
4 6 I E E E  S o f t w a r e N o v e m b e r / D e c e m b e r  1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0  ©  1 9 9 8

aytheon Systems Company, a defense electronics firm, typifies many US
Defense Department environments in its strong, process-oriented de-
velopment strategy. The company has been actively engaged in soft-
ware process improvement at the organizational and project levels for

over a decade. Raytheon bases its efforts on the Software Engineering Institute’s
Capability Maturity Model, and our segment of the company has been formally 
assessed at level 3 (defined).

The project I’m involved with is a real-time embedded software application using a
heterogeneous computer architecture: a single-board PowerPC using Ada for embed-
ded command and control, and digital signal processors running applications written
in C. There are significant real-time constraints within the signal processing application.

To meet competitive pressures, the project’s management team sought strate-
gies to improve productivity and increase the quality of the software we deliver to
our system integration and test lab. The most important consideration was the need
for high-quality, low-defect software that would require little or no rework.

Raytheon chose our project to pilot a CMM level 4 (managing) and 5 (optimiz-
ing) environment. We are now implementing the respective key process areas—in-
cluding components of continuous process improvement, process optimization,
and process measurement and analysis. The project follows a tailored version of
DoD STD-2167A and MIL-STD-498 documentation standards, and is built upon an
Integrated Product Team structure. IPTs are management processes that integrate
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all activities from product con-
cept through production using
multifunctional teams to meet
cost and performance goals.
Further, we benefit from a fully
defined software development
process as well as system engi-
neering and hardware develop-
ment processes. The software ef-
fort for the project is divided into
several computer software config-
uration items, with a software
team of two to 16 software engi-
neers per CSCI. A CSCI defines a
complete set, or any of the indi-
vidual items of the set, of com-
puter programs, procedures, and
associated documentation and
data designated for delivery to a
customer or end user.

Despite this strong, process-
oriented structure, management
felt that, given the proper tools, our
productivity and software’s quality could be further
enhanced. Research indicated that several strategies
exist for process improvement, but that Cleanroom
improves the software quality on new projects with a
formal defined process, as well as on projects with a
relatively immature process.1-3 The literature also
demonstrated how Cleanroom can be inserted into a
process in phases.4 We decided to implement this
methodology, as shown in Figure 1. Since then, our
project has successfully inserted Cleanroom technol-
ogy into our mature CMM-based framework.5

Cleanroom Software
Engineering

Cleanroom consists of a body of theoretically
sound yet practical engineering principles applied

to the activity of software engineering.6-8 In a
Cleanroom approach, a rigorous specification phase
leads to a complete, precise description of the soft-
ware system. Following this phase a stepwise re-
finement procedure produces verifiably correct soft-
ware parts. Software development proceeds in
parallel with a usage specification of the software.
This usage profile becomes the basis for a statistical
test of the software, resulting in a scientific certifi-
cation of the quality of the software system. Defect
prevention rather than removal is the focus.

The Cleanroom process spans the software life
cycle. The technology provides engineering meth-
ods with which software teams can plan, measure,
specify, design, verify, code, test, and certify soft-
ware. Cleanroom combines formal methods of box
structure specification and design-function-theo-
retic verification of correctness with statistical usage
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For me, the term “Cleanroom” always conjures up images of men in white suits working on some elaborate equipment, des-
tined to be launched into outer space. Most things are not built in cleanrooms and most software developers cannot afford clean-
room software engineering. But there are useful lessons to be learned. If, for example, you want to build a house for $300,000
it does not hurt to look at a few houses in the $1 million range. You can glean some neat features and make a list of ideas for
your own dream house. Then you start descoping these features until the results fit your budget. You won’t get a perfect house,
but certainly a better one than if you used only $100,000 houses for inspiration.

I suggest you read Oshana’s article with this analogy in mind. Not many companies have reached CMM level 3 or higher.
In most cases, particular business imperatives don’t allow for all the techniques described here. But there are many practices
that can serve as the “million dollar house.” After all, the results obtained in this project speak for themselves. I know many
companies that could dramatically improve the quality, productivity, and predictability of their projects if they only used one
or two of the practices described.

