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The Voronoi tessellation technique and solid modeling methods are used in this work to create virtual
random structures and link cell morphology with the mechanical behavior. Their compression responses
are analyzed using the finite element method. First, the effect of loading direction is analyzed for
structures with different levels of randomness characterized by a regularity parameter to assess the
degree of scatter in the results. Subsequently, morphological characteristics such as arrangement of cells
and randomness are analyzed separately. The effect of relative density on structures with different levels
of randomness is also studied. Simulations suggest that at low relative densities the arrangement of cells
has a negligible effect on the compression response of random honeycombs. On the contrary, the cellular
randomness has significant influence on the elastic and plastic characteristics especially when fully
random structures are compared with the regular counterparts.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Honeycombs, natural or man-made, are cellular solids whose
geometry does not vary considerably in one of the three orthogonal
directions; hence, they can be analyzed in a 2D dimensional space.
Honeycombs can also be used to understand the limiting behaviors of
more complex 3D structures such as foams. Similar to other cellular
solids, honeycombs have a low relative density, high strength-
to-weight ratio and good energy absorption characteristics. While
man-made honeycombs are generally fabricated using a regular
arrangement of standard unit cells such as triangles, squares, rhom-
bus, hexagons (most common), circles or other 2D geometries, nat-
ural honeycombs such as balsa wood tend to show non-uniformity
and randomness (see for example Da Silva and Kyriakides (2007)).
Hence, honeycombs could have non-repeatable and non-periodic
cellular structure and as a consequence may have characteristics
that are structurally advantageous. Techniques to create such ran-
dom honeycombs on-demand and with a prescribed cellular mor-
phology are also available at the moment. For instance, Fig. 1(a)
shows an example of the CAD model of an irregular honeycomb
with 314 cells along with the real structure produced using an
additive manufacturing technique. Specifically, the Voronoi
honeycomb model shown in Fig. 1 was produced by the authors
using Polyjet Technology1 and VeroWhitePlus� material. Conceiv-
ably, such capabilities could be useful in producing bio-scaffolds for
tissue generation (Liu et al., 2007) or lightweight prosthetics.

A Voronoi honeycomb can be created using the Voronoi tessella-
tion technique to divide 2D space based on random generation of
nuclei. The criterion used for the division of space is association
of all the locations in the 2D space with the nearest nucleus. The
Voronoi tessellation technique can be extended from 2D to 3D to
form more complex microstructures such as the ones seen in struc-
tural foams to help understand the relationship between cellular
morphology of foams and their mechanical properties. For example,
Gaitanaros et al. (2012) used the Voronoi tessellation technique and
the Surface Evolver software package to generate virtual designs
that closely resemble the microstructure of random foams at a con-
stant level of randomness. It is widely shown that the mechanical
response of honeycombs depend primarily on the base material
characteristics, relative density �q (density of the cellular solid to
the density of the bulk material (q�=qs)) and honeycomb morphol-
ogy. Gibson and Ashby (1997) have studied the influence of relative
density on the compression response of regular hexagonal honey-
combs. By making use of bending theory they have shown that
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Fig. 1. Voronoi honeycomb with 314 cells: (a) CAD model, (b) real specimen. Produced with a Polyjet Technology in VeroWhitePlus� material.
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the elastic modulus and strength of regular hexagonal honeycombs
scale with �q3 and �q2, respectively, at low relative densities. Indeed,
a regular hexagonal honeycomb can be considered as a particular
case of a Voronoi (or, irregular) honeycomb in which the cell nuclei
are perfectly ordered in a rhombic arrangement.

Simulation of honeycombs using FE methods can be performed
using a unit cell and periodic boundary conditions when the honey-
comb has a uniform repeating pattern. In an effort to better repre-
sent the morphology of 2D foams and simulate their mechanical
response, a few investigators in the past (Alkhader and Vural,
2008; Silva and Gibson, 1997; Tekoglu et al., 2011) have applied
the 2D Voronoi tessellation technique in conjunction with FE meth-
ods. However, to date, most reports focus on the influence of rela-
tive density and cell size on the mechanical response of foams.
And, there is a lack of research on the role of cell regularity (or,
irregularity) on the mechanical performance of honeycombs and
foams. Furthermore, the regularity parameter is rarely identified
when the Voronoi tessellation technique is applied to represent
foams virtually even though it has a rather strong effect on the final
topology of honeycombs. The work of Alkhader and Vural (2008) is
an exception and it addresses this issue for a limited range of cellu-
lar regularities. It should be noted that the effect of regularity on the
compression response of Voronoi honeycombs with linear elastic
base material characteristics is presented in Zhu et al. (2001, 2006).

