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The general form for the probability density function (pdf) of a logistic random 

variable, Lg(mean μ,  variance σ2), X is given by  g(x; μ, σ) = 
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π
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(x ) / 3
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Making the transformation Z = x

x

(X )
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 in Eq. (19), the most common form of 

the logistic probability density function is obtained by letting G(x) and F(x) 
represent the cdf (cumulative distribution function) of X and Z, respectively.  As a 

result [letting μ = μx & σ = σx = V(X) ], we obtain (x = z 3 /μ + σ π )  

F(z) = Pr(Z ≤ z) = Pr( (X )
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Thus, the standard (but not standardized) form the logistic pdf is given by               
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where z zCosh(z) (e e ) / 2−= + , z z 1 z zSech(z) [(e e ) / 2] 2 /(e e )− − −= + = + ,   

z zSinh(z) (e e ) / 2−= − , and Tanh(z) = z z z z(e e ) (e e )/− −− + .  The expression                       
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21 Sech (z/2) =
4

z/2
2

z
e

1 + e
[ ]  → 21 Sech (z/2) =

4

z

z 2
e

(1 + e )
= f(z).  Similarly, it can be verified 

that Cosh(z) = 2 2cosh (z/2) 1− , or Cosh(2z) = 2 2cosh (z) 1− , 2 2Cosh (z) Sinh (z)= 1− , 

Sech2(z) = 1 − Tanh2(z) and Sinh(2z) = 2Sinh(z)Cosh(z). 

Further, 
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  = 1 shows that the integrand is a pdf over 

the range   − ∞ < z < ∞, and it can be verified  from Eq. (20) that E(Z) =
-z
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= 2μ ,  the skewness α3 = 0 and the kurtosis β4 = 4
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= 1.20, where 4μ = E(Z4) and μr = 
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 represents the rth central moment 

of a rv X.   The pdf in (20) is symmetrical about zero, i.e., E(Z) = z0.50 = The mode = 
0.  Thus, the graph of the standard logistic pdf resembles the standard normal 

density but with zσ = π/ 3 , thicker tails (normal kurtosis is zero) and less peaked 

in the middle because the height of the density at z = 0 for the standard logistic 

is 0.25 while it is equal to 1/ 2π  = 0.3989423 for the N(0, 1) pdf.  Note that the 

standard form of the logistic does not have a variance of 1, but the mean is zero. 
The cdf of Z is [for both forms of the pdf in Eq. (20)] given by  
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Inverting Eq. (21) for z in terms of the cdf yields z1 e−+  =1/F(z) →  ze−  =  − 1 + 

1/F(z) →   −z = ln[− 1 + 1/F(z) ] → −z = ln[
1 - F(z)

F(z)
] →  z = ln[

F(z)
1 F(z)−

] →   

zp = ln[
p

1 p−
]                                                                 (22a)                            
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Eq. (22a) gives the percentile function of the standard form of the logistic density 
and again verifies that the 50th percentile (p = 0.50) is equal to z0.50 = ln(0.5/0.5) = 

0 and the 95th percentile, with standard deviation / 3π , is  equal to z0.95 = 

ln(0.95/0.05) = 2.94444.  
Now, consider a dichotomous outcome variable with occurrence Pr of p 

when y = 1 and failure Pr equal to  (1 −p) when y = 0, where p is a function of a 

continuous variable x such as height, weight, age, length of time at a job, 
temperature, etc.,   and the dichotomous variable may represent the presence (y 
=1) or absence (y = 0) of coronary disease, or injured on the job (y =1) or not 
injured on the job (y = 0), needs repair (y=1) or does not need repair (y=0).  That 
is, in Logistic Regression, the response variable is dichotomous (0 or 1) and 
further we assume that p = Pr (Y =1) is a function of one (or more) continuous 

explanatory variable(s), i.e., in fact p = Pr (Y =1| x).   For example, the probability 

p that a person has coronary disease is related to his/her age x, i.e., p actually is 
p(x), and in this case, p(x) is an increasing function of x.  As the age of a person 
increases, the chance that the person has coronary heart disease increases.  In 
Logistic Regression literature the occurrence Pr of the dichotomous outcome is 
generally referred to as (x)π  but for simplicity of notation I will use p(x) to denote 

this success Pr, i.e., p(x) represents the Pr that a Bernoulli rv (success/failure; 
presence/absence; reliable/unreliable, etc) occurs with dependence on the 
continuous regressor x.  As another example, p(x) may represent the Pr that a 
car needs warranty service (y =1), but the need of this service may well depend 
on the accumulated mileage x.  Examining Eq. (22a) reveals that if p is a function 
of a regressor x, then its pth quantile xp will also be a function of x, say h(x), i.e.,   

                            xp =  h(x) = ln[ p(x)
1 p(x)−

] =  ln[ p(x)
q(x)

]                 (22b)                             

 In statistical literature, p(x)
1 p(x)−

 is called the odds for success, and ln(Odds) is 

called the logit transformation (i.e., logit means “loge odds of success”).   For 
example, if p(x = 55) represents the Pr that a randomly selected individual has 
evidence of coronary heart disease (CHD) at the age x = 55, and it is known that 
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the Odds(55) = p(55)
1 p(55)−

 = p(55)
q(55)

= 2.5, then for that randomly-selected person 

having evidence of CHD at the age of 55 is 2&1/2 times more likely than not 
having coronary heart disease, i.e., success is 2&1/2 times more likely than 
failure.  Put differently, the Pr of CHD for that 55-year old is 5/7 which is 2&1/2 
time q(55) = 2/7.  Conversely, if p(x) = 0.80, then 0.80/0.20 = 4 implies that the 
odds are 4 to 1 in favor of the event of interest.  Similarly, if Odds(against an 

event A) = O(A) are 19 to 1, then its occurrence Pr is 1/(1+19) = 0.05 = 
q(A)
p(A)

= 

19 / 20
1/ 20

, and it is then said that the odds against the event A are O(A) = 19/1 (or 19 

to 1).  Rearranging the logit transformation in Eq. (22b) yields                           

h(x) = ln[ p(x)
1 p(x)−

] → eh(x) = p(x)
1 p(x)−

  → h(x)e [1 p(x)] = p(x)−  → h(x) h(x)e  = p(x)+p(x)e → 

x)-h(1 = p(x)e +p(x)    →   

        p(x) = h(x)
1

1 e−+
 = 
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h(x)
e

e 1+
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h(x)
e

1 e+
= 1h(x)[1 e ]−−+                        (23)                                

