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Abstract

The Voronoi tessellation technique in a 3-D space is used for modeling the structural foam core used in sandwich configurations. The
procedure involves stochastic generation of nuclei in a control volume. The level of randomness of the microstructure is controlled with a
simple sequential inhibition (SSI) process and quantified using a regularity parameter. The influence of the cell regularity on the
compression response of open-cell microstructures is studied in the elastic and plastic deformation regimes. Additionally, the effect of
relative density is analyzed for different regularities and results are compared with available analytical and semi-empirical models.
The low probability of generating highly regular structures using the SSI process has led to the development of a perturbation approach
to complement the SSI methodology. Models for estimating elastoplastic properties based on the density of the foam and the regularity
parameter are presented. Simulations suggest a monotonic and direct relationship between mechanical properties and the regularity
parameter for the entire range of strains considered.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Open-cell metallic or polymeric foams are man-made
cellular solids that emulate microstructures commonly
observed in nature [11]. They offer low relative density
and have interconnected network of struts and/or faces
resulting in high strength-to-weight ratios and energy
absorption characteristics suitable for aerospace, automo-
tive, military and other applications. An overview of the
processing methods, characteristics and applications of
the resulting foams can be found in Ashby et al. [2] and
Banhart [3]. Irrespective of the method used for producing
these foams, the mechanism responsible for the intricate

morphology of open-cell configurations can be linked to
a process involving expansion of bubbles in a 3-D space
[2]. As a consequence, each foam specimen has a unique,
non-repeatable and non-periodic cellular structure/
morphology. It is important to recognize that in the cur-
rently used methods of foam production the initial condi-
tions are imposed with very limited control over the final
morphology of the resulting foam. The relative density
(�q) (defined as a ratio between the density of the cellular
solid to the density of the bulk material (q*/qs)) and the
average cell size are the two morphological characteristics
that are controlled using methods identified in Ashby
et al. [2]. On the other hand, the cross-sectional shape of
struts, the polydispersity of cells, the regularity of cells
and the macroscopic shape of the resulting foam are nor-
mally consequences of physical laws inherent to the pro-

http://dx.doi.org/10.1016/j.actamat.2014.06.051

1359-6454/� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 334 844 3327.
E-mail address: tippuhv@auburn.edu (H.V. Tippur).

www.elsevier.com/locate/actamat

Available online at www.sciencedirect.com

ScienceDirect

Acta Materialia 78 (2014) 301–313



Author's personal copy

duction method used and are essentially uncontrolled dur-
ing the foam production processes using conventional
methods.

The relative density is the dominant parameter that
influences the mechanical behavior of structural foams.
Studies regarding the influence of relative density on the
elastic response of foams are widely available in the litera-
ture [11,38,43]. For instance, by making use of a regular
tetrakaidecahedron representation, Zhu et al. [43] derived
analytical expressions for estimating the elastic properties
of foams as a function of the relative density. Another
model for estimating the elastic properties of open-cell
foams has been proposed by Warren and Kraynik [38].
In their approach a unit structure formed by struts joining
the centroid of a tetrahedron with its vertices was used in
order to maintain the 109.5� edge connectivity. The cell size
is the other morphological parameter that can be con-
trolled during foam production. Experiments, however,
have shown that the cell size has little effect on the com-
pression response of open-cell foams [19,29]. The remain-
ing characteristics have received less attention, possibly
due to the technological shortcomings to control them dur-
ing traditional production processes. However, with the
rapid advancement in additive manufacturing methods
and their widespread availability, control over the cross-
sectional shape of struts/ligaments, cell regularity, polydis-
persity and macroscopic shape can all be readily tuned and
hence need to be studied carefully. For instance, Fig. 1
shows an example of a regular open-cell foam generated
in a virtual 3-D space along with the real model produced
using an additive manufacturing technique. Specifically,
the model was produced using a laser-sintering technique
in which a mixture of polylaurinlactam powder and alumi-
num grit was used.1 Thus, the restrictions normally

imposed by conventional production techniques are largely
eliminated with continued progress in printable materials,
and the morphology of the foam can be fully controlled
within the present-day technological limits on layer thick-
ness, type of base material and microfeatures.