In the present work, the effect of cell regularity on the compres-
sion response of honeycombs is studied over a wide range of reg-
ularities from fully random to ideally regular structures using
Voronoi tessellation and finite element analysis. Gaining insight
into potential failure responses of complex space filling 3D foams
via these simpler 2D relatives motivates this study. Advances in
additive manufacturing methods capable of producing random cel-
lular structures and scaffolds with tailored functionalities such as
gradations in cell wall thickness and/or material, and cell size also
add to the motivation. Unlike the previous works which study the
effect of regularity on the compression response of Voronoi honey-
combs by modeling the base material as a linear elastic solid or
elastic-perfectly plastic base material, in this work they are mod-
eled with an elasto-plastic with a bilinear hardening response
(approximating the commercially available AL-6061-T6). Addition-
ally, the effect of cell regularity on the compression response of
Voronoi honeycombs is studied for different relative densities.
Furthermore, the effect of the arrangement of cells which is a
concept different from that of regularity is also analyzed.
2 Initially developed at the Geometry Center of the University of Minnesota,
Minneapolis, MN.
2. Solid modeling

2.1. Voronoi diagrams

By having a set of n nuclei representing the centers of bubbles
growing in a m-dimensional Euclidean space, the Voronoi
tessellation technique can be used to link all the points in that
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space with the nearest nucleus (Klein, 1989; Moller, 1994; Okabe
et al., 1945). This generates n regions that form the so-called Voro-
noi diagram. In this work, such a division of space has been imple-
mented in Matlab� using the Qhull algorithm (Barber et al., 1996).2

The Voronoi diagram represents the limiting case of growing bubbles
in space under the assumption that (i) bubbles nucleate simulta-
neously in a determinate region of space, (ii) nuclei of the bubbles
stay in fixed positions during growth, (iii) the rate of growth is con-
stant in all directions, and (iv) the growth is interrupted when bub-
bles touch the adjacent ones (Boots, 1982; Silva et al., 1995; Tekoglu
et al., 2011). The Voronoi diagram being unique for a given set of
points, the shape of the diagram can be controlled by generating dif-
ferent arrangement (or distribution) of nuclei (see, Klein (1989),
Moller (1994), Okabe et al. (1945)). For the case of monodispersed
nuclei, a fully regular pattern of points generates regular Voronoi
diagram whereas an irregular pattern leads to a random counterpart.
Natural honeycombs may not be always fully irregular or regular and
hence their configuration can be viewed as somewhere in between
these two limits.
2.2. Regularity parameter

A pseudo-random arrangement of points can be generated
using a Poisson probability distribution if (i) the points are gener-
ated independently from the previous ones, (ii) the probability of a
nucleus to be generated in a region of space is proportional to the
size of the region, and (iii) the probability of two nuclei generated
at the same location is negligible (Martinez and Martinez, 2002;
Okabe et al., 1945). As mentioned previously, a fully random Voro-
noi honeycomb generated with a Poisson probability distribution
does not fully represent the morphological characteristics
observed in natural honeycombs (Gibson and Ashby, 1997). For
example, the range of cell sizes generated with a fully random
arrangement of nuclei is too broad when compared to natural hon-
eycombs. To address this, it is often necessary to increase the reg-
ularity of the nuclei by eliminating points that are closer than a
certain predetermined (prescribed) distance called the distance of
inhibition (s). In this work, a Simple Sequential Inhibition (SSI) algo-
rithm in Matlab� (Martinez and Martinez, 2002) is used to accom-
plish this task. In a SSI process, a set of points are randomly
generated one at a time based on a Poisson probability distribution.
Subsequently, the point is eliminated if the distance from the pre-
viously generated ones is less than a prescribed distance of inhibi-
tion (s) (Martinez and Martinez, 2002; Okabe et al., 1945). The
maximum possible value of the distance of inhibition is a function
of the size of the 2D region and the number of points to be gener-
ated. Zhu et al. (2001) presented an expression for calculating the
maximum distance of inhibition (r) in a 2D space as,
ularity and relative density on elasto-plastic compression response of ran-
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Fig. 3. Probability p(F) of finding cells with F faces with different levels of regularity
in Voronoi diagrams shown in Fig. 2. (The trivial case of regular honeycomb (F = 6)
is not shown.)
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In the above equation, A is the control area where n nuclei are
located. Therefore, the regularity parameter can be quantified with
s or by using a ratio of s to the maximum value of r (see Zhu et al.
(2000, 2001) and references therein) as,