     

If h(x) is a simple linear regression function, then h(x) = β0 + β1x + ∈, and Eq. (23) 

becomes the simplest form of logit regression function given below. 

p(x) = Pr(Y =1| x) =
0 1

0 1

x

x
e

1 e

β +β +∈

β +β +∈+
 = 

0 1x
1

1 e−β −β −∈+
 = h(x)

1

1 e−+
                           (24a)    

                                                       
Or, combining Eqs. (22b) and (24a) yields the logit (function) 

        h(x) = ln[
p(x)

1 p(x)−
] = ln(Odds) = ln[p(x)] − ln[q(x)] = β0 + β1x + ∈              (24b)                         

where from Eq. (23) we obtain q(x) = 1 − p(x) = h(x)
1

1 e+
= 1h(x)[1 e ]−

+  .                                          

If h(x) is a function of two regressors, then Eq. (24a) becomes 
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                                         p(x) = 
x x0 1 1 2 2

x x0 1 1 2 2

e
1 e

β +β +β +∈

β +β +β +∈+
                                (24c)                           

Of course, at this point one could ask the logical question as to why we cannot 
model p(x) itself in a simple linear regression format, i.e., why can’t we let p(x) = 

β0 + β1x + ∈.  The problem with such a model is that if we take the conditional 

expectation of Y, we obtain E(Y|x) = 1×p(x) + 0×[1 − p(x)] = E(β0 + β1x + ∈) = β0 + 

β1x  because E(∈) = 0.  This yields E(Y|x) = p(x) = β0 + β1x, where p(x) must lie 

within the interval [0, 1] while β0 + β1x cannot be constrained to lie in this interval 

[0, 1].  Therefore, the link function in logistic regression is the logit h(x) = 

ln[p(x)/q(x)] = β0 + β1x + ∈.  If we could model p(x) directly as a simple linear 

regression of x, then the link would be the identity function.  Further, 
h(x) h(x)e /[1 e ]+  ranges from 0 to 1 just like p(x). 

  
 So far we have established how to set up a logistic regression model, but 
the difficult part is parameter estimation and obtaining of the 95% CIs.  To better 
understand the difficulties, it is best to provide an example with a data set.  The 
following example is borrowed from the text by J. L. Devore’s 6th edition (2004) 
on his page 573 (Duxbury Press), which he refers to as Example 13.6.  The data 
pertain to launch temperature and the failure incidence of O-rings in 24 space 
flights prior to the Challenger Disaster of January 1986.   
 
Table 8 (Example 13.6 on page 573 of J. L. Devore (2004); X = O-ring Temperature 
in Fahrenheit) 

x 53°F 56 57 63 66 67 67 67 68 69 70 70 

Failure Yes 
y=1 

Yes 
y=1 

Yes 
y=1 

No 
y=0 

No 
y=0 

No 
y=0 

No 
y=0 

No 
y=0 

No 
y=0 

No 
y=0 

No 
y=0 

Yes
y=1

°F 70 70 72 73 75 75 76 76 78 79 80 81 

Failure Yes Yes No No No Yes No No No No No No 

 
The above table shows that there were a total of 7 failures in n = 24 independent 
trials, mostly occurring at lower temperatures x.  Thus, each launch was a 
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Bernoulli trial that either failed (y = 1) with probability p(x) or did not fail (y = 0) 

with probability of 1−p(x) = q(x).  Thus, the Bernoulli pmf (Pr Mass Function) of y 

is given by 

pmf(y) = 
p(x), y 1
1 p(x), y 0

=⎧
⎨ − =⎩

  = 
p(x), y 1
q(x), y 0

=⎧
⎨ =⎩

   = y 1 yp(x) q(x) −× ,  y = 0 or 1     (25)           

where x stands for O-ring Temperature, and q(x) = 1 −p(x) represents the Pr that 

the event of interest does not occur at x, and y = either 0 or 1.  
  
 Logistic Regression literature generally suggests three methods of 
estimation for fitting the occurrence Pr of the event of interest, p(x), to the 

logistic regression model  
h(x)

h(x)
e

1 e+
 = 

0 1

0 1

x

x
e

1 e

β +β +∈

β +β +∈+
=

0 1x
1

1 e−β −β −∈+
: (1) Maximum 

Likelihood Estimation (MLE), (2) the method of Weighted Least-squares.   The 3rd 
method, discriminant analysis function, is sometimes used but heavily depends 
on the normality assumption of the independent continuous variable x in each of 
the two subgroups (0 & 1), and moderate departures of X from normality leads to 

very positively biased estimators of β0 & β1.  Further, the most commonly used 

estimation procedure in Logistic Regression literature is the MLE.   
   

Maximum Likelihood Estimation (MLE)  
Consider the regression logistic model  

             p(x) = 
0 1

0 1

x

x
e

1 e

β +β +∈

β +β +∈+
 = h(x)

1

1 e−+
                         (26) 

 As illustrated in Table 8, we have n = 24 pairs of (xi, yi) = (53, 1), (56, 1), (57, 
1), (63, 0), …, (80, 0), (81, 0).  The likelihood function (LF) for Eq. (26) and Table 8 
is given by 

   L(β0, β1) = p(53)×p(56)×p(57)×q(63)×q(66) ×q(67)… ×q(80)×q(81). 

                            = i i
n 24

y 1 y
i i

i 1
p(x ) q(x )

=
−

=
×∏ ,  yi = 0 or 1.                                        (27a) 

where we have made use of Eq. (25) and the fact that the 24 Bernoulli trials are                               
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independent.  Because maximizing the log of a function also maximizes the 
function itself, it will be easiest to take the natural log of the LF in (27a) and 

attempt to maximize it.  Further to simplify notation, we let pi = p(xi) and qi = 1 − 

p(xi), and clearly the corresponding logit is h(xi) = β0 + β1xi + ∈i. 