Attempts to computationally investigate foams using
finite-element (FE) methods range from homogenization
approaches [21] to the use of repeating unit cells or cell
clusters [14,15,16,23,25]. An efficient approach to model
open-cell metal foams is by using a planar-faced isotropic
tetrakaidecahedron, an approximation of the minimal
space dividing cell proposed by Sir William Thompson
(Lord Kelvin) [37]. Nevertheless, a regular tetrakaidecahe-
dron cannot accurately represent the structure of open-cell
metal foams [31,39]. A different technique to realistically
construct the geometry of foams is to create 3-D volumes
using tomographic information of real foams. However,
the spatial resolution, the size of data set generated and
the cost of hardware/software can all be issues to address
in its application to real-world problems [13,24]. In an
effort to better represent the morphology of honeycombs
(2-D) and foams (3-D) and simulate their mechanical
response in an efficient way, the Voronoi tessellation tech-
nique in 2-D [7,34,36] and 3-D [9,10,18,33] in conjunction
with FE methods has been applied. That is, to represent
foams, normally a pattern of points is generated to create
Voronoi diagrams that closely resemble the morphology
of real foams. To date, much attention has been paid to
the influence of relative density and cell size on the mechan-
ical response of foams. In addition, there is a lack of
research on the role of cell regularity on the mechanical
performance of structural foams. In fact, the regularity
parameter is somewhat rarely identified when the Voronoi
tessellation technique is applied to represent foams virtu-
ally even though it has a rather profound effect on the final
topology of honeycombs (2-D) or foams (3-D). The effect
of regularity on the compression response of Voronoi hon-
eycombs with a linear elastic base material is presented in
Zhu et al. [42], [44]. In 3-D, Zhu et al. [41] studied the com-
pression response of low-density Voronoi foams with an

Fig. 1. Voronoi foam with 341 cells from a regular body-centered arrangement of points, produced with a laser-sintering technology: (a) virtual model;
(b) 3-D printed specimen.

1 In the laser-sintering technique, thin layers of the powder material are
deposited onto a planar platform. Subsequently, a laser beam fuses
the powder in regions defined by a computer-aided design model. The
platform is then lowered and another layer of powder is applied. The
process is repeated until the final product is created.
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elastic base material. A different approach to study the
effect of regularity on the compression response of struc-
tural foams is presented by Luxner et al. [26]. In their
approach a random perturbation of the location of the ver-
tices of regular tetrakaidecahedron and cubic foams is
introduced. As a consequence, random but relatively
regular configurations are generated. Interestingly, Zhu
et al. [41] and Luxner et al. [26] differ in their conclusion
about the effect of randomness on the elastic response of
foams although the studies are in different ranges of rela-
tive density. Further, the differences can be possibly
explained due to the different techniques used by these
investigators for constructing their geometries. In Luxner
et al. [26] approach, all the cells have 14 faces and the pos-
sibility of creation of re-entrant cells cannot be excluded.

In this context, the focus of this work is on studying the
effect of cell regularity on the compression response of
foam core materials loaded in a sandwich configuration
over a wide range of regularities from fully random to
highly regular Voronoi foams using a FE method. Unlike
previous works which have studied the effect of regularity
on the compression response of Voronoi honeycombs
and foams by modeling the base material as a linear elastic
solid, here it is modeled with an elastoplastic response.
Additionally, the influence of the face sheets on the overall
response of the model is analyzed in the Appendix. The
effect of relative density on the compression response of
foams is also studied and results are compared with analyt-
ical and empirical counterparts available in the literature.
Open-cell aluminum foams with Al-6101-T6 base material
and 40 pores per inch have been used as an initial target
of simulations based on commercially available open-cell
foams. The results have been subsequently normalized to
generalize them to other structural foams.

2. Solid modeling

2.1. Voronoi diagrams

In the case of open-cell foams, by having a set of n nuclei
to represent the location of the centers of bubbles growing
in a m-dimensional Euclidean space, a Voronoi tessellation
technique can be used to link all the points in that space
with the nearest nucleus [22,28,30], generating n regions
that form the Voronoi diagram. In this work, such a divi-
sion of space has been implemented in Matlab� using the
Qhull algorithm [4].2 The Voronoi diagram represents
the limiting case of growing bubbles in space under the
assumption that (i) bubbles nucleate simultaneously in a
determinate region of space, (ii) bubbles stay in fixed posi-
tions during growth, (iii) the rate of growth is constant in
all directions, and (iv) the growth is interrupted when a
bubble touches an adjacent bubble [5,35,36]. As the Voro-
noi diagram is unique for a given set of nuclei, the shape of

the Voronoi diagram can be controlled by generating a dif-
ferent arrangement (or distribution) of nuclei [22,28,30].
For the case of monodispersed nuclei, a fully regular pat-
tern of points generates regular Voronoi diagrams whereas
a similar assertion can be made for the irregular case as
well. Natural and conventional foams are neither fully
irregular nor fully regular. Their cellular morphology is
somewhere in between these two limits.