d ¼ s
r
: ð2Þ

In the present work, d will be referred to as the regularity parameter
or simply ‘‘regularity’’. Fig. 2 illustrates an example of the effect of
increasing the regularity parameter, for say n = 314 nuclei. A value
of d ¼ 1 implies a regular arrangement of points maintaining a
maximum distance of inhibition among them (see, Fig. 2(e))
whereas a regularity parameter of d ¼ 0 represents a completely
random arrangement of points (as in Fig. 2(a)). As evident in
Fig. 2, the cell size distribution varies with the regularity parameter.
While the size of the cells is uniform for the d ¼ 1 case, the largest
difference between cell sizes is for d ¼ 0. Indeed, the biggest cell is
almost 30 times the smallest one when d ¼ 0. The number of faces
per cell is also affected by the regularity parameter. That is, the
probability of finding cells with six sides (F = 6) in a regular 2D
Voronoi honeycomb is equal to 1 whereas the probability is lower
in case of irregular counterparts. Fig. 3 shows the probability of
finding cells with F faces for the geometries presented in Fig. 2. Note
that the trivial case of d = 1 is not presented in Fig. 3. While only six
sided polygons can be found in case of d = 1, a few polygons up to
nine sides are present when d = 0. However, a six sided polygon,
as Euler’s law requires, is still the most probable polygon in all
configurations. It is worth noting that the six-sided polygons are
also the most common ones in natural honeycombs.

Under the assumption that a certain number of nuclei can be
generated in a region for a minimum distance of inhibition, the
computational time for the SSI process to generate the nuclei
depends on the regularity parameter and the computational
resources available. While it may take only a few seconds to gen-
erate a fully random arrangement of nuclei, the computational
(a) (b)

(d) (e

Fig. 2. Voronoi diagrams and the nuclei (dots) used for generating honeycom
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time for a random process (SSI) to generate a regular output is
theoretically infinity according to the probability theory for large
numbers (see Borel (1913)). Hence, in this work, the nuclei of the
regular arrangement of points in 2D (see Fig. 2(e)) were directly
located in regular positions using the r value without resorting to
random generation of points.
2.3. Construction of 2D geometries

Matlab� was used for dividing space in accordance with the
Voronoi tessellation technique whereas AutoCAD was employed
for constructing 2D geometries. Four characteristics, namely, (i)
size of the model, (ii) regularity, (iii) cross sectional shape, and
(iv) relative density, were defined while generating planar
monodisperse Voronoi geometries. First, the size of the model (that
is, the number of cells) was chosen to be sufficiently large in order
(c)

)

