A dynamic distribution model for combat logistics
Kevin R. Gue*

Graduate School of Business & Public Policy, Naval Postgraduate School, Monterey, CA 93943, USA
Received 1 January 2001; received in revised form 1 November 2001

Abstract

New warfighting concepts for the US Marine Corps emphasize small, highly mobile forces supported from the sea, rather than from large, land-based supply points. The goal of logistics planners is to support these forces with as little inventory on land as possible. We develop a multi-period, facility location and material flow model, and show how to configure the land-based distribution system over time to support a given battle plan with minimum inventory. We demonstrate results of the model with data from previous studies in combat logistics.

Scope and purpose

Logistics support for amphibious warfare has traditionally relied on a large, land-based infrastructure, with trucks accomplishing most of the distribution. New warfighting concepts for the US Marine Corps emphasize small, highly-mobile forces supported instead from the sea. The goal of logistics planners is to support these forces with as little inventory on land as possible. We develop an optimization model that locates mobile support units in a battlefield over time to provide sufficient support to fighting forces, subject to limited transportation assets such as helicopters and air-cushioned vehicles. Logistics planners could use the model to support tactical or operational decision-making. Published by Elsevier Science Ltd.

Keywords: Military logistics; Distribution; Dynamic facility location; Integer programming

1. Sea-based logistics

Recent changes in the geo-political landscape and the rise of information technology is leading to dramatic changes in the way the military services plan to fight and support battles. The Army

*Tel.: +1-831-656-4299; fax: +1-831-656-3407.
E-mail address: kevin.gue@nps.navy.mil (K.R. Gue).
and Marine Corps no longer anticipate large-scale ground offensives for which they can amass or preposition overwhelming forces and all the necessary logistical support. They envision, instead, a future of more limited conflict scenarios, like those in Somalia, Bosnia, and Afghanistan.

In general, new warfighting concepts propose lighter forces, meaning they have fewer heavy assets such as tanks and heavy artillery and so are better able to respond to changing battle conditions quickly. The notion of rapidly repositioning combat forces poses a great challenge to military
logisticians, who have traditionally relied on large, relatively immobile supply units as support bases. General Walter Bedell Smith [1] expressed the tension between tacticians and logisticians shortly after World War II this way: “It is no great matter to change tactical plans in a hurry and to send troops off in new directions. But adjusting supply plans to the altered tactical scheme is far more difficult”.

The evolving Marine Corps concept called Operational Maneuver from the Sea accentuates this tension by changing the nature of amphibious warfare. Currently, amphibious forces move in a linear fashion, securing a beachhead and making steady progress toward their objectives. The new concept proposes to engage the enemy in a non-linear fashion, at once approaching him from all sides with small combat teams. The idea is to insert small units of Marines (typically a battalion or less) that move quickly to accomplish limited objectives. Aircraft will insert and frequently reposition those forces to flummox enemy attempts to neutralize them.

Traditional methods of combat logistics support are largely incompatible with this approach to warfare. Because combat units are small, they will rely on mobility and stealth, hence the need for logistics support with a small or non-existent footprint. Sea-based logistics is the concept that proposes to minimize or eliminate land-based supply nodes and replace them with fast transportation assets (primarily aircraft) delivering supplies from a sea base composed of one or more ships. The potential advantages of sea-based logistics include lower vulnerability to attack, unencumbered maneuverability of fighting forces, and the political benefits of a reduced logistics footprint in the host nation. Moreover, the sea base is able to reposition easily to support a progressing battle.

There are several transportation platforms that support sea-based logistics. The MV-22 tilt-rotor aircraft (see Fig. 1) is the Marine Corps’ newest general-purpose aircraft. It carries approximately 24 combat-loaded Marines or their equivalent in supply payload and is much faster than current helicopters. For sealift to the beach, the Marine Corps depends on a large, air-cushioned vehicle called the landing craft-air cushioned (LCAC, spoken “el-kak”). The LCAC travels at more than 40 knots, and can carry more than 60 tonnes of troops, vehicles, and supplies. The light assault vehicle (LAV) and the advanced amphibious assault vehicle (AAAV) serve a dual combat-transportation role. The final two platforms are the CH-53E cargo helicopter and the LVS 5-ton truck.
The vision of “pure” sea-based logistics removes entirely the traditional structure of land-based support units. All supplies are stored on the sea base, and aircraft make deliveries directly to consuming units. This could be problematic for a number of reasons: First, poor weather could ground the aircraft, leaving combat units without a supply pipeline. Heavy seas could also force the sea base further out to sea, lengthening, and therefore constricting, the pipeline. Second, loss of control of the airspace or interdiction by anti-aircraft forces could have a similar effect. Third, a lengthy campaign might require more significant forces than the sea-based pipeline can sustain.