2.2. Regularity parameter

A pseudo-random arrangement of points in a space can
be generated using a Poisson probability distribution if (i)
the points are generated independently from the previous
ones, (ii) the probability of a nucleus being generated in a
region of space is proportional to the size of the region,
and (iii) the probability of any two nuclei generated at
the same location is negligible [27,30]. As mentioned previ-
ously, a fully random Voronoi foam generated with a Pois-
son probability distribution does not fully represent the
morphological characteristics observed in foams [11]. For
example, the range of cell sizes generated with a fully ran-
dom arrangement of nuclei is too broad when compared to
that in real foams. For that reason, it is necessary to
increase the regularity of the nuclei. This is typically
accomplished by eliminating points that are closer than a
certain distance, denoted by the so-called distance of inhi-
bition (s). In this work, a simple sequential inhibition (SSI)
algorithm available in Matlab� and proposed by Martinez
and Martinez [27] was used to accomplish the task. In a SSI
process, a set of points are randomly generated one at a
time based on Poisson probability distribution. The dis-
tance of a point thus generated relative to the previous ones
is checked during each iteration. A point is eliminated if its
distance from the previous ones is less than a prescribed
distance of inhibition (s). Increasing the distance of inhibi-
tion increases the regularity of the arrangement of nuclei.
However, the distance of inhibition has a maximum value
that corresponds to the distance in a fully ordered (regular)
arrangement of points. The maximum possible value of the
distance of inhibition is a function of the size of the space
(region) and the number of points to be generated. Zhu
et al. [41] have presented a formula for calculating the max-
imum distance of inhibition (r) in 3-D as:

r ¼
ffiffiffi
6
p

2

ffiffiffiffiffiffiffiffiffi
Vffiffiffi
2
p

n
3

s !
: ð1Þ

In the above equation, V is the control volume within
which n nuclei are located. Hence, the regularity parameter
can be quantified with s or using a ratio of s to the maxi-
mum value r (see [41,42] and references therein) as:

d ¼ s
r
: ð2Þ

In the present work, d will be referred to as the regularity
parameter or simply the “regularity”. Fig. 2 illustrates an
example of the effect of increasing the regularity parameter

2 Initially developed at the Geometry Center of the University of
Minnesota, Minneapolis, MN.
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for, say, n = 341 nuclei in a 3-D space. A value of d = 1
implies a regular arrangement of points in a body-centered
packing (see Fig. 2e), whereas a regularity parameter of
d = 0 represents a completely random arrangement of
points (see Fig. 2a).

Under the assumption that a certain number of nuclei
can be generated in a spatial region while maintaining a

minimum distance of inhibition, the computational time
required for the SSI process to generate nuclei varies
depending on the number of nuclei to be generated, the reg-
ularity parameter and computational resources available.
While it may take only a few seconds to generate a fully
random arrangement of nuclei (d = 0), the computational
time required for a random process (SSI) to generate a

(a) (b)

(c) (d)

(e)

Fig. 2. Solid model geometries of 3-D Voronoi foams for relative density (�q) = 3% and different cell regularity d: (a) d = 0, (b) d = 0.5, (c) d = 0.7, (d)
d = 0.8, (e) d = 1.
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regular output (d = 1) is theoretically infinite according to
the probability theory for large numbers (see [6]). To cir-
cumvent this problem, in this work, the nuclei of the regu-
lar arrangement of points in 3-D were directly located in
regular positions of the control volume using the r value
without resorting to random generation of points.

2.3. 3-D geometries

While Matlab� was used for dividing space in accor-
dance with the Voronoi tessellation technique, AutoCAD
was employed for constructing geometries in 3-D. Four
characteristics, namely (i) size of the model (or the number
of cells of the foam), (ii) regularity, (iii) cross-sectional
shape, and (iv) relative density, were defined for generating
spatially monodisperse Voronoi geometries. First, the size
of the model that is sufficiently large was considered to rep-
resent continuum foam while keeping the size of the model
small enough to be manageable with solid modeling and
FE computational software packages. Andrews et al. [1]
have experimentally studied the effect of the specimen size
on the compression response of aluminum foams. They
suggest that a ratio of the specimen size to cell size equal
to �6 accurately predicts the elastic modulus and presents
a tolerable difference in the prediction of the plastic-
collapse strength of aluminum foams. For a regular foam,
a ratio of the specimen size to the cell size of 6 corresponds
to n = 341 cells. Hence, n = 341 cells was used to generated
3-D Voronoi foams with a regularity parameter d = {0, 0.5,
0.7, 0.8 and 1}. Second, the cross-sectional shape of the
struts was modeled as a constant circular cross-section
whose area is related to the relative density [41] as:

�q ¼ 1

V

� �XN

i¼1

Aili; ð3Þ

where Ai is the cross-sectional area of the struts, �q is the rel-
ative density of the foam, N is the number of struts in the cell,
hi is the thickness of struts, li is the cell wall length and V is the
control volume. Thus, geometries with d = {0, 0.5, 0.7, 0.8
and 1} and relative density �q ¼ f3%; 5%; 7% and 9%g were
generated. Additionally, plates of thickness equal to�1% of
the sample size were added to the top and bottom of the sam-
ple to simulate sandwich structural configurations and pre-
vent unruly local deformations at the top and bottom
surfaces when loads were imposed. Examples of the geome-
tries generated for the case of �q ¼ 3% are shown in Fig. 2. As
can be seen in Fig. 2e, the Voronoi configuration for the case
of d = 1 corresponds to a regular arrangement of plane-
faced isotropic tetrakaidecahedra.

