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Abstract-A coupled Moire-finite element method is used to calculate displacement and strain 
fields around a elasto-plastically deformed crack tip. This hybrid approach is shown to be 
economical when compared with conventional iterative finite element procedures from the point 
of view of computational time and storage when analysing problems involving extensive plastic 
deformations. By supplying surface deformation boundary conditions, one could determine field 
quantities in the interior of the material. Hybrid method gives more accurate field descriptions 
than regular finite element schemes. 

1. INTRODUCTION 

HYBRID methods are well known for studying mechanics problems which cannot be tackled 
efficiently by either experimental or numerical methods alone. It generally involves obtaining 
boundary conditions from experiments and using them in numerical models. This approach has 
been taken earlier by several investigators. Rao [ l] used experimentally obtained temperature 
and surface traction data to solve for stresses inside an axisymmetric solid. Three dimensional 
photoelasticity data has been used by Barishpolsky[2] in solving elasticity problems. Balas et 
a1.[3] have used holography with boundary element method while Moshley and Ranson[4] 
employed laser speckle interferometry to supply displacement boundary conditions in their 
hybrid analysis. Recently, Weathers et aZ.[5] have demonstrated the use of combined laser 
speckle photography and finite element method (FEM) to study stresses in a compressed disk. 
MacBain[6] has employed time average holography data to simulate plate vibrations numeric- 
ally. The novel approach of using experimentally obtained load line displacement data in their 
FE model have let Kanninen et a1.[7] and Shih er al.[8] to simulate field parameters ahead of a 
growing crack in a hardening material. Segalman et a1.[9], have shown the applicability of a 
hybrid scheme for diff erenting experimental data for determining full-field strain distributions. 
Also, there have been attempts to use this method to make dynamic fracture study more 
plausible. In his survey article on hybrid stress analysis techniques, Kobayashi [ lo] has reviewed 
the progress in this field in the recent years. 

In this paper, we demonstrate a hybrid method for studying elasto-plastic displacement and 
strain fields around a crack tip using Moire technique in conjunction with FEM. Experimental 
surface displacement measurements are used to calculate the interior displacement and strain 
fields around a plastically deformed crack tip. 

Unlike linear analysis, elasto-plastic analysis using FEM involves iterative schemes for 
seeking the solution. The number of iterations is a direct function of the extent of plastic 
deformation. This makes numerical modelling of material non-linearity problems massive in 
computational time and storage requirements. Analysing crack tip fields by FEM poses an 
additional difficulty due to the fine discretization required around the crack tip for precise 
displacement and strain field predictions. Also, since the field parameters around the immediate 
crack tip vicinity are three dimensional in nature, it calls for 3D FE analysis which is 
computationally very demanding. Under such circumstances it is very attractive to use a hybrid 
model for analysis. Here, an integrated Moire-finite element analysis is presented for analysing 
crack tip fields in a single edge notch (SEN) sample made of a low hardening aluminum. Prior to 
implementing the hybrid model for this purpose, correctness of the nonlinear finite element code 
is tested by solving for strain concentration factor due to a circular hole in a uniformly stressed 
thin infinite sheet. 
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2. FINITE ELEMENT MODEL 

Finite element model used in this study is based on small strain approximation and 
deformation theory of plasticity. The initial-stress method[l l] is followed to continuously 
update the load matrix. The material stress-strain curve is experimentally obtained from a 
tensile test and stored in numerical form. This is used to calculate secant modulus (Es) 

using the current effective strain in the element. Once secant modulus is known, elemental 
stiffness matrix is modified and load matrix is updated. Two types of FE models namely, 2D and 
3D, have been used. 2D plane stress model uses isoparametric quadrilateral element with four 
nodes per element and two degrees of freedom per node corresponding to displacements in the 
n- and y-directions. The 3D model uses eight node linear brick elements with three degrees of 
freedom per node corresponding to displacements in X-, y- and z-directions. Numerical 
integration is performed at four and eight guassian locations in the 2D and 3D models, 
respectively. 