L(β0, β1) = ln[L(β0, β1)] = ln
n

y 1 y
i i

i 1
p(x ) q(x ) −

=
×∏ = i i

n
y 1 y

i i
i 1

lnp(x ) lnq(x )[ ]−

=
+∑  

               = 
n

i i i
i 1

lnp (1 y ) lnqyi[ ]
=

+ −∑ = 
n

i i i
i 1

lnp lnq ) lnqyi[ ( ]
=

− +∑           

              = 
n 1[y ( x ) ln( )]i 0 1 i h(x )ii 1 1 e

β + β +∑
= +

 =
n h(x )i[y ( x ) ln(1 e )]i 0 1 ii 1

β + β − +∑
=

      (27b)                       

where I have made use of Eqs. (24 a & b), leaving out ∈i because partial 

differentiation will not be affected by ∈i.  We first differentiate (27b) wrt β0:  

∂L(β0, β1)/∂β0 = 
n h(x )i[y (1) ln(1 e )]ii 1 0

∂
− +∑

∂β=
=

n 1 h(x )i[y (1 e )]i h(x )i 1 i 01 e

∂
− +∑

∂β=
+

 

=

h(x )in e
[y h(x )]ii h(x )i 1 i 01 e

∂
−∑

∂β=
+

= 
n

[y p(x ) (1)]i ii 1
− ×∑

=
= 

n
[y p(x )]i ii 1

−∑
=

 

Set equal to⎯⎯⎯⎯⎯→  0 → Thus, our first likelihood equation is 
n

p̂(x )ii 1
∑
=

= 
n

yii 1
∑
=

→ this 

implies that the sum of observed values of y must equal to the sum of the fitted 

values p̂(x)  as in the case of classical MLREG.  For Table 8, we obtain 

n
p̂(x )ii 1

∑
=

= 
n 1

[ ]ˆ ˆ xi 1 0 1 i1 e
∑

−β −β= +
= 

i

n

ĥ(x )i 1

1[ ]
1 e−= +

∑ = 1ˆn h(x )i[1 e ]
i 1

−−
+∑

=
= 7.0 = n1 

where n1 represents the number of O-ring failures in n = 24 Bernoulli trials, and 

n0 = n −n1 = 17. 

We next differentiate the log-likelihood function in Eq. (27b) wrt β1:  

∂L(β0, β1) /∂β1 = 
n h(x )i[y x ln(1 e )]i ii 1 1

∂
− +∑

∂β=
= 

h(x )in e
[y x h(x )]ii i h(x )i 1 i i1 e

∂
−∑

∂β=
+

= 
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n
[y x p(x ) (x )]i i i ii 1

− ×∑
=

Set equal to⎯⎯⎯⎯⎯→  0 

Thus our 2nd likelihood equation becomes 
n

ˆx p(x )i ii 1
∑
=

 = 
n

y xi ii 1
∑
=

: for Table 8 

we have:   
n

i
ˆ ˆ x0 1 ii 1

x
[ ]
1 e−β −β

= +
∑ = 

24
x yi ii 1

∑
=

= 53 + 56 + 57 + 0 + …+ 75 = 451. 

I used the Excel solver and obtained the point estimates 0β̂ = 10.87535 and 1β̂  =  

− 0.17132 → ĥ(x) = 10.87535 − 0.17132x; Minitab (Enter x and y pairs in C1 & C2 

and go to Stat → Regression → Binary Logistic Regression and the rest should 

be self-explanatory) also verified my answers.  Thus,  ln[ p̂(x)
ˆ1 p(x)−

] = ln[ p̂(x)
q̂(x)

] = 

ln(Odds ) = 0β̂ + 1β̂ x = ĥ(x) = 10.87535 − 0.17132x; for example, when temperature 

is equal to 60°F, then ln[Odds (60°F)] = 10.87535 − 0.17132(60) = 0.596119 → 

Odds of success (60°F) = e0.596119 = 1.815061 → then at 60 degrees Fahrenheit O-ring 

failure is 1.8151 times more likely than no failure, while at 61°F, ln[Odds (61°F)] = 

0.42483 → Odds (61°F) = 1.5293304114 → this implies that for every one degree 

increase in temperature (°F) the odds of failure diminishes by a factor of  

1.5293304114/1.815061 = 0.8425515.   Note that Minitab reports a value of 0.84 for 
this last factor that is called the Odds Ratio (OR).  That is, for every unit increase 

in x, the OR diminishes by roughly 0.8426 because OR =Odds(x 1) Odds(x)/+  = 

ˆ ˆh(x 1) h(x)e / e+  = 
ˆ ˆ xˆ ˆ 0 1(x 1)0 1e / e
β +ββ +β +  = 

ˆ1eβ = 0.17132e−  = 0.8425515.   Thus, in general a 

one unit increase in x results in the estimated odds ˆ ˆp(x) / q(x)  multiplied by a 

factor of 1ˆ
eβ .  Because 1β̂  < 0, the relationship between p(x) and x is a 

decreasing one.  The resulting logistic regression function is given by:  p̂ (x) = 

10.87535 0.17132x
1

1 e− ++
.  This last logistic model implies that when x = 60°F, the O-

ring failure Pr is estimated as p̂(60) = 10.87535 0.17132(60) 1[1 e ]− + −+  = 0.64477, while at x 
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= 61°F, p̂(61) = 0.60463.  Note that the value of the odds ratio is also given by OR 

= (0.60463×0.35523)/[ q̂(61) × p̂(60) ] = 0.8425515, i.e., OR = 
ˆ ˆp(x + 1)/q(x + 1)

ˆ ˆp(x)/q(x)
. 

 

Computing the se’s of the Maximum Likelihood Estimators 
 It has been proven in statistical theory that the covariance matrix of the ML 
estimators (MLEs) asymptotically approaches the inverse of the Fisher’s 
information matrix given below 

                                              I = 
11 12

21 22

I I
I I

⎡ ⎤
⎢ ⎥
⎣ ⎦

             (28)                       

where Iij = 
2

E
i j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∂−
∂β ∂β

L  = Iji, L represents the natural log of the likelihood 

function and is given in Eq. (27b) for the case of two parameters β0 and β1.  

Further, from statistical theory, maximum likelihood estimators are generally 

biased but are asymptotically (as n → ∞) unbiased.  We now proceed to compute 

the se’s of 0 1
ˆ ˆandβ β  for the data of Table 8. 