bs with n = 314 and (a) d = 0, (b) d = 0.5, (c) d = 0.7, (d) d = 0.8, (e) d = 1.
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to represent a continuum foam model while keeping the size of the
model small enough to be able to manage it using the available
solid modeling and FE software resources. A few previous studies
analyze the effects of the model size on the compression response
of Voronoi honeycombs. For the 2D case, Tekoglu et al. (2011) have
shown that for uniaxial compression a ratio of the control area to
the cell size of greater than or equal to 16 produces tolerable
elastic modulus and plastic collapse strength variations. Hence,
the plastic collapse strength is defined as the maximum strength
reached in the stress–strain curve before collapse and reaching a
stable plateau stress. A similar assertion has been made by
Alkhader and Vural (2008) by showing that 10–15 cells in the load-
ing direction produce convergence in elastic modulus and crushing
stress. Accordingly, in this work, a control area corresponding to a
ratio of the area to cell size equal to approximately 16 was
selected. The choice were further validated by an independent con-
vergence study, presented in Appendix A. For an arrangement of
nuclei in a regular (hexagonal) honeycomb, this corresponds to
n = 314 cells. Second, in order to study the effect of cell regularity
over the complete range, from to d ¼ 1, Voronoi honeycombs with
n = 314 cells and regularity d ¼ f0, 0.5, 0.7, 0.8 and 1} were gener-
ated. Regarding the cross-sectional shape of the ligaments, Gong
and Kyriakides (2005), Gong et al. (2005), Jang et al. (2008), Jang
and Kyriakides (2009) studied the morphology of open-cell alumi-
num foams by means of micro-computed X-ray tomography. They
observed that the cross-sectional shape of the ligaments were in
between a triangle and a circle. In the present work, for simplicity,
the cross-sectional shape of the ligaments was modeled with a
constant circular cross-section. (Though unusual, this choice was
to help compare the results with 3D Voronoi foam behavior under
similar loading conditions and minimize the effect of the orienta-
tion of the cross section.) The accumulation of material at the junc-
tions of ligaments, typical of structural 2D foam representations,
has been modeled by overlapping cross-sections of beam elements.
Additionally, the analysis has been limited to a relative density of
up to �q ¼ 9% to minimize this effect (see, Gan et al. (2005), Jang
et al. (2008) and references therein). With these considerations,
the value of the radius/thickness of struts depends on the relative
density of the honeycomb. In 2D it can be calculated as (Liu et al.,
2009; Tekoglu et al., 2011; Zhu et al., 2000),

�q ¼ 1
A

� �XN

i¼1

hili ð3Þ

where �q is the relative density of the foam, N is the number of struts
in the cell, hi is the thickness of struts, li is the cell wall length and A
is the control area. Additionally, considering that the open-cell alu-
minum foams are normally produced in the range of 3–12%, the
analyses were limited to an upper value of 9%. Specifically, four rel-
ative densities �q ¼ f3%;5%;7% and 9%g were analyzed in this
work. Based on this, for a given value of A, the thickness of struts
was calculated. Additionally, to study the compression response
in the vertical direction (x2), left and right borders of the control
area were eliminated to emulate real foams compressed in a sand-
wich-like configuration with free ligaments on the lateral faces.
Similarly, the top and bottom borders of the control area were elim-
inated when the compression response in the horizontal direction
(x1) was simulated.

3. Finite element modeling

Structural analysis of the foam models was performed using the
finite element software package Abaqus/Standard (Hibbitt, 2002).
In the pre-processing stage, geometries described in Section 2.3
were imported from AutoCAD into Abaqus�. The base material
was modeled as an elasto-plastic material with a bilinear isotropic
Please cite this article in press as: Sotomayor, O.E., Tippur, H.V. Role of cell reg
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hardening response corresponding to the reported stress–strain
characteristic for AL-6101-T6 (Aluminum Association). Specifically,
the elastic region was described by an elastic modulus of 68.9 GPa
and a Poisson’s ratio of 0.33 whereas the plastic region had an ini-
tial yield stress of 193 MPa and a slope of Dr=D 2¼ 149 MPa up to
a strain of 19%. Beyond that strain the stress was assumed constant
at 221 MPa. Further, interactions among cell walls when large
deformations occur play an important role in the overall mechan-
ical response of the Voronoi honeycombs. If interactions between
cells are not simulated correctly, interpenetration of elements
can affect the results at higher strains. In view of this, surfaces
were created in the interior of each closed cell at the mid-surface
of the beam elements and frictionless interaction of the self-
contact type was stipulated for these surfaces. (In reality, interac-
tions between cells occur at the ligament surface instead of the
mid-surface. However, the idealization was considered reasonably
accurate for low relative densities.) Nonlinear effects due to large
deformations were activated in a generalized static analysis
performed in Abaqus/Standard. Moreover, convergence of unstable
nonlinear problems was improved using an adaptive automatic
stabilization scheme (Hibbitt, 2002; Jhaver, 2009). Values of
2 � 10�4 and 0.05 for dissipated energy fraction and ratio of stabil-
ization energy to strain energy were used in this work.

When the response was studied for compression in the
x2-direction, a displacement boundary condition was applied on
the top surface while constraining the bottom surface from
displacing in the x2-direction. Additionally, a point in the middle
of top and bottom surfaces was constrained from displacing in
the x1-direction. The boundary conditions were rotated by 90�
when the compression response in the x1-direction was sought.

