
Studio-Based Learning in CS2: An Experience Report
Lakshman Myneni

CSSE Dept.
3101 Shelby Center
Auburn University
Auburn, AL 36849
+1 334-844-6352

mynenls@auburn.edu

Margaret Ross
EFLT Dept.

4018 Haley Center
Auburn University
Auburn, AL 36849
+1 334-844-3084

rossma1@auburn.edu

Dean Hendrix
CSSE Dept.

3101 Shelby Center
Auburn University
Auburn, AL 36849
+1 334-844-6352

hendrtd@auburn.edu

N. Hari Narayanan
CSSE Dept.

3101 Shelby Center
Auburn University
Auburn, AL 36849
+1 334-844-6352

naraynh@auburn.edu

ABSTRACT

Recently there has been a surge of interest in making computer

science education attractive to potential students, motivating to

current students, and relevant to graduating students. We are

exploring a new pedagogical approach called studio-based

learning as a means to reinvigorate computer science education.

Adapted from architectural education, this instructional model

emphasizes learning activities in which students (a) design

computational solutions to problems that lend themselves to

multiple solution strategies, and (b) present and justify their

solutions to their instructors and peers for critical review and

discussion. In this paper we describe the studio-based approach,

discuss how it was implemented in CS2, and present preliminary

evaluation results.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:

Computer science education.

General Terms

Design, Experimentation, Human Factors.

Keywords

Computer science education research, CS2, peer review, studio-

based teaching and learning.

1. INTRODUCTION
The studio-based instructional model as practiced by architectural

schools is in the form of the “design studio,” a place where

students set up their own workspaces, and create and present their

designs [6]. As students work on design tasks in this common

space, they develop a “community of practice,” providing support

and feedback to each other. The design studio curriculum involves

a series of design problems, which may either be a sequence of

progressively more challenging design problems, or various

components of a large design project. A key aspect of the design

studio is the design critique. Design critiques are review sessions

in which students present their evolving solutions to the instructor

and the class for feedback and discussion. Boyer and Mitgang [1]

state in their comprehensive review of architecture education that

“the core elements of architectural education—learning to design

within constraints, collaborative learning, and the refining of

knowledge through the reflective act of design—have relevance

and power far beyond the training of future architects.”

Researchers from Auburn University, University of Hawaii and

Washington State University have embarked on a research project

to adapt and apply the studio-based learning (SBL) approach to

computing education [2]. As part of this NSF-supported effort, we

implemented the studio-based instructional model in a CS2 course

at Auburn University that is taken by a variety of undergraduate

majors: computer science, software engineering, computer

engineering and wireless engineering. Key aspects of the SBL

model are:

a. Students are given meaningful problems for which they

have to design and implement computational solutions

individually or in groups.

b. These problems are amenable to multiple solution

strategies. This means that students have to consider

alternate solutions and their tradeoffs in terms of

efficiency and software engineering considerations,

choose the best, and justify their choice.

c. They must then articulate their solutions and

justifications to the entire class for peer review,

feedback and discussion, in writing, orally or both.

d. Their peers and the course instructor evaluate these and

provide comments and criticisms, again in writing,

orally or both.

e. Students are given the opportunity to respond to this

feedback and modify their solutions appropriately.

Through these steps students get experience in: (1)

individually and collaboratively solving algorithm and

software design problems, (2) evaluating and selecting

among alternate designs based on considerations of

correctness, efficiency and other engineering design issues,

(3) explaining their solutions to others in writing and

through oral presentations and argumentations, (4) critically

analyzing each others’ solutions in peer reviews, and (5)

reflecting on and learning from these design exercises over

the course of a semester, thus becoming more proficient

practitioners of computational problem solving.

To appear in the Proceedings of the 46th ACM Southeast Conference, Auburn, AL,

USA, March 28-29, 2008. ACM Press.

2. IMPLEMENTATION OF SBL IN CS2
Fundamentals of Computing II (COMP 2210) is the second

course in a series of three that computer science, software

engineering, computer engineering and wireless engineering

majors take at Auburn University. This course corresponds to the

course referred to as CS2 in computing education literature.

Students learn about data structures such as arrays, lists, trees,

hash tables, etc., and algorithms that access, manipulate and solve

problems with these data structures. The course has a laboratory

component. Students meet twice a week in 75-minute long lab

sessions, in which they work on their individual programming

assignments with the help of teaching assistants.