2

2
0

∂

∂β

L
 = 

0

n
[y p(x )]i ii 1

∂
∂β

−∑
=

= − 
n

0i 1
p(x )i

=

∂
∂β∑ = −

n
h(x ) 1i

0i 1
[1 e ]− −

=

∂
+

∂β∑  = 

−
n

xh(x ) 2 0 1 ii

0i 1
[1 e ] (1 e )−β −β− −

=

∂
− + +

∂β∑  = 
n

h(x ) h(x )2i i

i 1
[1 e ] [ e ]− −−

=
+ −∑  = −

n
h(x )2 i

i
i 1

p (x )e−

=
∑ ≅  

 − 3.73459135; similarly, 

2

0 1

∂
∂β ∂β

L  =  − i
n h(x )2

i i
i 1

x p (x )e−

=
∑ ≅ − 254.20087919, and   

2

2
1

∂

∂β

L =  −
n

h(x )2 2 i
i i

i 1
x p (x )e−

=
∑  ≅ − 17446.21098707.   Note that taking the 

 expectation of 
2

i j

∂
∂β ∂β

L  is generally mathematically intractable, at least to the 

ability of this author, and thus I have approximated them by their sample values.   
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Further, 
2

2
0

∂

∂β

L  < 0,  
2

2
1

∂

∂β

L  < 0 and  
2

2
0

∂

∂β

L
×

2

2
1

∂

∂β

L  > (
2

0 1

∂
∂β ∂β

L )2, implying that the 

response surface is strictly concave and hence, a global maximum. 

Thus, the fisher’s information matrix is estimated by (recall that Iij = 
2

i j
E

⎡ ⎤∂
−⎢ ⎥

∂β ∂β⎢ ⎥⎣ ⎦

L )   

I = 11 12

21 22

I I
I I

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 =
3.73459 254.20088
254.20088 17446.21099

⎡ ⎤
⎢ ⎥
⎣ ⎦

  → I −1 = 
32.52574 0.473918
0.473918 0.00696256

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

→ 0
ˆ( )βse = 32.52574  = 5.70313434 and 1

ˆ( )βse = 0.00696256  = 0.083442.  These 

standard errors precisely match those of Minitab’s.  Therefore, the 95% 

Confidence limits for β0 are 0 0.025 0
ˆ ˆz ( )β × β∓ se = 10.87535 1.96 5.703134×∓ =  

(− 0.30279330, 22.0534933)   →  −0.30279330 ≤  β0  ≤ 22.0534933 

Similarly, the 95% CI for β1 is given by 1 0.025 1
ˆ ˆz ( )β × β∓ se  →  

           − 0.33486678 ≤  β1  ≤  − 0.00777422 

 Note that in developing the above CI’s, I have used the fact that all ML 
estimators in the universe are asymptotically normally distributed.  A larger 
sample size n leads to a more accurate normal approximation.  The CI for the 

Odds ratio is obtained from ORL = e− 0.33486678 = 0.7154334 and ORU = e− 0.00777422 = 

0.992256  → 0.7154334 ≤ OR ≤ 0.992256.  This last 95% CI also agrees with that of 

Minitab’s to 2 decimals.     
 

The Method of Weighted Least-Squares   
 This method generally requires repeated observations at different 

levels of x so that a frequency distribution can be constructed.  [To illustrate the 
procedure, we use the data from the text by D. W. Hosmer and S. Lemeshow 
(Applied Logistic Regression, 2nd Ed., wiley, ISBN:0-471-35632-8) in their Table 
1.1 on page 3 where the variable x represents the age of an individual in the 
study and y represents the presence or absence of CHD (Coronary Heart 
Disease)].   Because there were 100 individuals in their sample, the authors 
proceeded to obtain a frequency distribution for their data which is, except for 
minor modifications by me, duplicated atop the next page.  Note that in each age  
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Table 1.2 on page 3 of Hosmer & Lemeshow (2000) 

Age Group ni CHD Present ip̂  iq̂  iŵ =  

i i iˆ ˆn p q  

20-29 years 10 1 0.10 0.90 0.90 

30-34 15 2 2/15 13/15 1.733333 
35-39 12 3 0.25 0.75 2.25 

40-44 15 5 1/3 2/3 3.33333 

45-49 13 6 6/13 7/13 3.23077 

50-54 8 5 5/8 3/8 1.875 

55-59 17 13 13/17 4/17 3.05882 

60-69 10 8 0.80 0.20 1.600 

Totals 100 43 0.43 0.57 17.9813 

 
subgroup we have a binomial random variable with ni Bernoulli trials and 

estimated success Pr of ip̂ .  The likelihood function for observing n1 successes 

in n trials is given by L(y1, y2, …, yn; p) = n n n1 1

1 1

n! p (1 p)
n !(n n )!

−−
−

= n n n1 1Cp q − , 

where C = 1 1n!//[n !(n n )!]− =  n n n1C −  is a constant (i.e., free of p) and q = 1−p. 

    L(p) = ln[ n n n1 1

1 1

n! p (1 p)
n !(n n )!

−−
−

] = ln(C) + n1ln(p) +(n−n1)ln(q)  

 Setting dL(p)/dp equal to zero results in the ML estimate of p as 1p̂ n / n= .  

Secondly, it can be shown that d2L(p)/dp2 = − n/(pq) so that the V( p̂ ) = pq/n.  

Because the variance of the Binomial rv is equal to npq, the estimated variance 

at each subgroup is i i iˆ ˆn p q .  We now regress ln(Odds) versus age x.       

ln(Odds for CHD) = ln( i

i

p
1 p−

) = ln( i

i

p
q

) = β0 + β1xi + ∈i = logit(xi).  In weighted 

regression, we try to give less weight to the subgroup with the larger 

variance and assume that iV(y x )  depends on the level of x through iV(y x ) = 

2
∈σ /wi, i.e., the weighted LSF is given by 
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                      WLSF(β0, β1) = 
k 2

i
i 1=

∈∑  = 
k 2w (y x )i i 0 1 i

i 1
− β − β∑

=
                         (29) 

where yi = ln( i

i

p
1 p−

) and k represents the number of categories (or subgroups) 

and is equal to 8 for Table 1.2 of Hosmer & Lemeshow reproduced above and yi = 

β0 + β1xi + (∈i / iw ) so that iV(y x ) = 2
∈σ /wi.  Differentiating Eq. (29) wrt to β0 and 

β1 and setting the resulting derivatives equal to zero leads to the following 

system of weighted normal equations. 