—Wolfgang Strigel, From the Trenches editor
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Figure 1. The Cleanroom software engineering process.
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testing for reliability certification to produce soft-
ware that contains very few defects. Cleanroom
process management is based on an incremental
life cycle in which development and certification are
conducted in a pipeline of user-function increments.

Cleanroom has three main components:
1. Incremental development. This approach pro-

vides a basis for statistical quality control of the de-
velopment process. Each increment is a complete it-
eration of the software development process; each
is measured and compared with pre-established
quality standards. If the process adheres to those
standards, work on the next increment continues,
using the same process. If quality standards are not
met, development stops and the process is fixed.
Results from each increment are used for manage-
ment and process improvement. In lessons-learned
and causal-analysis meetings held at the completion
of each increment, the team examines all results,
identifies problem areas, and replans if necessary.

2. Software development based on mathematical
principles. As shown in Figure 2, the main concept
in Cleanroom software engineering is to treat a com-
puter program as a rule for a function. The function’s
domain is the set of all possible input histories, its
co-domain is the set of all possible outputs, and its
range is the set of all correct outputs. The program
specification maps input histories to their correct
outputs. The Box Structure Method, used for speci-
fication and design, defines three levels of abstrac-
tion for describing programs as rules for functions:
a behavioral view, a finite state machine view, and a
procedural view. Functional verification is used to
confirm that the design is a correct implementation
of the specification. Program correctness is verified
through team reviews using formal and informal
correctness questions.

3. Software testing based on statistical principles.
The statistical testing approach to software treats
software as a statistical experiment.9,10 First we gen-
erate a statistical subset of all possible software uses.
We use performance on this subset to form conclu-
sions about operational performance based on the
usage model developed. Then we represent the ex-

pected operational use in a
usage model of the software. We
randomly generate test cases
from the usage model and then
execute them in an operational
environment. Failures are inter-
preted according to mathemati-
cal and statistical models.

Cleanroom and the
Capability Maturity Model

The Capability Maturity Model for software de-
scribes an evolutionary improvement path from an
ad hoc, immature software development process to
a mature, disciplined one. The CMM covers practices
for planning, engineering, and managing software
development and maintenance. When followed,
these key practices improve the ability of organiza-
tions to meet goals for cost, schedule, functionality,
and product quality.

The CMM for software and the Cleanroom en-
gineering process share a common concern with
aspects of software quality and software devel-
opment. They are compatible and complemen-
tary: the CMM focuses on process management
and the principles and practices associated with
software process maturity, whereas Cleanroom fo-
cuses on theory-based engineering practices for
developing and certifying software under statis-
tical quality control. Cleanroom software engi-
neering implements most of the CMM for software
development.

The SEI has developed a Cleanroom Software
Engineering Reference Model11,12 that provides a
framework, in the form of a high-level template, for
developing a project- or organization-level Clean-
room process. The CRM serves as a guide to
Cleanroom project management and performance.
It is also useful for project performance assessment
and improvement, and for technology transfer.
Therefore, the Cleanroom processes and work prod-
ucts should be tailored for use by the specific project
and organization. The actual implementation de-
tails and procedures are left to the individual pro-
ject, and should be defined in the Cleanroom
Engineering Guide or other equivalent document.
The SEI has also produced a Cleanroom implemen-
tation document that provides a more detailed
mapping of the Cleanroom processes to the CMM
key process areas.
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Figure 2. A software program is a rule for a function, y = f(x).
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Tailoring Cleanroom for
Industry Use

In the spectrum of formal methods, Cleanroom is
more formal than a formal inspection-based devel-
opment effort, but less formal than those ap-
proaches that use fully formal specification lan-
guages with rigorous semantics such as VDM or Z.13

Indeed, although we describe our Cleanroom spec-
ification as formal, we created it using an in-house
tool written with Excel plug-ins and extensions.
Commercial Cleanroom specification tools are now
available (for instance, see http://www.toolset.com).