Traditionally, the instructor would assign programming problems

in class, students would work on them outside class and in the lab

sessions and submit their solutions, which were graded for

correctness and efficiency by teaching assistants. In fall 2007, this

approach was changed to the SBL model in which five out of six

assignments were designed to have the features we described

above. The assignments remained individual assignments.

However, each was presented as a problem (e.g., develop a game

playing program for the common word game Boggle) that could

be solved with multiple computational strategies. Students were

asked to first think about various strategies, choose one, and

explain the strategy they chose and justify it in writing, using

verbal explanations and pictures. Their submissions of strategy

explanations, visualizations and justifications were made

anonymous and provided to the entire class for viewing on the

web. In addition, each student was assigned up to four

submissions of others for critical review, and asked to submit the

reviews in writing through the web. Following this, the students

implemented their strategy in Java and submitted their code for

grading. Finally, each student was given the option of orally

responding to criticisms of his/her approach in a lab session.

The next section presents our observations and findings about the

impacts that this change in CS2 had on students.

3. PRELIMINARY FINDINGS

3.1 Performance
Students were required to provide critiques of others’ project

assignments, and were observed discussing their projects and

responding to critiques during lab sessions throughout the

semester. Observation protocols were developed. The initial

protocol focused on appropriateness and communicative quality

of responses to positive and negative comments and discussion.

We used a scale of 1 = not appropriate, 2 = appropriate-low

quality, 3 = appropriate-some depth, and 4 = in-depth analysis,

self-assessment, and synthesis. Initial discussions tended to be

brief and perfunctory, focusing on rote descriptions of code or

strategy with little detail provided. Also, students put little

thought into critiques of their work initially, mainly indicating

they either agreed or disagreed with the comments or indicating

that the critiques did not provide useful feedback. Because the

scale descriptors were deemed to be too undefined or broad, the

protocol was revised. Rather than merely rating student responses,

we indicated whether or not students summarized strategy,

acknowledged positive comments, and read critical comments.

Additionally, we placed more emphasis on explanations related to

why responses were (or were not) meaningful by including written

comments about the responses.

As the semester progressed, students began to provide more

detailed descriptions of their projects that included why they

chose specific strategies. For example, during the second studio

session of the semester, one student indicated that he was not

really sure his work was reviewed because the critique didn’t

provide information related to the strategy used. By the end of the

semester, students responded to critiques in a thoughtful manner,

indicating why they agreed or disagreed with it and, at times,

suggesting ways they might have improved their work. One

student’s comment during the last observation included an

explanation of what was said in the critique. He additionally

indicated that he felt like the student providing the critique

understood the work. The progression from perfunctory to

thoughtful discussion suggests improved performance in two

ways. First, we can posit that written critiques improved

throughout the semester indicating that students were more adept

at thinking through code and strategy at a deeper level than they

were at the start of the semester. Second, students demonstrated

an improved ability to critically think about their own work based

on feedback from others.

However, several issues still remained by the end of the semester:

1. The students had difficulty understanding some of the

open-ended critique questions. For example, many

students indicated that they were unclear about the

meaning of the question “How original was the problem

solving strategy?” Critique questions are now being

developed to provide more clarity in relation to what is

expected.

2. Accurately and fully recording responses to critiques

was difficult during observations. Because of this

difficulty, we decided to videotape critiques and

responses during lab time in future. Videotapes can be

reviewed at a later date, providing the opportunity to

stop, review, and discuss parts, making data collection

more accurate and complete.

3. Students expressed confusion in relation to exactly what

was expected in their responses to critiques. Therefore,

the critique and response process will be modeled for

the students by us in future, thereby clearing up

confusion about the process and, hopefully, forming a

foundation for higher quality responses. Also, students

will be given more lab time to critique and respond to

comments in critiques, which we expect will also

facilitate higher quality responses.

3.2 Attitudes and Motivation
The Motivated Strategies for Learning Questionnaire (MSLQ, [4])

was used to assess learning motivation. Items on the MSLQ are

scored using a 7 point Likert-type scale with 1 = not at all true of

me and 7 = very true of me. Validity was addressed using factor

analytic procedures and reliability (alpha) coefficients are

reported for the instrument’s scales. The MSLQ manual reports

the results of a structural model with path coefficients for the

Intrinsic Motivation and Extrinsic Motivation scales ranging from

.44 to .71 and alpha coefficients of .74 and .62.