        ˆ
0β

k
i

i 1
w

=
∑  + ˆ

1β
k

i i
i 1

w x
=
∑  = 

k
i i

i 1
w y

=
∑                                       (30a)  

                         ˆ
0β

k
i i

i 1
w x

=
∑  + ˆ

1β
k 2

i i
i 1

w x
=
∑  = 

k
i i i

i 1
w x y

=
∑                                   (30b)   

Letting  W = 
k

i
i 1

w
=
∑  and solving the 1st normal equation (30a) for ˆ

0β  gives      

  ˆ
0β  = (

k
i i

i 1
w y

=
∑  − ˆ

1β
k

i i
i 1

w x
=
∑ )/W = ˆy x1− β   (where y w y / Wi i∑= ) 

Substituting the above expression for ˆ
0β  into (30b) results in 

 ˆ
1β = 

k k k
i i i i i i i

i 1 i 1 i 1
k k2 2

i i i i
i 1 i 1

w x y ( w x )( w y ) W

w x ( w x ) W

/

/

= = =

= =

−

−

∑ ∑ ∑

∑ ∑
= 

k
i i i

i 1
k 2

i i
i 1

w ( y y)x

w ( x x)

=

=

−

−

∑

∑
  

 
Using the Hosmer & Lemeshow’s (2000) grouped data in their Table 1.2, I obtained 

W = 17.98126, 
8

i i
i 1

w x
=
∑ = 827.6658 (using subgroup midpoints for xi’s), 

8
i i

i 1
w y

=
∑ = − 3.72119,  where yi = ln( i

i

p̂
q̂

), 
k 8

w x yi i ii 1

=
∑
=

= 34.19435, 
8

2
i i

i 1
w x

=
∑ = 40076.7, 

ˆ
1β = 0.103789 and ˆ

0β = − 4.98427.  Hosmer & Lemeshow used the ML procedure 
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and give the ML estimates as ˆ
1β = 0.111 and ˆ

0β = − 5.309.   Note that as n 

increases, the values of weighted least-squares estimators approach those of the 
ML.  Thus,  

                 ln(Odds for CHD) = ln( i

i

p̂
q̂

) = − 4.98427 + 0.103789xi  

and p̂ (xi) = 4.98427 0.103789x 1i(1 e )− −+   → p̂ (50) = 0.551111 →  Thus, a 

randomly selected 50 year-old person has 0.5511 estimated Pr of having 
evidence of CHD.  Using Hosmer & Lemeshow ML estimates, the same Pr at age 
50 is equal to 0.55996. 
 Because ML estimates have nicer properties [1: they are asymptotically 

unbiased, (2) their SMD approaches normality as n → ∞, (3) if θ̂  is the ML 

estimator of a parameter θ, then h( θ̂ ) is the ML estimator of h(θ)], I used the raw 

data in Table 1.1 of Hosmer & Lemeshow (2000) and proceeded to obtain their ML 
estimates.  As before, the two likelihood equations with two unknowns are 

      
n

p̂(x )ii 1
∑
=

= 
0 1 i

n

ˆ ˆ xi 1

1[ ]
1 e−β −β= +

∑ = i
n ĥ(x ) 1

i 1
[1 e ]− −

=
+∑ = 43 = 

n
yii 1

∑
=

= n1 

      
n

ˆx p(x )i ii 1
∑
=

 = 
n

y xi ii 1
∑
=

 → 
0 1 i

n
i

ˆ ˆ xi 1

x[ ]
1 e−β −β= +

∑ =
ˆ ˆn x 10 1 ix (1 e )i

i 1

−β −β −+∑
=

= 2205. 

The Excel file on my website provides their raw data.  The use of Excel solver 

yielded the solution set ˆ
0β = −5.30945332 and ˆ

1β = 0.11092114 (as compared to 

the reported values of  −5.309 & 0.111 on their page 10).  Thus,  

   ĥ(x)  = −5.30945332 + 0.11092114x  

Note that Hosmer & Lemeshow (2000) use g(x) to represent β0 + β1x + ∈, but I 

have used g(x) to denote the pdf of a Logistic random variable.  A point estimate 

of the logit at 50 years of age is given by ĥ(50) = 0.236603734 so that a point 

estimate of the odds is Odds(at age 50 for CHD)= e0.236603734 = 1.266938973 → this 

implies that a random 50-year old person is 1.267 times more likely to have 
evidence of CHD than not to have evidence of CHD.  Further, the point estimate 
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of logistic Pr at age x = 50 is p̂(50)  = 1/(1+e −0.236603734)  = 0.558876524, or p̂(50)  = 

1.266938973/(1+1.266938973) = 0.558876524 and q̂(50) = 0.441123476. 

The corresponding Fisher’s information matrix is  

         I = 11 12

21 22

I I
I I

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 =
17.92631205 826.1196216
826.1196216 39798.5425534

⎡ ⎤
⎢ ⎥
⎣ ⎦

 →  I−1 = 

1.285173 0.02667702
0.02667702 0.0005788757

−⎡ ⎤
⎢ ⎥−⎣ ⎦

  → 0
ˆ( )βse = 1.285173  = 1.133655 and   

1
ˆ( )βse = 0.0005788757  = 0.02406.  These standard errors precisely match those 

of the authors to 4 decimals. 
 

95% CI for the Fitted Logistic Regression p(x) 

Because p(x) = 
h(x)

h(x)
e

1 e+
 = 

x0 1

x0 1

e
1 e

β +β +∈

β +β +∈+
= h(x) 1[1 e ]− −+ , then we first need to 

obtain the requisite CI for h(x) and this in turn will give us the 95% CI for p(x).  

Therefore, we need to compute the se of the estimated logit ĥ(x) , which requires 

computing the V[ ĥ(x) ] first followed by taking its square root.  Proceeding with 

applying the variance operator to ĥ(x) , we obtain  

               V[ ĥ(x) ] = V( 0β̂ + 1β̂ x ) = V( 0β̂ ) + x2V( 1β̂ ) + 2x[Cov( 0β̂ , 1β̂ )]                    ( 31)          

where 0β̂  and 1β̂ are correlated estimators because the information matrix in Eq. 

