot occur within the first seven days of the
semester. This can be expressed with T1 > 7. A fourth constraint
is that assignments need 7 days for students to do them and for
the professor to grade. A fifth constraint is that at least one
assignment must precede a test. A sixth predefined system
constraint is that any outstanding assignments must be graded
and returned at least 7 days before a test. These three constraints
give rise to the inequality A1+21-T1 < 0. A seventh constraint is
that a test must be given and returned after grading to students at
least a week before the mid-term, which is the last possible date
for dropping a course. In the present example, the mid-term is
day 51 out of a 109-day semester. This yields T1+14 • 51
requiring that test 1 must occur at least 14 days prior to the mid-
term.

Variables of the form eiej stand for the number of days between
event-i and event-j, where the letter e is replaced with S, E, T, A,
L or X to represent the start of the semester, the end of the
semester, a test, an assignment, a lecture or an extra-credit
assignment respectively. This, in the present example, results in
six constraints T1-S-ST1 • 0, T2-T1-T1T2 • 0, E-T2-T2E • 0, A1-
S-SA1 • 0, A2-A1-A1A2 • 0 and E-A2-A2E • 0. Note that in our
example S = 1 and E = 109. An eighth predefined constraint is

that tests be equality distributed over the semester. This gives
rise to the equations ST1 = T1T2 and T1T2 = T2E. The
constraint solver will attempt to maximize these values subject
to their sum being less than or equal to the total number of days
in the semester. The translation level passes this set of equations
to the constraint solver at the lower level. It will solve these
constraints and return the corresponding variable values back to
the translation level.

A solution for the present example is A1 = 7; A2 = 58; T1 = 37;
T2 = 73; SA1 = 51; A1A2 = 51; A2E = 51; ST1 = 36; T1T2 =
36; T2E = 36. These values stand for the number of days from
the start of the semester (i.e. test 1 is scheduled for the 37th day).
The translation level translates these numbers into actual dates
and checks them to ensure that they do not fall on Saturdays,
Sundays, non-class days, holidays, or breaks (if they do, the
closest class days are picked instead). Then these are written
into the database and passed to the interface level for display.
Subsequently, the user is presented a screen that shows the
events that have been scheduled with the option to edit each by
clicking on it.

4.3 The Constraint Solver
Generating feasible schedules by developing and solving
constraints is a feature of CB2T that separates it from
commercially available course management tools such as
WebCT. The Artifact Model indicated that professors created
course schedules from relatively few constraints, notably the
number of tests, assignments, and extra-credit assignments.
Constraints such as course start and end dates, holidays, break
start and end dates are the same for all courses and are
automatically added to the set of constraints. As the example
above showed, both implicit (i.e. the semester calendar) and
explicit (i.e. relationships among various events to be
scheduled) constraints can be expressed as algebraic inequalities
and don’t have to be treated differently at the computational
level. Therefore, we adopted the linear programming approach
to constraint solving [4]. We chose an open-source
implementation of the linear programming algorithm lp_solve.

5. INTERFACE EVALUATION
From the information gathered during the Contextual Design
process we constructed profiles of typical users of CB2T. From
these profiles we developed use cases and used them in a
“cognitive walkthrough” evaluation of the interface. Information
gathered from interviews suggested that a “typical” user of the
system can be characterized as falling between two extreme
kinds of users, whom we call the Schedule-driven User (SU) and
the Content-driven User (CU).

SU is a highly structured individual who creates detailed plans.
He completely plans his course schedule at the beginning of the
semester and follows it closely throughout. He uses a highly
formalized process with well-defined steps when creating a
course schedule. His first step is to analyze the requirements for
the course. After defining the requirements, he refines these into
a set of general concepts that all students taking the class should
know by the end of the semester. These concepts are translated
into specific course objectives. From these objectives, he

determines what topics to teach and how many lectures to give
on each. This process is time consuming and tedious, but the
end result is a detailed daily lecture schedule for the course. SU
would use CB2T to assist him in scheduling events, once course
requirements and objectives have been defined and the lectures
planned. He is likely to manually schedule course events such as
tests and assignments, or at least significantly modify the
automatic schedule that CB2T generates for him. However, once
the schedule is finalized at the beginning of the semester, he will
strictly follow it with minimal modifications during the
semester.