In a linear finite element analysis (FEA), system of equations at the elemental level such as, 

[k%W = if’) (1) 

where [k”] is the element elastic stiffness matrix, (6’) is the vector of nodal displacements and 
{f’} is the vector of nodal forces of the element are solved. Assembling each of these elemental 
quantities provides the global system of equations, 

lIk116) = {f) (2) 

which are to be solved for the unknown nodal displacements (6). The elastic stiffness matrix [k] 
is calculated using the strain-stress relation, 

which assumes the form, 

for plane stress and 

l/E -v/E -v/E 0 0 0 
-v/E l/E -v/E 0 0 0 
-v/E -v/E l/E 0 0 0 

0 0 0 l/G 0 0 
0 0 0 0 l/G 0 

0 0 000 l/G 

(3) 

(4) 

in 3D case. Here E is the Young’s modulus, v is Poisson’s ratio and G is shear modulus of the 
material. To perform elasto-plastic analysis, deformation theory of plasticity is used in the form, 

p 3e,P Eij = - - sij 
2 oe 

(5) 

where Sij is the stress deviator of aij and e,P and o, are the effective plastic strain and effective 
total stress. Using the value of secant modulus (Fig. la) Es, the relation between the plastic strain 
vector {up} and stress vector {a} can be written as, 
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Fig. 1. (a) Secant modulus E, from the stress-strain curve. (b) Initial stress method. 
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where [P] is given by, 

E-E, -l/2 -l/2 1 
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The above matrix [P] can be reduced in 2D plane stress case by simply setting mz = -yzX = 
YYL = 0. 

The elasto-plastic analysis is implemented as follows: To begin with it is assumed that the 
entire region under study is deforming elastically and displacements are solved using eq. (2). 
Then, Von Mises yield criteria is invoked to check the yielding in each of the elements at their 
gauss points by comparing yield strain l o with effective strain 4 given by. 

(7) 

where v’ is equal to v in the elastic range and 0.5 after yielding. For every plastically yielded 
element the modified elemental stiffness matrix [k:] is obtained using the relation, 

If [kf] = [k’] - [k:], then global system of equations can be expressed as, 

[k1{6)i+l= If> + C {rli 

where 

{r}i = {k3i{~‘li* 

(9) 

This iterative procedure is shown schematically in Fig. l(b). 
A finite element code was developed based on the above algorithm. To test its correctness, 

the well known problem of a circular hole in a uniformly stressed infinite plate was chosen. The 
material characteristics correspond to that of Al 6061-T6 (Youngs modulus E = 700 kg/mm2; 
yield stress a0 = 28 kg/mm2; slope of the post yield stress-strain curve m = 0.005 kg/mm2). 
Figure 2 shows the finite element model of this problem. For an applied stress of (T = UJUO = 0.9, 
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Fig. 2. Finite element model of circular hole in a thin plate subjected to uniform far field stress. (b) 
Strain cont. factor reported in [ 121. 

the effective strain concentration factor at the hole boundary turned out to be 2.82 which is in 
good agreement (Fig. 2b) with the value reported by using the method of successive elastic 
solutions in [ 121. The convergence criterion used was gauss point effective strain variation of 
less than 1% yield strain per iteration. 

3. EXPERIMENTAL-NUMERICAL ANALYSIS 

A combined e~rimental-n~e~cal model was used to study displacement and strain fields 
in the crack tip vicinity of a SEN specimen. The specimen had an electro-discharge machined 
edge notch 12.5 mm long and 500 pm wide in a 3.2 mm thick sheet. 