(28) is not a diagonal matrix.  The last term on the RHS of Eq. (31) gives the 

covariance between 0β̂  and 1β̂ which is defined as  

            Cov( 0β̂ , 1β̂ ) = E{[( 0β̂  − E( 0β̂ )]×[ 1β̂  − E( 1β̂ )]} = E( 0β̂ 1β̂ )−E( 0β̂ )×E( 1β̂ ) 

Note that all ML estimators are only asymptotically unbiased, i.e., E( β̂ ) is in 

general different from the parameter β for n ≤ 50.  

For the Example by Hosmer & Lemeshow (their Table 1.1), we have  

I−1 = 
1.285173 0.02667702

0.02667702 0.0005788757
−⎡ ⎤

⎢ ⎥−⎣ ⎦
 , which shows from Eq. (31) that  

           ˆ ˆV[h(x)]  = 1.285173 + x2(0.0005788757) + 2x(− 0.02667702)                   (32)                        
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Thus, for a person of age x = 50, Eq. (32) gives ˆ ˆV[h(50)]  = 1.285173 + 

 (50)2(0.0005788757) +100(− 0.02667702) = 0.06466025 → se[ ĥ(50) ] = 0.2542838 →  

hL(50) = 0.236603680 − 1.96×0.2542838 =  − 0.2617925644, and hU(50) = 

0.236603680 + 1.96×0.2542838 = 0.7350.   Thus, the lower 95% confidence limit for 

the fitted p(x) at age 50 is pL(50) = 0.2617926 1(1 e )−+ = 0.43492311 and pU(50) = 

0.735 1(1 e )− −+ = 0.67590153 → 0.434923 ≤ p(50) ≤ 0.675902 → the Pr that a 

randomly-selected 50-year old person will have evidence of CHD, before that 
person is selected, lies within the random interval [pL(50), pU(50)] is 95%, where 
the CI end points and length change for one random sample of size 100 to the 
next.  Put differently, in repeated sampling, say 100000 samples each of size n 
=100, roughly 95000 of the CIs (of differing end points) will contain the true mean 
proportion p(50). 
 

The Likelihood  Ratio Statistic for Testing H0 : β1 = 0  
In the field of statistics, the likelihood ratio statistic for testing H0: β1 = 0 is 

defined as            

                                        LRS = 0Max L(x H )
ˆL(x )β

                    (33a)           

where 0 1
ˆ ˆ ˆ[ ]′β = β β for the case of simple LREG.   Some authors in statistical 

literature use λ  for LRS and others denote LRS by Λ.  For simplicity, I will just 

use LRS to denote the likelihood ratio statistic.  The denominator of LRS, ˆL(x )β  

is the value of the likelihood function [see Eq. (33a)] when all the parameters in 
the density function are replaced by their corresponding ML estimates, while the 
numerator is the maximum of LF wrt only some of the parameters while the 
remaining parameters are restricted under H0.  Because the denominator of (33a) 

maximizes L(x| β) wrt to all parameters while the numerator wrt to only some of 

the parameters, then the numerator can never exceed the denominator, and 

hence, the likelihood ratio statistic is restricted to the interval 0 ≤ LRS ≤ 1.   Thus 

for our simple logistic regression of testing H0 : β1 = 0, the LRS reduces to               
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 LRS = 
0

0 1

ˆL(x )
ˆ ˆL(x , )

β

β β
                                   (33b)                            

Note that the numerator assumes that β1 is set equal to zero as stated under H0.  

Further, when the values of numerator and dominator of (33b) are close to each 

other, then the value of 1β̂  must be close to zero in agreement with H0.  However, 

when the denominator is much larger than numerator, then 1β̂  must be far from 

zero leading to the rejection of H0: β1 = 0.  Therefore, the 5% rejection region for 

testing H0: β1 = 0 corresponds to small values of LRS having a Pr of at most 0.05.   

Fortunately, although the exact sampling distribution (SMD) of LRS in (33b) is 
difficult to obtain and intractable when the underlying distribution is unknown, 

from statistical theory the SMD of  −2×ln(LRS) approaches a 2
ν

χ  as n → ∞, where 

the degrees of freedom ν is equal to the number of parameters hypothesized under 

H0 (in this case ν = 1).  That is,  −2×ln(LRS) →
1
2χ  as n increases towards infinity for 

testing H0: β1 = 0.  For the sake of illustration, I will compute −2×ln(LRS) = 

−2×ln[ 0

0 1

ˆL(x )
ˆ ˆL(x , )

β

β β
] = −2×ln[ 0

ˆL(x )β ] + 2×ln[ 0 1
ˆ ˆL(x , )β β ] = D0  − D1, which Hosmer & 

Lemeshow (2000) denote it by G, i.e.,  

  G = −2×ln(LRS) = −2×ln[ 0

0 1

ˆL(x )
ˆ ˆL(x , )

β

β β
] = D0  − D1                                    (34)            

where D0 = −2×ln[ 0
ˆL(x )β ] is called the deviance with β1 = 0,  D1 = − 

2×ln[ 0 1
ˆ ˆL(x , )β β ] is the deviance with β1 ≠ 0,  and G has an approximate 

2χ distribution with ν = 1 df.  For the data of Table 1.1 of Hosmer & Lemeshow 

(listed on my website) the value of D1 from Eq. (33b) is given by 

D1 =  − 2×ln[ 0 1
ˆ ˆL(x , )β β ] = − 2×

n
ˆ ˆ[y lnp (1 y )lnq ]i i iii 1

+ −∑
=

 = − 2×( − 53.6765463) = 

107.3530927.  
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In order to compute D0, we let h(x) = β0 + ∈, i.e., we assume H0: β1 = 0 is true. → 

L(β0, β1 = 0) = 
n 0[y ln(1 e )]i 0i 1

β
β − +∑

=
→ ∂L(β0)/∂β0 = 

n 0

0i 1

e
1 e

yi[ )]
β

β
=

−
+

∑  

Set Equal to⎯⎯⎯⎯⎯→ 0 → 0 0
ˆ H is trueβ  = yln( )

1 y−
 = ln(0.43/0.57) =  − 0.281851152   

→ L( 0 0 1
ˆ H : = 0 is trueβ β ) = 

n ˆ 0

i 1
ln 1 eˆyi 0[ ( )]β

=
− +β∑ =

n ˆ 0

i 1
n ln 1 ei

ˆ
0 y ( )β

=
− × +β ∑  

= − 68.3314914 → D0 = −2×ln[ 0
ˆL(x )β ] = 136.662983 → G = − 2×ln(LRS) = 

136.662983 − 107.3530927 = 29.30989.  This compares exactly to 2 decimals with 

Hosmer & Lemeshow’s  answer of G = 29.31 atop their page 15.  Lastly, we 

compute the Pr level for testing H0: β1 = 0, which is given by α̂ = P-value= p = 

Pr(
1
2χ ≥ 29.30989) = 0.0000000616801 = 0.07616801 → Very strongly reject H0: β1 = 

0 → the age of a person is a strong predictor of evidence of CHD.  