Like other formal methods, Cleanroom is well
suited for complex problems. The Cleanroom tech-
niques of sequence-based specification are well
suited to problems with a high degree of logical in-
teractions (many modes and/or states determined
by Boolean conditions). We found that sequence-
based specifications are less suited for the higher-
level black boxes used in numerical or highly com-
putational applications. Specification of a numerical
algorithm using Cleanroom methods requires spec-
ification of the domain and the mapping rule for the
mathematical functions to be implemented by the
algorithm. Cleanroom methods such as incremental
development, correctness verification, and statisti-
cal testing are very effective for all types of software.
Cleanroom appears to offer significant benefit to ap-
plications of moderate to large size that are decom-
posable into subsystems. Our application was de-
composable in such a way that we could implement
Cleanroom at the CSCI level instead of starting with
a top-level system black box. Each CSCI is effectively

a “mini”project implementing each of the Cleanroom
technology components. The Cleanroom process is
defined formally in our Software Standards and
Procedures Manual as well as in our Software
Development Plan. The software leads meet peri-
odically to ensure that each of our teams is using the
Cleanroom process consistently and correctly. This
assures adherence to the defined process as well as
consistency of artifacts.

Project management planned increments at the
CSCI level. Each CSCI has one or more software in-
crements that are tracked monthly using an incre-
ment metric. All CSCI-specific software requirements
are allocated to one of the defined increments based
on stability of the requirement, reusability poten-
tial, technical risk, functionality, and other factors.
This allows management and the customer to con-
trol the increment content over the life of the pro-
gram and foresee any problems with incremental
development early. The main concern is the post-
ponement of requirements from increment to in-
crement, resulting in a final increment containing
numerous requirements passed along from earlier
increments. Figure 3 shows an example increment
metric for a three-increment software program.

The requirements analysis phase involves
Cleanroom specification techniques at the first level
of decomposition, as shown in Figure 4. Requirements
are passed down from the system level (A-spec) to the
“box” level (B-spec), then allocated to hardware and
software. These English language software require-
ments are then translated into more formal box struc-
tures based on the function theory approach of se-
quence and state enumeration. This effort covers a
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significant portion of the func-
tional requirements for the CSCI.
Requirements that describe real-
time and accuracy constraints, as
well as a significant portion of the
algorithmic requirements, did not
go through the Cleanroom speci-
fication process for this first level of
decomposition; the particular
techniques we were implement-
ing were not useful for these types
of requirements at this level.

Cleanroom does not inher-
ently address real-time issues.
The strength of the methodol-
ogy lies in its functional stepwise 
decomposition of requirements
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Figure 4. Decomposing requirements during the requirements analysis phase.

Figure 5. Real-time issues are addressed in parallel with function verification.
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and its certification and reliabil-
ity estimation. As Figure 5 shows,
our process consisted of using
Cleanroom to verify a function-
ally accurate software system,
supplemented with a parallel
process of temporal verification.
Because we designed the project
as a hardware–software codevel-
opment effort, hardware was not
available until late in the devel-
opment cycle. Thus we esti-
mated real-time performance
using discrete-event simulation,
cycle-accurate processor simula-
tion, and rate-monotonic analy-
sis (mathematical conditions for
assessing whether a set of tasks
can be scheduled) to verify the
software tasking architecture,
and other real-time performance
measures of the system under
worst-case scenarios. We optimized “hot spots” in
the algorithmic portions of the software using
more efficient language implementation, algorith-
mic efficiencies, and assembly language as a last
resort. Once the algorithms were shown to be func-
tionally correct, the optimization process had truth
data to verify against.

We tested the software at the CSCI level using
various levels of statistical testing, supplemented
with unit and functional testing where required as
well as with operational-profile testing techniques.14

We generally did unit and function testing for the
algorithmic portions of the software, which involved
the more mathematically based functions with strict
real-time constraints. We used various implementa-
tion and optimization strategies to effectively map
the algorithms to the processor for optimal real-time
performance. Because of the inherent lack of user
stimuli and state data in these algorithms, sequence
and state enumeration were not as effective and
were performed only when necessary. We devel-
oped an effective model for certifying algorithmi-
cally intensive software that included 

♦ a formal code inspection and correctness ver-
ification phase;

♦ an optional level of unit and function testing
(based on the nature of the algorithms), including
both static and runtime analysis;

♦ an operational profile phase using real data
collected from various user environments; and 

♦ a final statistical testing phase using usage
models developed for different user and usage 
stratifications.
Figure 6 shows this certification model.