CU, on the other hand, is the type of user who describes her
course preparation methods as more content-based. She is
generally not concerned with planning out her schedule to the
minute detail at the beginning of the semester. She is interested
in thoroughly covering the course material, and scheduling tests
and assignments based on how much gets covered as the
semester progresses. Upon deciding to teach a course, she
decides what major topics should be covered. She makes only
approximate plans at the beginning of the semester, and fills in
details later as needed. She wants to have a feasible schedule
generated for her by CB2T once she decides on the important
course events. This provides her with a view of the semester
with tests and assignments fairly evenly distributed throughout
the course. It will also provide some insight about the pacing of
lectures to cover sufficient material before tests and
assignments. As the semester progresses, she will adjust the
schedule based on the actual course content she covers from
lecture to lecture. Thus, CU is more likely to keep both a private
and a public calendar, moving items from the private one to the
public one as she finalizes events. She is also the type of user
who is likely to require that multiple feasible schedules be
generated.

After constructing user profiles, the next step was to develop
well-defined use cases to demonstrate how the users would
interact with the system and how the system would respond. Use
cases are an important part of the Unified Modeling Language
(UML). UML, sometimes referred to as the Unified Process, is
an object-oriented software design methodology [6]. Use cases
provide detailed specifications of actions that the user performs
and the system’s responses. We developed use cases for the four
tasks that all users will perform with CB2T: logging in, creating
a course schedule, manually creating a course event and
modifying an already created event (see [2] for use case
descriptions).

We developed two sets of task descriptions from the use cases,
one matching the SU profile and the other matching the CU
profile. Both involved logging in, entering information
regarding a new course, having a schedule automatically
generated, and then rejecting and/or modifying various course
events to create a final course schedule. Then we carried out a
cognitive walkthrough evaluation by a usability expert. The
cognitive walkthrough is an evaluation process that involves
constructing task descriptions from a system specification, and
then obtaining critical feedback from one or more usability
experts who interact with the system to carry out these tasks [5].
While completing the tasks, the expert reviewer attempts to

predict how a potential user will view the system and potential
problems they may face, and suggests design changes. This
allows the interface’s usability to be evaluated and improved.
Our expert generated several recommendations for improving
the interface. Implementing these changes to the interface is part
of our ongoing work.

6. CONCLUSION
We presented a case study of the design and evaluation of a
course-scheduling tool. It takes university calendar information
along with user inputs of various events, and translates these
into algebraic constraints, which are then solved by a linear
programming algorithm to generate a feasible schedule. We
described the application of the Contextual Design methodology
to generate models and user profiles, requirements, and the
system architecture. The analytical steps preceding the
development of models and requirements included conducting
and coding interviews with potential users, and gathering and
analyzing work artifacts. Then a prototype was built and
evaluated through developing use cases and conducting a
cognitive walkthrough. Figure 3 summarizes this design process.

By describing this design process and the resulting system, this
paper makes two contributions. First, it illustrates the contextual

approach to interactive system design in an educational domain.
In particular, it shows how one can explore and formalize the
tasks of interest through qualitative data collection and model
building. Second, it presents the architecture of a course-
scheduling tool, with a constraint-solver based on the linear
programming algorithm, which allows the automatic creation of
feasible event schedules. Unlike commercial course
management tools such as WebCT, CB2T provides a novel
functionality – the automatic creation of a feasible event
schedule for a course – based on constraint satisfaction.

User Interviews

Cultural
Model

Sequence
Model

Artifact
Model

Requirements

System Design Interface Design

Prototype
Implementation

User
Profiles

Use
Cases

Evaluation:
Cognitive
Walkthrough

Figure 3. Design process

As what we have described is the first iteration of design,
clearly, more work is ahead. The prototype does not yet meet
some of the requirements (2, 5, 6, 8 and 10) outlined in Section
3. In particular, a way of ranking and displaying different
schedules if there are multiple solutions to the constraints needs
to be developed. More sophisticated error checking is also
desirable. Future research will focus on these issues.
Afterwards, we will be testing actual use by releasing the system
to faculty for semester-long usage. Ultimately, we plan to
release the system as open-source software.

7. ACKNOWLEDGEMENTS
The support of NSF for this research through grant REC-
9815016 is gratefully acknowledged.

8. REFERENCES
[1] Beyer, H., and Holtzblatt, K. Contextual Design: Defining

Customer-Centered Systems. Morgan Kaufmann, 1998.
[2] D’Amico, S. J. Constraint-based Course Building Tool.

MSwE Report, Computer Science & Software Engineering
Dept., Auburn University, Auburn, AL 36849, 2002.

[3] Denzin, N., and Lincoln, Y. (Eds.). Handbook of
Qualitative Research. Sage Publishers, 1994.

[4] Fourer, R. (2000). Linear programming frequently asked
questions. http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html.

[5] Preece, J., Rogers Y., Sharp, H., Benyon, D., Holland, S.,
and Carey, T. Human-Computer Interaction. Addison-
Wesley, 1994.

[6] Scott, K. The Unified Process Explained. Addison-Wesley,
2002.