We prefer to view combat service support along a continuum: at one end is the current model, in which ships offload all supplies to the beach and a large, land-based architecture distributes them (see Fig. 2). At the other end is the pure sea-based model. In between, a partial offload establishes small, perhaps temporary, land-based supply points to complement sea-based support (see Fig. 3). Notice that the structure of the distribution system will change over time, due to troop movements and perhaps changing consumption rates. Just what the distribution system should look like over time is the subject of our work.

The overriding goal of sea-based logistics is to minimize or eliminate the need for land-based inventory; and, given unlimited air assets, this is easy to do—simply make all shipments from the sea base directly to combat units. Unfortunately, the number of aircraft in an expeditionary force is limited, due to space constraints on the host ships. Moreover, aircraft must perform a variety of missions in addition to supply which further restrict their availability, such as troop movements (typically the highest priority), decoy missions, and medical evacuations.

Another complication is the dynamic nature of troop movements. For example, if tacticians plan a co-ordinated attack involving multiple troop movements at the same time, air assets could be almost completely consumed for a time, leaving no lift for supplies. In this case, it might be necessary to
have supplies prestaged on land in order reduce need for supply sorties during the troop movements. After the attack, the support unit might return to the sea base.

We address the problem of how to configure a sea-based distribution system to support combat units over time with a minimum of land-based inventory. We describe an optimization model that determines the structure of the distribution system, given the planned locations and movements of combat forces, candidate locations for supply units, and a set of transportation assets. The model determines when and where to locate supply units, how much inventory they should hold, and when to ship different commodities between units.

In the following section, we describe both professional and academic literature related to sea-based logistics. In Section 3, we describe the problem in detail and give a model for it. Section 4 presents two example problems showing characteristics of our solutions. We conclude with some general observations and suggestions for future work.

2. Related literature

Several recent studies in the professional literature have focused on the feasibility of sea-based logistics. Most have addressed the pure sea-based model and have sought to determine the transportation assets required to support a given level of conflict. Betaque et al. [2] assess the feasibility of pure sea-based logistics for forces of different sizes. They conclude that projected fleets of MV-22s and CH-53E helicopters could sustain two battalion landing teams, possibly three, but definitely not more. They state that the constraint is heavy lift capability.

Researchers at the Center for Naval Analyses (CNA) have completed several studies assessing the ability of future transportation assets to meet the demands of different Marine forces. McAllis-
ter [3] uses the tactical logistics and distribution system (TLoaDS) (see Hamber [4]) to estimate times required to land different forces from a sea base. He considers the movement of supply Classes I (food and water), III (fuel), and V (ammunition), in addition to some maintenance and medical requirements. Related works from CNA include Nance et al. [5] and Ivancovich et al. [6].


Levin and Friedman [10] address the problem of how to deploy military support units to achieve maximum “effectiveness”, which they leave to the reader to define. Their model is similar to a multi-period warehouse location model, for which they propose a branch-and-bound technique to reduce the state space for a dynamic program. They provide neither examples nor computational results.

Kang and Gue [11] describe a simulation model for offloading supplies for Maritime Prepositioned Ships. Their model estimates the time required for an offload given an allocation of transporation and material handling assets. The Naval Facilities Engineering Services Center has developed a detailed simulation of combat service support called TLoaDS, described in Hamber [4]. The system is intended to model many of the non-deterministic aspects of sea-based logistics, including the affects of weather, enemy interdiction, equipment failures, and the “fog of war”, but it requires that the user specify the distribution system.