3. Finite-element modeling

Structural analysis of the foam models was performed
using the finite-element package Abaqus/Standard. In the
pre-processing stage, the geometries described in Section 2.3
were imported from AutoCAD to Abaqus� as *.iges files.

The base material for foam ligaments and face-sheets was
modeled as an elastoplastic material with a bilinear isotro-
pic hardening response representative of Al-6101-T6. Spe-
cifically, the elastic region was described with an elastic
modulus of 68.9 GPa and a Poisson’s ratio of 0.33, whereas
the plastic region was assigned an initial yield stress of
193 MPa and a slope of Dr/De = 149 MPa up to a strain
of 19%. Beyond that strain the response was assumed con-
stant at 221 MPa.3 Interactions among the ligaments were
seen to occur around 10% strain. Since interaction between
beams cannot be automatically simulated in Abaqus/Stan-
dard, a high degree of confidence in the results is claimed
up to �10% strain. Nonlinear effects due to large deforma-
tions were activated in a general quasi-static analysis per-
formed in Abaqus/Standard. Moreover, convergence
issues of an unstable nonlinear problem was improved
using an adaptive automatic stabilization scheme [17,20].
Values of 2 � 10�4 and 0.05 for dissipated energy fraction
and ratio of stabilization energy to strain energy, respec-
tively, were used in this work.

Equal and opposite displacement boundary conditions
were applied to the top and bottom surfaces of the model.
Additionally, one point at the center of the top and bottom
planes was restrained for translation in the plane perpen-
dicular to the applied displacement direction. The model
was discretized with spatial beam elements (B32 in Abaqus)
with six degrees of freedom per node (three translations
and three rotations) and a quadratic interpolation within
the domain of the element. Typically, five nodes per liga-
ment were generated during discretization. Additionally,
the top and bottom plates were discretized with four-node
shell elements such that nodes in the beams coincide with
those of the shell elements. The number of elements in a
typical simulation was in the range of 11,114 to 11,860
and more than 50,000 degrees of freedom.

In the post-processing stage, the reaction forces at the
bottom surface were added in order to obtain the net reac-
tion force (F). The apparent stress over the Voronoi foam
was calculated by dividing F by the area of the base [34].
The average strain was calculated by dividing the displace-
ment over the original length. All these calculations were
accomplished for every load increment to produce contin-
uous response curves.

4. 3-D Voronoi foam results

In this section the compression response of Voronoi
foams is analyzed. Simulations have been performed for
foams with regularities d = {0, 0.5, 0.7, 0.8, 1} and relative
densities of �q = {3%, 5%, 7%, and 9%} (see Fig. 2 for
examples of foam models with �q = 3%) in accordance with

3 In Appendix A, the elastic properties of face-sheets with a high degree
of compliance in the x1 and x3 directions are simulated to investigate their
influence on the response of the core itself. The effects were found to be
negligible. Hence the results can be viewed as the actual response of the
foam core itself.
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the FE modeling procedure described previously. For the
case of �q = 3%, Figs. 3 and 4 superimpose the stress–strain
response of Voronoi foams for different regularities. Fig. 3
depicts the response only in the range of 0–0.01 to appreci-
ate the elastic behavior over small strains. The stress has
been normalized by the yield stress of the solid material
(rys) and �q1:5. That is, the reduced stress �q is given by:

�r ¼ r
rys � �q1:5

: ð4Þ

The quantity �q1:5 is used for normalization due to the fact
that the foam strength scales with �q1:5 as shown later on in
Section 4.1. The results presented in Figs. 3 and 4 show
that the simulations have been able to capture the two
initial regimes (elastic and plateau regions). The elastic
modulus shows a direct dependence on regularity. The level

of variation is quantitatively analyzed in the next section. In
the transition zone from elastic to plastic regimes, a drop can
be observed after the plastic-collapse strength has been
reached. This drop seems to be substantial for the regular
configuration (d = 1) case, when compared to other configu-
ration 0 < d < 0.8, as shown in Fig. 4. Comparable responses
such as the ones shown in Figs. 3 and 4 have also been
observed for the remaining relative densities �q = {5%, 7%,
9%} but are not presented here for brevity. Thus obtained
results are, however, analyzed in Sections 4.1 and 4.2.