 

The Score Test (ST) Statistic for Testing H0: β1 = 0  

Besides the Z-statistic, 1 1
ˆ ˆ/ ( )β βse , the LRS, and G, there is one other statistic, 

called the Score Test (ST), for testing H0: β1 = 0.  This is based on the  

value of  ∂L(β0, β1)/∂β1 given that H0: β1 = 0 and ∂L(β0, β1)/∂β0 = 0 are true.  Recall 

that the ML estimate of β1 is obtained by setting both ∂L(β0, β1)/∂β0  and ∂L(β0, 

β1)/∂β1 equal to zero and solving the resulting system of the two likelihood 

equations for the ML estimates of β0 and β1.  Under the null hypothesis H0: β1 = 0, 

the 1st likelihood equation ∂L(β0, β1)/∂β0 = 0 yields 
n

p̂(x )ii 1
∑
=

= 
n

yii 1
∑
=

= n1 → 

0

n

ˆ
i 1

1[ ]
1 e−β= +

∑ = 
n

i 1
iy

=
∑ → 

0
ˆ

1n[ ]
1 e−β+

= 
n

i 1
iy

=
∑  → 0

ˆ
1 e−β+ → 1/ y  → 0

ˆ
e−β =  −1 + 
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1/ y   →  0
ˆ−β  = ln(

1 y
y
−

) → 0β̂  = ln(
y

1 y−
) = ln( 1

1

n / n
1 n / n−

) → 0β̂  = ln( 1

1

n
n n−

) = 

ln( 1

0

n
n

), p̂(x )i  = y = n1/n, and n0 = n − n1. 

Because the ML estimate of β1 is obtained from ∂L(β0, β1)/∂β1 = 0, and thus, if 

 ∂L(β0, β1)/∂β1 is far away from zero, its large distance from zero will be in 

contradiction with the null hypothesis H0: β1 = 0.  Therefore, we must compute 

∂L(β0, β1)/∂β1 assuming that H0 and ∂L(β0, β1)/∂β0 = 0 are true and assess if it is 

significantly different from zero.  Assuming H0 is true, we obtain ∂L(β0, β1)/∂β1= 

n
ˆ[y x x p(x )]i i i ii 1

−∑
=

=
n

[y x y x ]i i ii 1
− ×∑

=
=

n
x (y y)i ii 1

−∑
=

.  It is assumed that this last 

partial derivative is approximately Gaussian with mean zero under H0 and 
conditional variance, keeping xi fixed, that is computed below. 

V[
n

i 1
i ix (y y)

=
−∑ ] = V[

n
(x x)(y y)i ii 1

− −∑
=

] = V[
n

(x x)yi ii 1
−∑

=
] 

=
n 2(x x) V(y )i ii 1

−∑
=

=
n 2(x x) pqii 1

−∑
=

= Sxx×pq  → Thus, the estimate of the 

V[
n

x (y y)i ii 1
−∑

=
]  is 

n 2 ˆ ˆ(x x) pqii 1
−∑

=
 = Sxx× y(1 y)− .   As a result, the Score Test 

Statistic is given by  ST =
xxy(1 y)S   

n
x (y y)i ii 1

−

−∑
= , which is approximately normally 

distributed with zero mean and STDEV 1.  For Table 1.1 of Hosmer and 

Lemeshow (2000), we have: y  = 43/100 = 0.43, 1 − y  = 0.57,  Sxx = 210560 − 

44382/100 = 13601.5600, 
n

x yi ii 1
∑
=

 = 2205,  
n

y xii 1
∑
=

= 0.43×4438 = 1908.34  → 

n
x (y y)i ii 1

−∑
=

= 2205 − 1908.34 = 296.66 → ST = 296.66
0.43 0.57 13601.56  × ×

 = 5.137987 

→ P-value = Pr Level of the Test =α̂  = 2Pr(ZN(0,1) ≥ 5.137987) = 2.78198×10 −7  → 
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Strongly reject H0: β1 = 0.  Note that ST2 = 5.1379872 = 26.39891  is fairly close to 

G = 29.30989, as expected because 2
N(0,1)Z  ~ 

1
2χ distributed.   The discrepancy is 

due to the fact that G = −2×ln(LRS) is only approximately 
1
2χ distributed. 

 

Goodness-of-Fit (GOF) Tests in Logistic Regression 
 Minitab reports three GOF statistics to ascertain how well the logistic 
model fits a binary data set.  (1) Pearson Chi-Square Statistic, (2) Deviance, and 
(3) Hosmer-Lemeshow Test.  The last (H&L) is a contingency type of GOF test 
using 10 subgroups (based on 10 deciles) and in my opinion should not be used 

unless n > 50.  Even, for 50 < n ≤ 100, some of the expected frequencies may turn 

out to be less than 5 and thus the SMD of the GOF statistic 
2(f E )10 j j

Ei 1 j

−
∑
=

  would 

not  closely resemble 
8
2χ , where there are k = 10 subgroups with two constraints  

∂L(β0, β1)/∂β0 = 0 and ∂L(β0, β1)/∂β1 = 0.  Therefore, I will discuss only the first two 

GOF tests, starting with Deviance. 
  Recall that the observed values of y can equal to either 1 (when success 
occurs) or zero (when the event of interest does not occur).  When y = 1 at an x 

that is not repeated, then the fit is excellent iff p̂(x) is close to 1 because p(x) = 