Dynamic distribution problems are related to two areas of academic research. There is a large literature on capacity expansion models, which seek to determine optimal production capacities of multiple facilities (including opening and closing them) to meet a set of demands over time. Luss [12] provides a survey. Most relevant to our work are those papers dealing with inventory or shipping costs to customers. Shulman [13] solves a dynamic capacitated plant location problem by scheduling the installation of facilities at different locations over time in order to minimize discounted costs, including the cost of facilities and the transportation cost of serving demand. He uses Lagrangian relaxation to solve his model. Fong and Srinivasan [14] develop a heuristic algorithm for a similar problem, only capacity expansion can occur in any amount (modeled with continuous variables) while in Shulman [13] expansion can occur only in discrete quantities. Erlenkotter [15] solves the continuous expansion version with dynamic programming; Rao and Rutenberg [16] solve it with a heuristic algorithm.

Our problem is also related to the dynamic facility location problem. This problem seeks to find a sequence of facility locations over a set of time periods that minimize total system costs, including relocation of facilities and transportation costs to customers. Wesolowsky and Truscott [17] present integer programming and dynamic programming approaches for the problem. Sweeney and Tatham [18] describe a dynamic programming algorithm that solves as a sub-problem a mixed-integer program for the warehouse location problem. Hormoz and Khumawala [19] give an improved version of their algorithm. Van Roy and Erlenkotter [20] describe a branch-and-bound algorithm for the same problem.

Our problem is similar to these in that we seek to locate and determine the capacity (inventory levels) of a number of facilities (support and combat units) over a planning horizon. But we must also
deal with a number of complicating constraints, such as moving units, a limited pool of transportation assets, and material flow requirements.

3. Model

3.1. Problem

Consider a sea base containing combat and support units. Each combat unit is required to reach a particular set of objectives on land; we may position support units to provide supplies as needed. Combat units consume food, water, ammunition, and fuel during each time period. Quantities may vary depending on the intensity of conflict or other concerns. Supply units are free to deploy, move, and to build up and deplete inventories as necessary to meet demand.

A fleet of vehicles (MV-22s, LCACs, CH-53Es, etc.) is available to transport combat units to objectives or intermediate points, to move entire supply units, or to transport supplies between units. Naturally, we constrain vehicle types to transport only between feasible origin–destination pairs. For example, the LCAC vehicle may transport from the sea base to beach locations, but not to inland locations. Aircraft may transport between any two locations.

The problem is to determine the locations of supply units for each time period and the shipments of each commodity between units, such that there is as little land-based inventory as possible.

3.2. A dynamic location and distribution model

Following is a multi-period, facility location and multi-commodity flow model formulated as a mixed integer program. We model the battle space as a network of two types of nodes, combat and supply nodes. We assume the combat nodes are given in a battle plan and that supply units may not occupy them. We assume that intelligence could provide a set of candidate locations for supply units. Discussions with Marines suggest that this is certainly the case.

The objective is to minimize the total inventory of land-based support units, in keeping with the primary purpose of sea-based logistics. Decisions in the model are, for each time period, the locations of support units, inventories held by the units, and the amounts shipped between units.

We define sets of nodes in a way that approximates the physical environment. Note that $I_c \cap I_s = \emptyset$, or, the sea base is the only node common to supply and combat units. A land-based node is either a beach node or an inland node, and either a combat or a supply node: $I_l = I_l + I_c = I_{sl} + I_{ci}$. Also, we incorporate time-invariant transportation capacities $L_a$ and $L_s$ for simplicity; these could easily be made to vary with time.

The objective is to

$$\text{Min} \quad \sum_{i \in I_l} \sum_{k \in K} \sum_{t \in T} I_{ikt} + \sum_{i \in I_s} \sum_{j \in I_i} \sum_{t \in T} X_{ijt}$$

subject to:

$$I_{ikt} + \sum_{j \in I} Y_{jikt} - \sum_{j \in I} Y_{jikt} - D_{jkt} = I_{ik,t+1} \quad \forall i \in I_{ci}, k, t,$$
\[ I_{ikt} + \sum_{j \in I_s} Y_{jikt} - \sum_{j \in I} Y_{jikt} = I_{ik,t+1} \quad \forall i \in I_{sl}, k, t, \]  
(3)

\[ \sum_{j \in I} X_{jit} - \sum_{j \in I} X_{ij,t+1} = 0 \quad \forall i \in I_{sl}, t, \]  
(4)

\[ \sum_{k \in K} Y_{ijkt} - M(X_{ijit} + X_{ijit}) \leq 0 \quad \forall i \in I_{s}, j \in I_{s}, t, \]  
(5)