The deformed foam configuration for the case of �q = 3%
and d = 0.7 is presented in Fig. 5 for four levels of applied
strain. The von Mises stress contours are shown in the
same figure. Evidently, the deformation is relatively uni-
form in the elastic range. The ligaments with higher levels
of stress are randomly but uniformly located within the
domain of the Voronoi foam. As expected, struts with
low levels of von Mises stress are located along the free
boundaries of the control volume. (Even though some lig-
aments with relatively low levels of stress appear to be
located within the control volume, in reality, these are
located along the free boundary in front of the viewing
direction in Fig. 5.) As the imposed displacements increase,
deformation starts to localize along a horizontal surface
near the center of the control volume although its location
can vary due to the random cellular morphology of the
foam structure (see Fig. 5d). A similar sequence of defor-
mations and stress–strain responses has been observed
for the rest of configurations studied and are not shown
here for the sake of brevity.

4.1. The effect of relative density

As shown below, the influence of the face-sheets in the
simulations is marginal (see Appendix). Hence, simulations
performed in the present study are compared with pure
foam models currently available in literature.

Due to the fact that density is one of the parameters that
can be controlled during foam production, semi-empirical
and analytical studies on the effect of relative density on
the elastic response of structural foams are reported in
the literature [11,38,43]. First, for low-density foams, Gib-
son and Ashby [11] used bending theory and a cubic repre-
sentative volume to derive the general dependency of the
elastic modulus with respect to relative density. The rela-
tion they proposed is of the form:

E�

Es
¼ K1

q�

qs

� �2

: ð5Þ

Additionally, they used experimental data on structural
foams in order to extract the value of the constant K1.

For open-cell configurations, they estimated K1 � 1. Sec-
ond, Zhu et al. [43] used a regular tetrakaidecahedron ide-
alization to derive an expression for the elastic modulus of
open-cell foams. In case of foams with circular cross-
section ligaments like the ones simulated in the present
work, the expression is:

Fig. 3. Normalized stress–strain response of 3-D Voronoi foam with
�q = 3% for different regularities over a strain range of 0–1% (simulated
using Al6101-T6 characteristics).

Fig. 4. Response of 3-D Voronoi foams with �q = 3% for different cell
regularities (simulated using Al6101-T6 characteristics).
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(a)

(b)

(c)

(d) Localization of deformations

Fig. 5. Von Mises stress contour of aluminum Voronoi foam with d = 0.7 and �q = 3% for applied strains of: (a) 1.35%, (b) 2.05%, (c) 8.01%, (d) 15.75%.
(Units of stress in the color bar are in Pa.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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E�

Es
¼ 3

5

q�

qs

� �2

1þ 0:9 q�

qs

� � : ð6Þ

Another model for estimating the elastic properties of
open-cell foams has been proposed by Warren and Kray-
nik [38]. In their approach a unit structure formed by struts
joining the centroid of a tetrahedron with its vertices was
used in order to maintain the 109.5� edge connectivity.
Their expression for estimating the elastic modulus is:

E�

Es
¼ K2 � �q2ð11þ 4 � K2 � �qÞ

10þ 31 � K2 � �qþ 4 � K22 � �q2
ð7Þ

with �q ¼ q�=qs and K2 � 0.827 for the case of circular
cross-section of ligaments.

These analytical and semi-empirical models, along with
the current simulations, are comparatively examined in
Fig. 6. The results are approximately bounded by those
of the Zhu et al. and Gibson et al. models although Zhu
et al.’s model is consistently more conservative relative to
the present simulations in the range of densities considered.
A good correlation between the Warren et al. model and
this work for d = {0.7 to 0.8} is also evident in Fig. 6. This
is also consistent with the previously published work by
Roberts and Garboczi [32]. The simulation results of the
present work can be accurately represented by an equation
of the quadratic form:

E�

Es
¼ C3

q�

qs

� �2

þ C4
q�

qs

� �
; ð8Þ

where constants C3 and C4 depend on the level of regularity.
The values of constants C3 and C4 obtained by fitting the
results computed from Eq. (8) are listed in Table 1 for the
different levels of regularity analyzed in the present work.

The dependency of the elastic modulus on �q2 in Eq. (8)
indicates that bending is the primary mechanism of

deformation [39] as shown by Gibson and Ashby in the
derivation of Eq. (5). However, stretching [8] and torsional
deformations of ligaments [40] that are also present in these
foams can be described with a more complex relationship
between the elastic modulus and relative density such as
the one considered.