Pr(Y =1| x), and thus, ln[1/ p̂(x) ] is a measure of goodness-of-fit of the logistic 

regression model at y = 1 because a large value of ln[1/ p̂(x) ] implies that 

p̂(x) must be close to zero and the model does not fit y = 1 at this x-value.  Thus, 

the y = 1 deviance residual is defined as d[1, p̂(x) ] = {2×ln[1/ p̂(x) ]}1/2 = 

ˆ2 ln[p(x)]- ×  iff x is not repeated.   Similarly, when y = 0 at an x that is not 

repeated, the fit is excellent iff q̂(x) is close to 1, but the case y = 0 creates the 

problem that ln[(0/ q̂(x) ] is not defined; further, we have to define the y = 0 

deviance residual in such a manner that it is always negative because the y = 1 
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deviance residual is always positive when x is not repeated.  For this reason, the 

y = 0 logistic residual is basically defined as ln[ q̂(x) ] < 0 → 2×ln[ q̂(x) ] < 0 →   

ˆ2 ln[q(x)] ×  is imaginary, and hence, the y = 0 deviance residual is defined as 

d[0, q̂(x) ] = − ˆ2 lnq(x) − × .   Note that when y = 0 at an x that is distinct from all 

other subjects, a negative value of ln[ q̂(x) ] close to zero is a measure of 

goodness-of-fit.  Thus, for the portion of the data where x is not repeated the 
total deviance residual is given by DR1 = 

All x's are different
ˆ ˆ[1, p(x)] +d[0, q(x)]  {d }∑ .  If there are at least two subjects 

with the same value of xj, there cannot be but one fitted value jp̂  for all the 

subjects with the same xj.  For example, for the Challenger data on my website, x 

= 70°F is replicated 4 times with the results y = 1 three times and y = 0 once but 

with the same logistic Pr equal to p̂ (70) = 0.24655.  For such a case, the deviance 

residual is a weighed average of the d[1, p̂(x) ] and d[0, q̂(x) ] given below: 

 

                d(yj, pj) = ± j j j
j j j

j j j j

y n y
2 y ln( ) (n y )ln( )

n p n q
[ ]

−
+ −       (35) 

where nj = total number of subjects with the same xj , yj = number of positive 

responses (i.e., number times that y =1), and the sign of d(yj, pj) is positive iff (yj − 

njpj ) > 0.  For the Challenger data at x = 70°F, n9 = 4, y9 = 3, 
9

p̂  = 0.24655 and 9q̂  

= 0.75345.  Hence,  d(y9, 0.24655) =  
3 4 3

2[3 ln( ) (4 3) ln( )]
0.98621 3.013791

−
+ −    =          

2.11390607, which is the same as that of Minitab’s to 7 decimals.  Note that when 

nj = 1 and yj = 1, then Eq. (35) reduces to d[1, p̂(x) ], and when yj = 0, Eq. (35) 

reduces to d[0, q̂(x) ] and always j
all x's

n n=∑ ; further, unlike residuals for most 

statistical models, the deviance residuals do not usually sum identically to zero, 
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i.e., their sum is generally different from zero but is usually close to zero.  For the 

Challenger data, j j
all x's

d(y , p ) ∑ = − 3.41409357.  The deviance in logistic 

regression is defined as  D = 2
j j

all Distinct x's
[d(y , p )]  ∑ = SSRES                   (36)                

 and for the Challenger data D =15.75918096.  The statistic D in Eq. (36) is 

asymptotically chi-square with df = number of distinct jx 's  − 2 constraints.  For 

the Challenger data there are 17 distinct x values, and hence, the P-value = α̂  = 

15
2Pr( 15.75918096)χ ≥  = 0.39823473, which again implies that the logistic 

model fits the data well.  Note that there are 17 squared terms in Eq. (36) and that 
is why there must be only one residual when there are replications at an xj so 

that the df would be 17 − 2.  Further, the larger the P-value is, the better is the fit. 

 

The Pearson Chi-Square Statistic   

 The residual for this statistic is defined as (yj  − jŷ ), where again there are 

two possibilities: (1) xj is not repeated (i.e., only a single value of xj), (2) At least 
two or more subjects with the same value of xj.  When there is only one subject 
at xj, then the rv yj has a Bernoulli distribution with success Pr, pj = p(xj), E(xj) = 

pj and variance pjqj.  Hence, the residual ej = yj  − jŷ = yj  − jp̂ . 

When an xj (nj > 1) is replicated, say nj times, then at that xj, the rv yj has a 

binomial pmf with success Pr, pj, E(yj) = nj×pj, V(yj) = nj×pj×qj so that ej = yj  − jŷ = 

yj  − j jˆn p× .  For the Challenger data, there are n9 = 4 replicates at x = 70°F but yj  

= 3 successes, and hence, e9 = 3 − 4×0.24655 = 2.01379114 and the corresponding 

studentized residual is given by r9 = 2.01379114/ 4 0.24655 0.75345× ×  =  

2.33616437.  Further, like in the case of deviance residuals, the sum of Pearson’s 
residuals does not add to zero but is close to zero.  My calculations for Table 8 of 
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my website show that the Pearson’s GOF statistic is 
15
2χ ≅ 

2ˆ(y n p )17 j j j
ˆ ˆn p qj 1 j j j

−
∑

× ×=
 = 

14.0485605 → P-value = p = Pr(
15
2χ ≥ 14.0485605) = 0.52184944.  This matches the 

Pr level reported by Minitab to 3 decimals.  It seems that, in general, the Deviance 
provides a more powerful test (i.e., smaller P-value) that the Pearson’s GOF 
statistic. 
 

Exercise 8.   The ICU (Intensive Care Unit) data from Hosmer & Lemeshow 
(2000) has many features versus a patience’s age, x.  The primary objective was 
to use logistic regression to predict survival Pr at the time of hospital discharge.  
One important dichotomous rv was Vital Status (STA) where 0 denoted Lived and 
1 indicated that the patient died.  The STA data for n = 200 patients are provided 

on my website.  (a)  Obtain the ML estimates of β0 & β1 and give the estimate of 

the logit h(x).  Compute the odds for a random patient of age 60 and interpret its 

value.  (b) Obtain the 95% CI’s for β0 , β1 & the odds ratio.   (c) Obtain the 95% CI 

for the logit at x = 60 and for p(60 years old) and interpret.  (d)  Test H0: β1 = 0 

using the Z-statistic, LRS, and the ST by computing their P-values.  (e) Use Excel 
to compute the GOF statistics D and that of Pearson’s, computing their P-values.  