In-plane Moire was used to get displacement fields around the crack tip. A 40 lines/mm cross 
grating, with its principal directions coinciding with the x- and y-coordinates, was photoprinted 
on the Al 6061-T6 specimen, The specimen was subjected to a far field tensile force equivalent 
to 80% of the yield stress of the material. The photoprinted grating on the specimen surface was 
photographed before (undeformed grating) and after (deformed grating) loading. Subsequent 
spatial filtering[l3] of superimposed pair of undeformed and deformed recordings gives u and u 
displacement maps corresponding to defo~ations in x- and y-directions, respectively. Figure 3 
shows the u and u fringe patterns thus obtained. Each of the fringes represents a displacement of 
25 pm in the respective direction. They are governed by the equations of geometric Moire, 
namely, 

ui=?QwhereNi=0,*l,*2,... and i=l,2withul=u,uz=u. (10) 

By numerically differentiating the above displacement fields using smoothed cubic spline 
approximations[l4], displacement gradients with respect to the spatial co-ordinates x and y can 
be calculated. Strains were calculated using small strain-displacement relations, namely, 

Next, a finite element model of the SEN specimen geometry was prepared {Fig. 4). Due to 
the symmetry of the problem, only one half of the plate was considered. The entire region R was 
divided into subdomains RI and &. Region RI consists of a mesh of fine elements around the 
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Fig. 3. u And o displacement maps around the notch tip of the SEN specimen subjected to uniaxial 
tension (T, = 0.8 aO. 
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Fig. 4. Finite element model of the SEN specimen used. 
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strain concentration whereas R2 is made of relatively coarse elements. While conducting 
conventional FE Analysis (FEA), the entire region R was considered and the force boundary 
conditions were applied. However, for hybrid analysis, only region RI was considered and the 
nodes on its boundary were supplied with displacement boundary conditions obtained from the 
experimental measurements. For all 2D calculations, plane stress conditions were assumed. 
When 3D models were used, two different types were considered. Firstly, a simpler model with 
the entire plate thickness of the plate forming one element (single layer) and the other with 
thickness divided into eight equal thickness layers (multi-layer). In the case of multi-layer 3D 
model, along the boundary of RI, interior nodal displacements were assumed to be the same as 
the ones on the surface due to the unavailability of experimental data at interior nodes. This 
approximation is justified and surface displacements are negligible. On the other hand, 
out-of-plane displacement w was assumed to a linear function of thickness with the nodes on 
midplane fixed in the thickness direction. Surface values of w along the boundary of RI was 
calculated using experimentally measured values of E,, and cyy using, 

2w 
- = & = -c[e, + $1 
h 

where c = 1 for plastic and v/l - v for elastic deformations. h Is the plate thickness and v the 
Poisson’s ratio of the material. 

4. RESULTS AND DISCUSSIONS 

Several finite element calculations have been performed for the shown SEN geometry. 
When conventional FEA is done, the entire region R is considered and the nodal forces 
equivalent to u_ = 0.80~ was specified. For hybrid models, only region RI was considered and 
the nodes on the boundary were supplied with experimental displacement data. Two FE models, 
one a simple two dimensional plane stress model and the other a single layer three dimensional 
model were used. Hybrid models consisted of a 2D plane stress model,,a 3D single layer model 
and a 3D multi-layer model. The 2) displacement and l y strains obtained by each one of these 
were compared with experimentally measured values. Figures 5 and 6 show that comparisons of 
displacement and strain contours. In these, magnification factor M is 6 and results are shown in a 
rectangular region around the crack tip (located at (Mx) = 70; (My) = 0 mm). All the cal- 
culations were performed on VAX 8600 multi-user facility and convergence occurred after 
about 125 iterations. Two dimensional FEA involved 762 degrees of freedom whereas 3D single 
layer FEA has 2286 d.o.f. On the other hand, 2D hybrid model used only 268 d.o.f., 3D single 
layer hybrid model 804 d.o.f. and 3D eight layer hybrid model had 2235 d.o.f. CPU time 
comparison between respective 2D and 3D models was approximately ten times favorable to 
hybrid models. Also, in Figs 5 and 6, the results from HRR equations[l5-171 are shown. These 
were calculated by characterizing Al 6061-T6 stress-strain curve using Ramberg-Osgood type 
of approximation, namely, 

where n is the hardening index, (Y is the material constant, a0 and l o are the reference stress and 
strain, respectively. 