Similarly, the numerical simulations of Voronoi foams
show that the plastic-collapse strength depends on (q*/
qs)

1.5 as observed experimentally [11,12]. For open-cell con-
figurations with ligaments of circular cross-section, Fig. 7
shows the normalized plastic-collapse strength for different
levels of regularity:

r�pcs

rys
¼ C5

q�

qs

� �1:5

ð9Þ

where C5 is the coefficient dependent on the regularity of
the foam. Table 2 presents the coefficient C5 based on fit-
ting the data with the above equation. Expectedly, the
value of C5 for regular foam (d = 1) is close to 1, suggest-
ing the high degree of accuracy of these computations.

4.2. Effect of regularity

The effect of the regularity parameter on the compres-
sion response of Voronoi foams is evident in Fig. 8. A stiff-
ening response is observed as the cell regularity increases.

Fig. 6. Variation of elastic modulus of 3-D Voronoi foams with relative
density for different cell regularities. Comparison of results with analytical
and semi-empirical models. (Inset shows spread of data at low relative
densities.)

Table 1
Proportionality coefficients C3 and C4 obtained by fitting elastic modulus
data for Voronoi foams of different regularities.

Regularity C3 C4 Coefficient of determination

0 0.4826 0.01308 0.9992
0.5 0.4959 0.01483 0.9991
0.7 0.5682 0.01312 0.9993
0.8 0.5998 0.01370 0.9992
1 0.6392 0.02243 0.9989

Fig. 7. Effect of relative density on the plastic-collapse strength of
different 3-D Voronoi foams. Inset shows enlarged view at small relative
densities. (Inset shows spread of data at low relative densities.)

308 O.E. Sotomayor, H.V. Tippur / Acta Materialia 78 (2014) 301–313
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The data suggests that a regular Voronoi foam is {41.3%,
43.7%, 46.5% and 49.5%} stiffer than a fully irregular coun-
terpart for �q = {9%, 7%, 5% and 3%}, respectively. Previ-
ous studies on the elastic compression response of 3-D
structural foams were presented by Zhu et al. [41] and Lux-
ner et al. [26]. They, however, come to different conclusions
regarding the effect of randomness (or regularity). The cur-
rent simulations suggest a stiffer response as regularity
increases, similar to the conclusion of Luxner et al. How-
ever, as noted earlier, this difference could be a direct result
of the differences in constructing the geometry.

Fig. 9 shows the effect of regularity on the plastic-
collapse strength for different 3-D Voronoi foams. Data
indicate an increasing trend in the plastic-collapse strength
as the regularity parameter d increases. Fig. 9 also suggests
a sharp rise in the plastic-collapse strength when the regu-
larity is more than d = 0.7, self-evident for higher relative
densities. The strength of a regular tetrakaidecahedron is
�56% higher than that of a foam with a d = 0.7. Note that
the conventional methods of foam fabrication typically
produce structural foams with regularities between
d = 0.7 and d = 0.8. Hence, from the perspective of
mechanical response, methods for creating highly regular
structural foams are important to pursue since they offer
mechanically effective configurations from the perspective
of stiffness and yield strength in compression.

4.3. Highly regular 3-D foams

Fig. 9 suggests a relatively steep rise in the mechanical
performance in terms of plastic-collapse strength and hence
indicates the need for an additional analysis in the range of
d = {0.8 and 1}. That is, analysis needs to be performed on
highly regular foams. The previously described SSI process
demands huge computational resources in order to gener-
ate highly regular foams (d > 0.8). Hence, highly regular
configurations with regularities of d = {0.8, 0.95 and 1}
were intentionally generated using a perturbation process
instead of the SSI process. For this reason, the results for
highly regular foams are presented separately to distinguish
them from the others generated using the SSI process. In a
perturbation process, nuclei were regularly placed in a
body-centered arrangement while maintaining a distance
among them, calculated using Eq. (1). The Voronoi tessel-
lation technique subsequently generates a regular Voronoi
foam (an arrangement of regular tetrakaidecahedra) for the
case of a regular arrangement of points d = 1 (see Fig. 10c).
If nuclei are perturbed by adding a random value in the
range of [�h,h] to each one of their orthogonal coordi-
nates, the level of regularity can be directly related to the
value h for h� r. Due to the fact that each of the nuclei
move to a new random location inside a cube of side 2h

during perturbation, the minimum possible separation
between any two nuclei is:

s ¼ r � 2
ffiffiffi
3
p

h: ð10Þ
Thus, the cell regularity, as defined in Section 2.2, is:

d ¼ 1� 2
ffiffiffi
3
p h

r
ð11Þ

The required level of regularity can be calculated for a
given value of r and h. Conversely, the perturbation intro-
duced is related to the regularity parameter and the maxi-
mum possible distance of inhibition r. Recall from the

Table 2
Proportionality coefficient C5 obtained by fitting plastic-collapse strength
for 3-D Voronoi foams of different regularities using Eq. (9).