\[ \sum_{j \in I_{sl}} \sum_{k \in K} Y_{ijkt} - MX_{iit} \leq 0 \quad \forall i \in I_{sl}, t, \]  
(6)

\[ \sum_{k \in K} I_{ikt} - M \sum_{j \in I_{ia}} X_{ijt} \leq 0 \quad \forall i \in I_{sl}, t, \]  
(7)

\[ \sum_{j \in I_{sl}} Y_{ijk,t+1} - I_{ikt} \leq 0 \quad \forall i \in I_{sl}, k, t, \]  
(8)

\[ \sum_{j \in I_{s}} \sum_{k \in K} Y_{0jk}s_{0j} + w_c \sum_{j \in I} \sum_{i \in I} T_{ij}s_{ij} \leq L_a \quad \forall t, \]  
(9)

\[ \sum_{j \in I_{s}} \sum_{k \in K} Y_{0jk}s_{0j} + w_c T_{0j}s_{0j} + \sum_{j \in I_{s}} \sum_{k \in K} Y_{0jk}s_{0j} + w_c \sum_{i \in I} T_{ij}s_{0j} \leq L_a + L_s, \]  
(10)

\[ \sum_{k \in K} I_{ikt} - b_{it} \leq 0 \quad \forall i \in I_{cl}, \]  
(11)

\[ Y_{ijk,t}, I_{ikt} \geq 0 \quad \forall i, j, k, t, \]  
(12)

\[ X_{ijt} \in \{0, 1\} \quad \forall i, j, t. \]  
(13)

Constraint sets (2) and (3) establish the material balance. Constraint set (4) enforces continuity of flow for supply units among nodes. Constraint set (5) prohibits shipments between supply units unless the sending unit is stationary or it is shipping material to support its own movement. Constraint set (6) requires a supply unit to be stationary when shipping to a combat unit. Constraint set (7) links the unit location and inventory variables by only allowing inventory if a unit occupies a node. Constraint sets (9) and (10) specify the maximum lift in a period from ship to shore via air and from ship to beach locations via air or ship, respectively. We assume in these constraints that logistics commanders would use aircraft like the MV-22 for all troop movements and for supply shipments between the sea base and land locations. We assume they would use LCACs and air assets...
to transport between the sea base and beach locations in period 1 (called the establishment phase), and trucks exclusively to make land–land movements. We do not model truck assets. One could easily reconfigure these constraints to model different transportation requirements. Constraint set (11) imposes a limit on the amount of inventory that combat units can hold (typically 2 days of supply). Constraint sets (12) and (13) impose appropriate variable restrictions.

We assume that locations for the combat units are given by the battle plan; thus, we plan the logistics around the transportation requirements for moving combat units. This is an important point, because one of the novelties of sea-based logistics is that logistics commanders must use air assets to transport both combat troops and supplies, rather than just troops. This change requires that logisticians and tacticians work together much more closely than current practice.

We solve the model using the GAMS modeling language, calling CPLEX version 6.5 as the MIP solver. Solutions to most test problems take only a matter of minutes using a Pentium II 450 MHz PC.

3.3. Limitations

Because we model transportation capacity in units of lb mile, the model could propose a solution that is impossible to implement in practice. For example, the model treats as equivalent transporting 1 lb for 10,000 miles and transporting 10,000 lbs for 1 mile. The former is obviously not feasible in practice. To mitigate this problem, we could assign $Y_{ijkt} = 0$ for all $(i, j)$ pairs having distance greater than some maximum range; but the geometry of the battle area and experimental evidence suggests that this would rarely be a problem.

A solution could also require more transporters than are available. For example, the model could recommend more shipments in a time period than there are transporters, and those shipments could take such time that a second shipment per aircraft is not possible. This problem should be rare because the number of transporters is usually much greater than the number of units requiring shipments in a period.

4. Minimal footprints

The ability of a sea base to support an assault depends on the size of the force going ashore, the intensity of the conflict, the size of the transportation fleet, and how far the sea base is from shore. For many plausible levels of these parameters, the model simply states that all shipments should be made from the sea base directly to the using units. Because the model seeks to minimize the inventory footprint ashore, this is the best result. At other levels, the model is infeasible, meaning that the given transportation assets cannot meet logistics requirements. In practice, this would mean that the ship might have to move closer to the beach (thus shortening the pipeline and freeing up lift capacity), or that more transporters are needed.