A repeated measures analysis of variance (ANOVA) was used to

assess the difference in intrinsic motivation level from pre-survey

to post-survey (n = 40). Intrinsic motivation items (n=4) were

averaged to form the intrinsic motivation scale. Results were

statistically significant, Wilks’ Lambda F(1,39) = 52.66, p < .001,

with a large effect size, partial η2 = .575. The pre-survey mean

was 5.0 (SD = .82) and the post-survey mean was 6.1 (SD = .42).

These results suggest that student motivation to learn in the studio

based course increased through the semester.

3.3 Anecdotes or Student Response Examples
Five students were interviewed at the end of the semester.

Interview questions were open-ended and addressed perceptions

of learning, interest and motivation, and sense of community with

others in the class. Example questions include:

a. Learning: Did you find the process of completing

programming projects helpful to you in learning about

computer programming? Why or why not?

b. Motivation: Did the course keep you interested and

motivated to learn? Why or why not?

c. Community: Are you comfortable giving and receiving

feedback on computer programming?

Generally, students indicated that they had expected the course to

be difficult but that they did enjoy it and learned from it. One

student specifically indicated that he was pleasantly surprised by

the creative projects. Most thought that the hands-on projects

were more helpful than the book or lectures, and appreciated the

opportunity to apply what they had learned. One interviewee

indicated that the projects helped him think logically and

analytically.

Interview responses were a bit more varied in relation to

motivation. One student said that the course had decreased his/her

interest in computer science. However, this was not the general

consensus. All of the other interviewees reported that the course

increased their interest in computer science. Specific aspects of

the course that were mentioned included the opportunity to think

through problems, theory (as opposed to programming) and

practical application through projects.

One complaint about the peer review process was that the

feedback was often lacking or sub-par. Two of the five

interviewees specifically noted this lack of quality. However, all

indicated that when they did get good feedback, it was helpful or

interesting to them. For example, one student related that the

reviews gave him/her insight. Another stated that the reviews

helped further understanding. Other perceived benefits include

increased interest, improvement of programming skills, and better

understanding of the problem.

4. CONCLUSION
These preliminary findings hint at the potential of SBL as an

instructional approach that could potentially increase student

enjoyment in problem solving, and motivation and interest in

computer science, all of which have been cited in recent literature

as factors critical to reinvigorating computing education [3,5].

Our current work is on using the lessons of the previous semester

to revise and implement SBL in CS2 and CS3 in spring 2008, and

to compare not only affective changes in student perceptions but

also student learning outcomes between traditional and SBL

implementations of CS2 and CS3 at Auburn University.

Furthermore, we plan to compare and correlate our findings with

those from our partner universities.

5. ACKNOWLEDGMENTS
This paper is based on work done at Auburn University as part of

a multi-university research project in which researchers from

Auburn, University of Hawaii and Washington State University

(A. Agrawal, M. Crosby, D. Hendrix, C. Hundhausen, S. Myneni,

H. Narayanan, M. Ross, M. Trevisan, and R. Vick) are

participating. This work is supported by NSF under CPATH

Grant No. CNS-0721927. Any opinions, findings and conclusions

expressed are those of the author(s) and do not necessarily reflect

the views of NSF.

6. REFERENCES

[1] Boyer, E. L., and Mitgang, L. D. 1996. Building Community:

A New Future for Architecture Education and Practice.

Princeton, NJ: The Carnegie Foundation for the

Advancement of Teaching.

[2] Hundhausen, C.D., Narayanan, N. H., and Crosby, M. E.

2008. Exploring studio-based instructional models for

computing education. In Proceedings of the 39th ACM

Technical Symposium on Computer Science Education

(Portland, OR, March 12 - 15, 2008). ACM Press, New

York, NY, to appear.

[3] Patterson, D. A. 2006. President's letter: Computer science

education in the 21st century. Communications of the ACM

49, 3, 27-30.

[4] Pintrich, P. R., Smith, D. A. F., Garcia, T., and Mc Keachie,

W. J. 1991. A manual for the use of the Motivated Strategies

for Learning Questionnaire (MSLQ). National Center for

Research to Improve Postsecondary Teaching and Learning.

[5] Ross, J. 2007. Perhaps the greatest grand challenge:

Improving the image of computing. Computing Research

News 18, 3, 4.

[6] Schon, D. 1983. The Reflective Practitioner: How

Professionals Think in Action. New York: Basic Books.