Beam elements with three active degrees of freedom per node
and a quadratic interpolation within the domain were selected
for FE discretization. The elements, identified as B22 in Abaqus�,
are formulated on Timoshenko’s beam theory to take into account
shear deformations in addition to flexure, which could be signifi-
cant in short beams. Typically five nodes per ligament were gener-
ated during discretization although the number of nodes in case of
short ligaments was reduced to three. This was to avoid generation
of extremely short elements unsuitable for capturing beam-like
deformations (Silva et al., 1995). Computations were performed
as a batch job in a parallel processing environment. The number
of elements in a typical simulation was in the range of 1846–
1906 and more than 10,000 degrees of freedom.

In the post-processing stage, reaction forces at the bottom sur-
face were added in order to obtain the net reaction force (F). The
apparent stress on the Voronoi honeycombs was calculated by
dividing F by the area of the base (Silva and Gibson, 1997). The
average strain was calculated by dividing the displacement by
the original length in the loading direction. A comparable analysis
was performed when the displacement was imposed in the
x1-direction. All these calculations were accomplished for each
load increment in order to get a relatively continuous mechanical
response curves.

The response for the Voronoi honeycomb with a regularity of
d = 1, �q ¼ 9%, loaded in the x2-direction is presented in Fig. 4.
The figure also depicts deformed honeycomb structure at five
points of interest. In Fig. 4, the stress–strain response of the regular
honeycomb presents two characteristic regions. First, an elastic
region with a uniform deformation at small strains can be observed
in Fig. 4. Then, a change in the slope of the stress–strain variation
without an appreciable or noticeable area of localization of defor-
mation is seen in the response. The deformations start to localize
at the center of the model causing a collapse of a horizontal row
of cells until the opposing cell walls contact each other. This pro-
duces an oscillatory characteristic. Others have previously reported
comparable behaviors in the literature as well (see, Cricri et al.
ularity and relative density on elasto-plastic compression response of ran-
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Fig. 4. Stress–strain curves for Al Voronoi honeycomb with a �q ¼ 9%, d = 1 loaded in the x2-direction.
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(2013), Papka and Kyriakides (1994, 1998)). A good correlation
between the current simulations and results available in literature
in both the elastic and plastic regimes are observed for the regular
honeycomb with �q ¼ 9%. Due to the fact that a hexagonal honey-
comb can be considered as a particular case of a Voronoi honey-
comb with d = 1, the validation process was assumed applicable
to the rest of the regularities, namely, d = {0, 0.5, 0.7, 0.8}, as well

4. Voronoi honeycomb results

4.1. The effect of loading direction

In this section the effect of loading direction on the compression
response of Voronoi honeycombs is examined. Even though ran-
dom structures based on Voronoi diagrams are nominally isotropic
when a sufficiently large number of cells are used in the simula-
tion, studying of the loading direction helps to estimate the degree
of scatter in the reported results. The stress has been normalized
by the yield stress of the solid material (rysÞ) and the square of
the relative density �q2 in order to make the results broadly
applicable. Hence, a reduced stress �r is defined as,

�r ¼ r
rys:�q2 : ð4Þ
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The term �q2 is used in the normalization due to the fact that the
strength is known to scale with �q2 at low relative densities. For
instance, the stress–strain response for the case of �q ¼ 9% and
d = {0.5 and 0.8} are shown in Figs. 5 and 6, respectively. Addition-
ally, deformed Voronoi honeycomb configurations at five points of
interest are also presented in those figures. The deformed configu-
rations are identified with a number when compressed in the
x2-direction and with a letter when compressed in the x1-direction.
Regarding the elastic responses in Figs. 5 and 6, both the configura-
tions exhibit a nearly linear variation and the elastic modulus
depends on the degree of regularity d. The variation in the elastic
modulus for different relative densities and regularities is analyzed
in Sections 4.3 and 4.4. In the present section, the focus is limited to
the directional response of Voronoi honeycombs. As expected, the
predicted elastic modulus is essentially independent of the loading
direction due to the fact that we are dealing with isotropic config-
urations. A similar assertion can be made for the plastic collapse
strength as well. The response in the plateau region oscillates about
a mean level for the two orthogonal directions. The small variations
are attributed to the random morphology of cells inherent to the
construction process of generating the Voronoi geometries. The
sequence of deformation in Figs. 5 and 6 present a behavior akin
to the regular honeycomb case (Fig. 4). For instance, the elastic
region shows uniform deformation without any local collapse of
ularity and relative density on elasto-plastic compression response of ran-
4), http://dx.doi.org/10.1016/j.ijsolstr.2014.07.009