Regularity C5 Coefficient of determination

0 0.5150 0.9995
0.5 0.5750 0.9993
0.7 0.6005 0.9998
0.8 0.6482 0.9997
1 0.9516 1

Fig. 8. Effect of cell regularity on elastic modulus of 3-D Voronoi foams
of different relative densities.

Fig. 9. Effect of regularity on plastic-collapse strength of 3-D Voronoi
foams for different relative densities.
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previous sections that the maximum distance of inhibition
is a function of the number of nuclei to be placed in the
control volume and the size of the region (space) (see Eq.
(1)). Fig. 10 shows the highly regular geometries thus gen-
erated for d = {0.8, 0.95 and 1} and �q = 3%. As mentioned
earlier, the regular foam was formed by a periodic arrange-
ment of regular tetrakaidecahedron unit cells (Fig. 10). On
the other hand, the foams with d = 0.95 was formed by unit
cells that emulate a regular tetrakaidecahedron but per-
turbed (Fig. 10b). The finite-element procedure explained
in Section 3 was followed for highly regular foams also.
Fig. 11 shows the stress–strain response for the three geom-
etries presented in Fig. 10. A similar response has been
observed for the relative densities �q = {9%, 7%, 5%} and
are avoided here for brevity. The abrupt softening response
observed at yield in regular foams is significantly mitigated
by a small perturbation introduced to the foam regularity
(from d = 1 to, say, 0.95). This produces only marginal
effects on the elastic modulus and plastic-collapse strength
of the foam, as in Fig. 11 for the case of d = 0.95 without
any loss of plateau stress.

5. Conclusions

In this paper, the role of cellular morphology of 3-D
structural foams on the compression response is studied.
Of particular interest to the study is the effect of cell regular-
ity and relative density on the elastic–plastic behavior of
random and regular structural foams. Specifically, FE anal-
yses used in conjunction with solid modeling methods have
been developed for investigating compression response of
foams generated using Voronoi diagrams. The Voronoi tes-
sellation technique in 3-D is applied to represent random
foams. The representation captures a majority of character-
istics observed in structural foams fabricated using conven-
tional methods, although the surface tension effect which
also influence geometry of foams is not accounted for in this
work. The advances and accessibility to additive manufac-
turing methods has motivated this study since Voronoi
foams can be directly fabricated from virtual models if they
can be numerically developed. This opens the possibility of
fully controlling the morphology of structural foams during
production in the future. Morphological characteristics
such as regularity, cross-sectional shape of ligaments, poly-
dispersity of cells and macroscopic shape that have limited
control with conventional methods can be fully defined dur-
ing virtual design for additive manufacturing purposes.

It is also shown in this paper that the influence of the
face-sheets is only marginal. Thus, the results represent
the response of 3-D foams itself in view of a relatively large
number of cells used in the model. The addition of the face-
sheets helps the convergence of the simulation by avoiding
premature collapse of struts located at the top and bottom
boundaries.

A monotonic direct relationship between the elastic
modulus and regularity was identified for Voronoi foams.
This observation is consistent with the results reported by
Luxner et al. [26] for elastic modulus of 3-D cellular struc-
tures consisting of an arrangement of regular tetrakaideca-
hedra and perturbation of cellular junctions producing
random yet nearly regular foams. The current work
extends the analysis over the entire range of regularities
from d = 0 to 1. The results suggest that a regular tetrakai-

(a) (b) (c)

Fig. 10. Computer-generated solid model geometries of highly regular (d > 0.8) foams using perturbation method, n = 341 cells, �q = 3%: (a) d = 0.8, (b)
d = 0.95, (c) d = 1.

Fig. 11. Normalized compressive stress–strain response of 3-D aluminum
Voronoi foams with a �q = 3% for different highly regular foams.
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decahedron foam representation is 41.3%, 43.7%, 46% and
49.5% stiffer than a fully irregular foam for �q = {9%, 7%,
5%, 3%}, respectively. The increasing trend in the elastic
modulus as the regularity parameter increases was also
observed for plastic-collapse strength. The plastic-collapse
strength showed a surprisingly sharp rise over the regularity
parameter range from 0.7 to 1. The strength of regular tetra-
kaidecahedron array was�56% higher than a foam with 0.7
regularity, which is approximately the regularity of struc-
tural foams currently fabricated with conventional methods.
Thus, the introduction of randomness has a profound effect
on reducing the strength of regular 3-D foams in the range
from 1 to 0.7. Additionally, the deleterious effect of abrupt
softening at yield of regular 3-D foams can be mitigated by
introducing a small perturbation to the regularity.