Figure 7 shows the automated testing environ-
ment we developed to execute the statistically gen-
erated test scripts during the certification phase.
Usage models were created directly from the box
structures developed during the specification phase.
The usage models were then translated into the ap-
propriate test grammars and executed in a special
test equipment environment. As a contingency for
the customer, we agreed to craft specific test cases
for those CSCI-level requirements that could not be
verified using the statistical approach. To date, sev-
eral of the algorithmic requirements were verified
using one or more crafted test cases. But essentially
all of the control-based requirements have been ver-
ified using statistically generated test scripts based
on a set of usage models representing different
stratifications of the system (normal use, adverse
use, and so on). A minimal covering set of test scripts
from the usage model is achieving 80 to 90 percent
statement coverage in most CSCIs (not all incre-
ments have been completed).

Feedback from practitioners
Tailoring Cleanroom technology provided us

with process improvements. Although there were
some anti-Cleanroom advocates, in general, most
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of the staff saw benefits in one or more of the
Cleanroom process components. Based on feedback
from the practitioners across several CSCIs, the main
advantages of the technology are

♦ the systematic approach to development,
♦ using sequence enumeration to force

thoughts about “impossible” events,
♦ ability to determine exact behavior,
♦ forethought before coding begins,
♦ simplicity of the process, and
♦ peer reviews of every step in the process.
Practitioners also cited some concerns. We ad-

dressed some of these by tailoring the use of the
technology. Practitioners using Cleanroom method-
ology mentioned these issues most often:

♦ Rework of the box structure artifacts is a time-
consuming process.

♦ It is difficult to map usage models to the spe-
cial test equipment environment.

♦ Statistical testing should not be the only
method of testing.

♦ Cleanroom does not address real-time issues.
♦ Formal proofs of correctness are difficult for

many practitioners.
Using box structures to perform stepwise de-

composition of the requirements was very helpful,
especially during the specification phase (software
requirements analysis). Changing requirements
cause a ripple effect in the box structure artifacts.
Although redoing these box structures is time con-

suming, we see no other way of verifying the total
impact of a requirements change without this re-
enumeration phase.

The initial perception among many of the prac-
titioners was that correctness verification—using
formal rules of discrete and predicate logic to verify
functionality—was too mathematically intense an
approach to software development. Although these
techniques should be used for certain applications,
a much less formal approach can and should be
used for other types of software. Many of today’s
practitioners do not possess the skills, budget, or
schedule necessary to verify software using this level
of formality. We discovered that various levels of
Cleanroom formality can be tailored to each appli-
cation, based on cost, budget, and practitioner ex-
perience and comfort level.

Barriers to ubiquitous use
An informal survey of Cleanroom practitioners

asked what barriers would prevent Cleanroom from
being a more ubiquitous methodology. Here are the
most common responses (and some of our reactions).

♦ More up-front design and detail frustrate
some engineers. Software practitioners still do not
see the benefit of spending more time specifying
systems in more detail before starting the imple-
mentation phase.

♦ Cleanroom does not address real-time issues
effectively. It is useful for functional verification but
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does not guarantee that the software is optimal for
real-time purposes. The guideline “Make it work
right, then make it work fast” applies.

♦ Cleanroom techniques provide less support
for algorithm-intensive applications that contain
few Boolean control operations. DSP algorithms, for
example, may have a limited number of input stim-
uli, making the function-mapping approach less
useful.

♦ Many developers believe that the Cleanroom
approach is orthogonal to structured analysis and
design, and to object orientation. Proponents must
convey the message that Cleanroom is based on a
set of fundamental computer science principles that
are effective in any type of development approach.

♦ Cleanroom lacks automation and tools. As re-
quirements change, reworking a detailed stimuli–
response mapping without tools is difficult and
time-consuming.

♦ Many assume that Clean-
room is an “all or nothing” tech-
nology. The message must be
spread that developers can use
Cleanroom components effec-
tively without having to adopt
the entire methodology.

♦ Statistical testing is the only form of “testing”in
Cleanroom. Statistical testing is useful as a compo-
nent in the overall testing strategy, but more must be
done in this area before many in industry will adopt
statistical testing as the exclusive testing strategy.