http://dx.doi.org/10.1016/j.ijsolstr.2014.07.009


Fig. 5. Normalized stress–strain curves for a 9% Al Voronoi honeycomb with regularity d = 0.5.
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cells. Subsequently, at a certain strain, a softening effect can be
observed. This, however, does not necessarily imply a local collapse
in the structure. As the simulation progresses, the weakest cell
Please cite this article in press as: Sotomayor, O.E., Tippur, H.V. Role of cell reg
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collapses and the cells located along the weakest path follow the
trend. For compression in the x2-direction, the collapse path tends
to be nearly horizontal but not straight as in the regular honeycomb
ularity and relative density on elasto-plastic compression response of ran-
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Fig. 6. Normalized stress–strain curves for a 9% Al Voronoi honeycomb with regularity d = 0.8.
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case (Fig. 4). The interaction among the cells successfully prevents
interpenetration of nodes once the opposing walls touch each other.
Subsequently, the deformation starts to localize next to the original
path although evolution of independent paths can also occur as
evident in Fig. 6(5). These quasi-isotropic behaviors in the elastic
Please cite this article in press as: Sotomayor, O.E., Tippur, H.V. Role of cell reg
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range have also been observed in all the configurations, namely,
d = {0, 0.5, 0.7, 0.8, 1} with �q = {3%, 5%, 7%, 9%}. These results are
not shown for the sake of brevity, but the main properties such as
elastic modulus and plastic collapse strength are presented in
Sections 4.3 and 4.4.
ularity and relative density on elasto-plastic compression response of ran-
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Fig. 8. Effect of regularity on elastic modulus of Voronoi honeycombs of different
relative densities.

Fig. 9. Effect of regularity on plastic-collapse strength of Voronoi honeycombs for
different relative densities.
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4.2. Effect of cellular arrangement at a constant regularity

Different arrangement of cells at a fixed regularity parameter
(d) requires generating different sets of nuclei in different trials
of the SSI process. Each time the SSI algorithm is executed, it gen-
erates a different random arrangement of nuclei even though the
regularity and number of nuclei is the same. Its effect on the
stress–strain response was studied and the results are presented
in Fig. 7 for a representative case of d = 0.8. Note that the two
arrangements including the one in Fig. 6 were studied. As can be
seen in Fig. 7, the effect of generating two different geometric
configurations using different sets of nuclei but with the same reg-
ularity does not have an appreciable effect on the elastic modulus
or the plateau strength despite differences in the local oscillations
due to cell morphology dissimilarities. That is, the additional
arrangement of points produces a new but comparable response
in both the elastic and plateau (plastic) regions.

4.3. Role of regularity in 2D

In this section the influence of regularity on the compression
response of Voronoi honeycombs is presented. Analyses were per-
formed on Voronoi honeycombs over a wide range of regularities.
Specifically, geometries with d = {0, 0.5, 0.7, 0.8 and 1} and �q = {3%,
5%, 7%, 9%} were studied. The responses were averaged between
two orthogonal directions to estimate the anticipated scatter in
the reported results since we are dealing with nominally isotropic
microstructures. Fig. 8 shows the predicted elastic modulus (nor-
malized by the elastic modulus of the bulk material) as a function
of the regularity parameter for different relative densities. It
suggests an inverse relationship between the regularity and
stiffness of the honeycomb. Consequently, highly irregular Voronoi
honeycombs have higher values of elastic modulus when com-
pared to their regular counterparts. Silva et al. (1995), Zhu et al.
(2001) have also suggested that irregular 2D Voronoi honeycombs
are stiffer than the regular honeycombs. Silva et al. (1995) compare
the elastic response of irregular honeycombs with the regular ones
although they limit the comparison to structures with an invariant
regularity parameter and regular (d = 1) ones. Since Silva et al.,
have not identified the level of regularity used in their analysis,
the range of d is estimated to be in the range 0.7–0.8. In the present
work, the difference in terms of elastic modulus between honey-
combs with d = 0.7 and d = 1 is approximately 8% whereas Silva
et al., found a difference of about 6%. However, a broader range
of values of d suggests a considerable increase of elastic modulus
Fig. 7. Aluminum Voronoi honeycomb stress–strain responses with �q ¼ 9% and
d = 0.8. The results corresponds to two different configurations ((1) and (2))
generated in different trials of the SSI process with the same regularity parameter.