It is in the mid-range that solutions are most interesting. For some scenarios, it is necessary to build up short-term caches of supplies to accommodate high demand for transporters in future time periods. For example, if several troop movements coincide, say, for a coördinated offensive, there may not be sufficient lift to make supply deliveries; so transporters would have to store up supplies on the beach in anticipation of the additional lift requirement.
Table 1
Daily requirements for units in the ground force (in lb)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Marines</th>
<th>Food</th>
<th>Water</th>
<th>Fuel</th>
<th>Ammo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifle company</td>
<td>182</td>
<td>806</td>
<td>7644</td>
<td>230</td>
<td>842</td>
</tr>
<tr>
<td>LAR platoon</td>
<td>35</td>
<td>154</td>
<td>1470</td>
<td>3430</td>
<td>2243</td>
</tr>
<tr>
<td>AAAV platoon</td>
<td>47</td>
<td>205</td>
<td>1974</td>
<td>14280</td>
<td>3259</td>
</tr>
<tr>
<td>Recon assault platoon</td>
<td>13</td>
<td>57</td>
<td>546</td>
<td>0</td>
<td>60</td>
</tr>
</tbody>
</table>

To test the model, we extend two scenarios proposed in Beddoes [7]. Each scenario is built around a Marine Expeditionary Unit-Special Operations Capable (MEU-SOC), which is the Marine Corps’ primary forward deployed fighting force. The ground force consists of three rifle companies, a light armored reconnaissance (LAR) platoon (composed of LAVs, see Fig. 1), and a platoon of AAAVs (also in Fig. 1). A typical MEU ground force contains about 600 Marines. Table 1 shows the daily requirements for each element of the force.

As in Beddoes [7], we assume there are 12 MV-22 tilt-rotor aircraft operating 8 h day; we assume 67% effective travel time (remaining time is spent loading, unloading, and refueling). We assume operational availability of 85%, meaning that on average 15% of the aircraft are down for repairs or maintenance. We also assume that CH-53E helicopters are used only to insert artillery or other special missions; we do not model them. There are also 7 LCACs operating 8 h day, with operational availability 85%. We assume LCACs are loading and unloading 20% of the time.

4.1. Supporting current operations

The first scenario involves a traditional force composed of the three rifle companies and one mobile armored company, consisting of LAVs and AAAVs. We assume the armored company and its logistics requirements are evenly disbursed among the rifle companies. In the first run, all companies arrive in time period 1, after which they make periodic movements to other objectives. The sea base is approximately 50 nautical miles (NM) from shore (see Fig. 4). The result is the trivial solution that makes all shipments directly from the sea base.

For a second run, we move the sea base to 75 NM from shore, and the problem is infeasible because the extra distance consumes too much MV-22 availability. By examining the solution, we note that moving all troops to the beach in time period 1 causes the infeasibility. We can make the problem feasible in a number of ways:

- Move the sea base closer to shore (closer than 70 NM in this case);
- Allow combat units to use their reserve inventory (in this case only 1 day of inventory is required);
- or
- Change the operational plan.

For example, if we insert the lowermost combat unit directly to node 17 in period 2, rather than routing it through node 12 in period 1, the problem is feasible with the sea base as far away as 100 NM.
One problem with this solution is that it requires combat units to rely on their local inventories. Suppose that operational commanders are unwilling use reserve inventories, and they want the sea base closer to shore. If we move the sea base into 65 NM and prohibit use of local inventory (i.e., set $b_i = 0$), Fig. 5 shows the result: a support unit deploys to node 3 in period 1 and moves to node 5 in period 4. While at node 3, the support unit supplies the combat unit at node 26 in period 3; from node 5, it supplies combat units at nodes 18 and 22 in period 6.

These are just a few of the many options a planner might consider. The model allows the user to make tradeoffs between

- distance of the sea base from land,
- the use of reserve inventories by combat units,
- timing of troop movements, and
- the need for land-based support units.

4.2. Supporting the new warfare model

Fig. 6 illustrates a second scenario—similar to that envisioned in the Operational Maneuver from the Sea concept—in which aircraft insert and extract small platoons of Marines throughout the battle area. Because platoons are small (approximately 13 Marines) and act mostly to direct fire from aircraft and Naval guns, they require very little logistics support. Beddoes [7] suggests that an average of 9 platoons would be on land at any one time.