The dependency of the relative density of different Voro-
noi foam configurations is shown to be bounded by the
results of the Gibson and Ashby [11] empirical model
and Zhu et al.’s [43] analytical model, although the latter
is relatively conservative relative to the FE results of this

work. A favorable correlation between the results for the
case of Voronoi foams of d = 0.7 and d = 0.8 with the War-
ren and Kraynik [38] model is also observed. A more com-
plex dependency of elastic modulus on the relative density
than the one presented by Gibson and Ashby [11] is
encountered for 3-D Voronoi foams. Nevertheless, the elas-
tic modulus showed a variation describable by a second-
order polynomial and agrees with the results of Gibson
and Ashby [11] at the lower range of relative densities con-
sidered. On the other hand, the numerical simulations
showed that the plastic-collapse strength scales with �q1:5,
in agreement with the theory of structural foams. However,
in the present models the coefficients relating the plastic-
collapse strength with relative density vary depending on
the regularity parameter of the foam.

Appendix A. Influence of face-sheets

In this paper, face-sheets were added to the top and bot-
tom of the foam geometry in order to prevent premature

Fig. A1. Results for simulations with directionally compliant face-sheets. The new results (solid symbols) have been plotted along with those from original
simulations (open symbols connected by solid lines) shown in (a) Fig. 6, (b) Fig. 7, (c) Fig. 8, (d) Fig. 9. Note that the new results are generally
indistinguishable from the earlier simulations, suggesting minimal influence of face-sheets on the results.
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collapse of struts due to compression. If the size of the
model (or number of cells) is large, the constraining effects
(in the x1–x3 plane in the present study) of face-sheets on
the simulation could be ignored. However, limitation of
computational resources sometimes precludes using large
models all the time. In such situations, it is of interest to
ensure that face-sheets minimally influence the overall
response. Accordingly, the number of cells in this paper
was increased relative to other studies reported in the liter-
ature. Yet, investigating the effect of face-sheet properties
on the reported results is appropriate. In the following,
compression responses for additional cases, namely ortho-
tropic compliant face-sheet and isotropic compliant face-
sheet, are included and compared to the one reported in
the main text.

A.1. Directionally compliant face-sheets

Additional simulations were performed on structures
described in Section 4. The modification included face-sheets
made from orthotropic material with a high degree of com-
pliance in the x1 and x3 directions. Specifically, the material
of the face-sheets were simulated assuming elastic character-
istics, namely E22 = 68.9 GPa, E11 = E33 = 0.2 * E22,
G12 = G32 = 25.9 GPa, G31 = 0.2 * G12 = 5.2 GPa and
v = 0.33 in all cases. Evidently, the elastic modulus in the
direction of compression same as that of the foam ligaments
whereas those in the x1 and x3 directions were 5-fold lower.

The results of the simulations are presented in Fig. A1.
The difference between the simulations with the compliant
orthotropic face-sheets relative to the original ones was
negligible. That is, the differences on average were 2.4%
for elastic modulus and �0.03% for plastic-collapse
strength. This implies that the simulations presented in this
work represent actual foam response.

A.2. Isotropic compliant face-sheets

Simulations were repeated with an isotropic compliant
material for the face-sheets attached to the foam geometry.
The material was idealized to have isotropic elastic proper-
ties of E = 13.8 GPa and v = 0.33. Again, the elastic mod-
ulus was assumed to be 5-fold lower than that used in the
work described in the paper. The difference between the
simulations with the isotropic compliant material for
face-sheets relative to the ones in the paper, on average,
is �0.9% for elastic modulus and 1.1% for plastic-collapse
strength. Due to such small differences, these results are not
presented here for the sake of brevity.

In both the cases, localization of deformations is evident
at the center of the model. This sequence of deformation is
also similar to the original simulations. In view of these
results, one can conclude that the compression characteris-
tics of the Voronoi foam simulated in this work are mini-
mally influenced by the face-sheets. Further, the number

of cells is large enough to minimize the influence of dis-
placement constraints in the x1 and x3 directions, while
preventing premature collapse of foam ligaments and help-
ing improve numerical convergence during simulations.

References

[1] Andrews EW, Gioux G, Onck P, Gibson LJ. Int J Mech Sci
2001;43:701–13.

[2] Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wadley
HNG. Metal foams: a design guide. Amsterdam: Elsevier; 2000.

[3] Banhart J. Prog Mater Sci 2001;46:559–632.
[4] Barber CB, Dobkin DP, Huhdanpaa HT. ACM Trans Math Softw

1996;22:469–83.
[5] Boots BN. Metallography 1982;15:53–62.
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