Each of the displacement contours in Fig. 5 represent a displacement of 25 pm whereas 
strains are cumulative in steps of 0.004. To compare the relative accuracy of the different 
models with respect to experimental measurements, plots of 4 along x-axis [(Mx), (My) = 0] 
and normalized u displacement along (My) at (Mx) = 100 mm are shown in Fig. 7(a) and (b). 
From these, it is evident that hybrid models agree better with the experimental results than their 
counterpart finite element models. Three dimensional hybrid model improves the 2D hybrid 
model, particularly near the crack tip, since it accounts for the three dimensional eff ects[ 18, 191 
that are known to dominate the near vicinity of a plastically deformed crack tip. 
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Fig. 7. (a) Comparison of u displacements along Mx = 100 mm and My where M = 6.0. (b) Comparison 
of strain l Y along (Mx, My = 0). 
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Fig. 9. Midplane and surface strain contours of ey. 

Next, a muIti-Iayer 3D hybrid model was used to determine the interior dispIacements and 
strains using experimental surface displacement boundary conditions at the nodal points. In Fig. 
8(a) and (b) strain eY at the surface and the midplane along x-axis of the subdomain R1 are 
plotted. Since the specified inplane nodal displacement at the boundary nodes are identical for 
both surface surface and interior nodes, the calculated values of strains tend to be the same at the 
boundary which they deviate sign~c~tIy near the crack tip. The ratio of the midplane l Y to 
surface eY drops from approximately 1.35 at the crack tip to 1 at the boundary. Thickness 
variation of crack tip strain E,, is plotted in Fig. 8(c) which has a variation from 30% at the 
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Fig. 11. Convergence of crack tip strain E? as a function of the number of iterations in 2D hybrid model 
and 2D FE model. 

midplane to about 20% at the surface. In Fig. 9 E,, strain contours around the crack tip for the 
midplane and surface are shown. Because of the identical far field boundary conditions in both 
the planes, the contours look similar near the boundary but the magnitudes of strain at points 
near the crack tip vicinity are quite different. 

Lastly, to study the effect of experimental errors on the results obtained from hybrid models, 
calculations were performed using the 2D hybrid model used in the case of the SEN sample. A 
randomly generated error of kO.075 times the pitch of the grating was added to the experimental 
measurements at the nodal points. Figure 10 shows the effect of these imposed errors on the 
calculations shown as l y contours. The effects of the errors is clearly concentrated at the 
boundary where the displacements were specified whereas near the notch tip the strain contours 
are unchanged showing the stability of the hybrid formulations to boundary perturbations. 
Figure 11 shows the crack tip strain convergence achieved by the 2D hybrid and FE models. 

5. CONCLUSIONS 

We have successfully demonstrated a combined experimental numerical procedure for 
calculating the displacement and strain fields in the near vicinity of a plastically deformed crack 
tip in a work hardening material. This method is shown to be efficient in computer storage and 
processing time requirements when compared to conventional finite element calculations. A ten 
fold computer processing time savings can easily be achieved using the hybrid models. Because 
the boundary conditions for the hybrid methods are directly obtained from experiments, they 
also provide a better discription of the information around the crack tip. 

By using suitable 3D hybrid models, three dimensional effects near the crack tip can also be 
accounted for while the same is only approximated by the two dimensional models. Multi-layer 
3D hybrid modelling has shown a most interesting feature of this approach. By supplying the 
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experimental surface displacement boundary conditions, one could successfully calculate the 
interior field quantities. 

It has been shown that the hybrid models are stable systems and that the errors in the 
experimental boundary conditions only atfect the results near the boundary leaving the crack tip 
calculations unperturbed. 
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