Beddoes determined that aircraft could sustain 9 platoons on land with the sea base more than 700 NM from shore. Our results are similar: solutions to our model suggest that aircraft could sustain
Fig. 5. The solution to Scenario 1 with the sea base 65 NM from shore and no allowance for combat units to use local inventory. Filled circles with borders indicate locations of the support unit. A support unit deploys to node 3 in period 1 and moves to node 5 in period 4; the unit makes shipments in periods 3 and 6.

Fig. 6. Scenario 2—aircraft insert and extract small combat teams frequently throughout the battle area.

the units in Scenario 2 from more than 630 NM from shore. At 650 NM, the problem is infeasible. At distances in between, a small cache of supplies is necessary to sustain combat units in a few time periods. For example, Fig. 7 shows the solution with the sea base 645 NM from shore.

Notice that in both scenarios the model deployed a supply unit at node 3, the closest node to the sea base. We suspect that this is because it conserves the greatest amount of the scarce airlift resource. In practice, this could be a disadvantage because the model would tend to recommend
long land-based delivery by truck for staged supplies. This is especially a problem for the small platoon warfare model, in which stealth is a unit’s primary weapon. To correct this tendency, we could set $Y_{ijkt} = 0$ for all locations $(i,j)$ greater than the distance at which a unit could retrieve its own supplies, thus forcing the model to stage supplies closer to the using unit.

5. Conclusions

For any given battle plan, there are three possible outcomes for sea-based support—make all deliveries by air, make deliveries with a mix of air and ground assets by establishing a limited land-based distribution system, or infeasibility.

The best distribution system depends on a number of operational levers.

- The location of the sea base—The further the sea base is from land, the longer the supply pipeline and the lower the number of aircraft missions available. By moving the sea base closer to land, commanders can mitigate the need for land-based inventory or make it possible to support an otherwise infeasible scenario.
- Inventory held by combat units—Combat units typically hold up to 2 days of supply for basic supplies. Willingness or ability to hold more or less inventory can affect the need for land-based support units.
- Available transportation assets—The greater the number and capacity of air assets, the less the need for shore-based support units.
- Timing of troop movements—It is possible to plan troop movements in such a way that it forces land-based inventory. Adjusting those plans slightly might do away with such need.

In general, the need for land-based supply caches increases as the distance from the sea base to shore increases and as the timing of troop movements varies. When several troop movements occur
in the same period, as in a coördinated attack, less transportation is available for supply missions; thus increasing the need for temporary supply units. When supply units are necessary, the model tends to insert them as late as possible and withdraw them as soon as possible. In many cases, one could interpret the model to suggest that supplies be dropped unmanned at a prearranged point. Combat units could then retrieve supplies when necessary, using their own trucks. This would avoid the need for land-based supply infrastructure.

Our results differ from previous analysis in at least two ways.

- Our model accounts for transportation demand variability over time, for both troop movements and supplies. When transporters are unable to handle peak load in a period, the model attempts to meet demand by staging caches of supplies on land. In contrast, average case analysis is overly optimistic regarding supportability, because it ignores demand fluctuations.
- Our model accounts for actual distances to objectives, rather than average distance; and it is reasonable to suspect that actual distances would increase over time as the battle moves inland. Again, average case analysis tends to overestimate supportability because it fails to model peak loads.

The model can be used in at least two important ways: First, logistics planners could use it to determine the feasibility of logistics plans for amphibious operations in the future. They could also use it to determine at what standoff distance the sea base is able to operate to support a conflict. This is an important tactical point, because the closer the sea base is to the beach, the more vulnerable it becomes. Second, operational commanders could use a model like this to plan logistics in real time. They could run the model on a rolling horizon basis to help decide when and where to deploy support units given the current battle scenario. The model might be incorporated into a tactical decision support system.

Finally, any extension or application of our model should examine the effects of medical evacuation on distribution systems. One could model evacuations as another “commodity” that consumes air assets.

Acknowledgements

We thank the Office of Naval Research for supporting this research.

References

Kevin Gue is Assistant Professor of Logistics in the Graduate School of Business & Public Policy at the Naval Postgraduate School. He graduated from the US Naval Academy and served as an officer in the submarine community for five years. He received his Ph.D. in Industrial Engineering at Georgia Tech. His research interests include logistics modeling and optimization, warehousing, distribution, and the effects of performance metrics on performance.