Our project addressed some of these concerns
by tailoring its use of various components of the
technology to fit within project goals and require-
ments. We discovered that Cleanroom is not an “all
or nothing”technology—it should be used to com-
plement, not supplant, any development method-
ology. Further, even though we used Cleanroom
successfully in a structured environment, the tech-
nology is just as useful in object-oriented develop-
ment methodologies.

In fact, the project initially experienced some-
what of a culture shock when we began to use this
methodology. The customer was somewhat con-
cerned over the risk and learning curve associated
with using a new methodology, so we put a risk mit-
igation plan in place in case the technology did not
demonstrate its intended effectiveness. Since we
used Cleanroom as a complement  to our structured
development approach, reverting back to a pure
structured analysis and design approach would
have been relatively easy.

Some practitioners never totally accepted the
Cleanroom approach. Some thought the method-
ology is too process-oriented. Others simply did not
think software development is mature enough to
be considered an engineering discipline and should
still be based on craftsman-like approaches and in-
novation. Many of us are not ready to base all soft-
ware testing on statistical methods, but see the sta-
tistical testing approach as an excellent supplement
to other techniques. Indeed, some CSCI teams are
currently doing 100 percent statistical testing on
their software, and are seeing good statement cov-
erage—over 90 percent.

Tailoring the Cleanroom process within the pa-
rameters of cost, schedule, project risk, and

level of practitioner experience benefitted the pro-
ject. We chose this particular level of formalism to
optimize the cost and benefits to the customer as

well as to the project. Costs included training every
software engineer, the customer, and a selected
group of other disciplines such as systems engi-
neering, quality assurance, and management in
Cleanroom methods—all of whom required ap-
proximately two weeks of training each. This was a
relatively insignificant factor in the overall project
budget. Other costs included the employment of
one to two Cleanroom contractors for the initial de-
velopment increments. These consultants provided
additional training sessions and workshops to the
teams, helped us develop Cleanroom artifacts (box
structures, usage models, expected test results, and
so on), and provided timely help in resolving the
many questions and problems that arose in the early
months of the project. As our confidence with the
new technology grew, we were able to reduce the
amount of time spent with these consultants.

We found defects during the specification and
certification phases that were not found using other
verification techniques. The specification principles
were an excellent approach to defect prevention,
and saw the biggest cost-to-benefit ratio during
that phase. Spending more time in the specifica-
tion phase to ensure a consistent, correct design
has provided benefits in the later phases of devel-
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We found defects during the specification
and certification phases that were not
found using other verification techniques.
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opment. As Figure 8 shows, very few defects ap-
peared in the software that was fully specified using
sequence-based enumeration. We have traced
most of the defects to language semantics, algo-
rithm misunderstanding, and other “silly”mistakes.
This additional effort in the early specification and
design phases is also consistent with Personal
Software Process principles.15 Cleanroom requires
commitment and a disciplined approach, and fits
well within the mature CMM framework established

for the project. Incremental development, for ex-
ample, provides opportunities for continuous
process improvement and feedback between in-
crements, which is a higher-level process maturity
KPA in the CMM. We see the statistical approach to
testing as an excellent complement to some of the
existing testing techniques and are enthusiastically
using these methods.

Further, the concept of separate development
and certification teams is very effective. In one case,
our certification team found defects immediately
after the development team had handed over a
product they felt was working, based on a signifi-
cant amount of function testing.

Cleanroom technology, like other formal meth-
ods, does not necessarily guarantee a superior prod-
uct. Erroneous specifications, flawed verification
techniques, and mistakes in interpreting certifica-
tion results can all result in defects in the final prod-
uct. These issues are common regardless of the de-
velopment approach.

Still, the results of using Cleanroom are encour-
aging. We are maintaining overall cost and sched-
ule. The customer is pleased with our product. Our
statistical testing techniques are finding defects that
are not found in unit and functional testing. (In all
fairness, our unit and function testing is finding er-
rors that would not be found using statistical test-
ing. Using both approaches is very effective.) As
shown in Figure 9, the defect types have mainly
been implementation defects based on lack of
knowledge of the programming language and the
algorithmic function. Lessons learned and causal
analysis performed at the completion of each soft-
ware increment have led to some process improve-
ments that we feel will have a positive impact on re-
maining increments. ❖
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