Table 4.1
Elastic modulus data fitting for Voronoi honeycombs with differ-
ent regularities to determine C1.

Regularity C1 Coefficient of determination

0 1.587 0.9993
0.5 1.241 0.9993
0.7 1.023 0.9975
0.8 1.003 0.9988
1 0.996 0.9995
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for Voronoi honeycombs when regularity is lower than d = 0.7.
The data also suggests that a fully irregular Voronoi honeycomb
(d = 0) is approximately 66% stiffer than a regular counterpart.

The plastic-collapse strength increases with regularity as evi-
dent in Fig. 9. This trend is opposite to the one seen in case of
the elastic modulus. The plastic-collapse strength of regular honey-
combs is approximately {28%, 31%, 35% and 50%} higher than a
fully irregular honeycombs for relative densities of �q = {9%, 7%,
ularity and relative density on elasto-plastic compression response of ran-
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Fig. 10. Variation of elastic modulus of Voronoi honeycombs with relative density
for different regularities.

Table 4.2
Plastic-collapse strength data fitting for Voronoi honeycombs with
different regularities to determine C2.

Regularity C2 Coefficient of determination

0 0.2741 0.9955
0.5 0.2814 0.9967
0.7 0.2972 0.9979
0.8 0.2909 0.9981
1 0.3538 0.9988

Fig. 11. Plastic-collapse strength of Voronoi honeycombs of different relative
densities at different cell regularities.

O.E. Sotomayor, H.V. Tippur / International Journal of Solids and Structures xxx (2014) xxx–xxx 9
5%, 3%}, respectively. For plastic-collapse strength, the trend is
relatively constant between d = 0 and d = 0.8 with a considerable
enhancement in the range d = 0.8 to d = 1.

In light of the elastic modulus and plastic collapse strength
variations discussed above, there appears to be a clear trade-off
Please cite this article in press as: Sotomayor, O.E., Tippur, H.V. Role of cell reg
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between the two characteristics when regularity of the cellular
structure is varied and hence could be of significance in the design
process.

4.4. The effect of relative density on Voronoi honeycombs

The numerical simulations have shown that the reduction of the
elastic modulus scales with ðq�=qsÞ

3 (Gibson and Ashby, 1997;
Gibson et al., 2010; Guo and Gibson, 1999). Accordingly, by fitting
the data for elastic modulus variation for different regularities with
relative density to a function of the form,

E�

Es
¼ C1

q�

qs

� �3

ð5Þ

where E⁄ is the elastic modulus of the honeycomb, Es is the elastic
modulus of the bulk material. Thus evaluated values of C1 are tab-
ulated in Table 4.1.

In light of this, it is important to recognize that the constant C1

depends on the level of regularity in case of Voronoi honeycombs. It
should be noted that the Eq. (5) is only applicable to 2D structures
whereas for 3D open cell configurations the elastic modulus is
shown to vary with the square of the relative density (Gibson
et al., 2010; Roberts and Garboczi, 2002). Fig. 10 presents the var-
iation of the normalized elastic modulus of the Voronoi honey-
combs with relative density for different regularities.

Similarly, the plastic-collapse strength can be described by an
expression of the form (Gibson and Ashby, 1997; Gibson et al.,
2010),

r�pcs

rys
¼ C2

q�

qs

� �2

ð6Þ

where C2 is a constant of proportionality, r�pcs is the plastic-collapse
strength of the honeycomb, rys is the yield stress of the bulk mate-
rial. Table 4.2 tabulates the evaluated values of C2 for different
regularities.

Again, it can be seen that the constant C2 varies with the level of
regularity of the Voronoi honeycombs. It should be noted that, Eq.
(6) is only applicable for 2D structures and a new set of equations
would be necessary for the 3D counterparts. Fig. 11 presents the
simulated variation of the normalized plastic-collapse strength as
a function of the relative density for different regularities.

5. Conclusions

In this paper, the role of cellular morphology of structural hon-
eycombs on their compression response has been studied. Of par-
ticular interest to the study is the effect of cell regularity and
relative density on the elastic–plastic behavior of random and reg-
ular honeycombs. Finite element analyses using Timoshenko beam
elements and solid modeling methods were developed for this pur-
pose. The Voronoi tessellation technique in 2D was implemented
to represent random honeycombs. The representation was able
to capture a majority of characteristics observed in natural honey-
combs although the surface tension effects which influence geom-
etry of natural honeycombs were not accounted for. The advances
and accessibility of additive manufacturing methods motivated
this study since Voronoi honeycombs can be directly fabricated
from CAD models developed in a virtual environment. For example,
this opens the possibility of fully controlling the morphology of
cellular structures during production of porous scaffolds. Further,
morphological characteristics such as regularity, cross-sectional
shape of ligaments, polydispersity of cells and macroscopic shape
which cannot be controlled in conventional methods can be
fully defined using solid modeling and additive manufacturing
techniques.
ularity and relative density on elasto-plastic compression response of ran-
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Fig. A1. Convergence of normalized elastic modulus of the cellular structure with
the number of cells used in the model. (H: model size, L: cell size).

Fig. A2. Convergence of normalized plastic collapse strength of the cellular
structure with the number of cells used in the model. (H: model size, L: cell size).
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The influence of cell regularity and relative density was studied
in Voronoi honeycombs. A nominally isotropic response in the
whole range of strains analyzed was observed for the Voronoi hon-
eycombs (with d – 1). That is, the sensitivity of stress–strain
responses to the arrangement of cells at a constant regularity
parameter was found to be negligible. On the other hand, the reg-
ularity parameter was found to have a significant influence not
only on the cellular morphology but also the mechanical response.
The effect of cell randomness was studied over a wide range of reg-
ularity parameters, from fully irregular configurations (d = 0) to
fully regular ones (d = 1). A Simple Sequential Inhibition (SSI) pro-
cess was used to create honeycombs with regularities d 6 0.8
whereas a fully regular arrangement of hexagonal cells (as a special
case of a Voronoi honeycomb with d = 1) was generated by directly
placing the nuclei at a uniform maximum distance of inhibition. An
inverse relation was found to exist between the cell regularity and
elastic modulus of Voronoi honeycombs, consistent with the previ-
ous works. However, the differences between the elastic modulus
of random and regular honeycombs was appreciable and much
more significant than reported previously. A fully irregular Voronoi
honeycomb (d = 0) was found approximately 66% stiffer than a
Please cite this article in press as: Sotomayor, O.E., Tippur, H.V. Role of cell reg
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regular counterpart. This was attributed to the fact that the cellular
structures generated in the present work cover a wider range of
regularity parameters. The plastic-collapse strength, on the other
hand, showed a direct relationship with cell regularity. The plas-
tic-collapse strength of regular (d = 1) honeycombs was {28%,
31%, 35% and 50%} higher than a fully irregular (d = 0) counterpart
for relative densities of �q = {9%, 7%, 5%, 3%}, respectively. Regarding
the dependency on the relative density of honeycombs, the data
suggests that the elastic modulus of Voronoi honeycombs scale
with �q3 whereas the plastic-collapse strength and plateau strength
scale with �q2. However, the proportionality constants relating the
property with the relative density vary with regularity.
Appendix A

The effect of the number of cells was studied in specimens with
d = 0.8 and relative density of 9% where the ratio of the control area
to the cell size was equal to H/L = {8, 12, 16 and 20}. Here H and L
are the height and average cell size of the specimen. Fig. A1 shows
the effect the normalized specimen size has over the normalized
elastic modulus. Similarly, Fig. A2 depicts the variation of normal-
ized plastic-collapse strength when H/L ratio was varied. From
Figs. A1 and A2, it is clear that the number of cells used in the sim-
ulation has a significant effect on the predicted mechanical proper-
ties, more so in case of the plastic collapse strength. Further, both
the characteristics increase with an increasing normalized speci-
men size. The normalized elastic modulus attains a plateau corre-
sponding to a H/L ratio of �12. The normalized plastic collapse
strength on the other hand stabilized at a H/L ratio of �16.
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