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ABSTRACT--An optical mapping of deformation fields and 
evaluation of fracture parameters near mixed-mode cracks 
in homogeneous specimens under elastostatic conditions 
is undertaken. A modified edge notched flexural geometry 
is used in the study and its ability in providing a relatively 
wide range of mode mixities is demonstrated. A full-field, 
optical shearing interferometry called 'coherent gradient 
sensing' (CGS) is used in the study. Crack-tip parameters 
such as stress-intensity factors, mode mixity and energy- 
release rate are measured from the interference patterns. 
The patterns are analyzed using Williams' mixed-mode, 
asymptotic expansion field. An expression for energy-re- 
lease rate for the specimen is also derived using beam 
theory. The theoretical stress-intensity factors are then 
obtained using a mode-partitioning method based on mo- 
ment decomposition. Experimental measurements and 
theoretical predictions are found to be in good agreement. 
Limitations of the mode-partitioning method used in the 
investigation are also pointed out. 

Introduction 

Practical plane fracture problems often belong to a 
mixed-mode category. Over the years, several mixed- 
mode fracture studies on homogeneous materials have 
been reportedJ -9 In recent years, a renewed interest in 
mixed-mode fracture research is seen. This is because 
advanced materials are often seen to fail through mixed- 
mode fracture. Crack growth along weak interfaces in 
composite materials is also shown to be inherently mixed- 

10 14 mode - and is one of the main contributing factors to 
composite-material fracture. 

The following are some of the recent mixed-mode frac- 
ture-mechanics reports. Atkinson, et al. 1 have proposed a 
cracked Brazilian disk for mixed-mode fracture study. 
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Richard 2 has reported experimental results and numerical 
comparisons for a comP3act tension-shear specimen. Ma- 
hajan and Ravi-Chandar have used a similar geometry for 
determining mixed-mode stress-intensity factors using the 
method of caustics. They have also measured toughness 
characteristics for PMMA and Homalite-100. Royer 4 has 
used a Y-shaped specimen in his investigation to plot 
failure envelopes under mixed-mode loading. The crack 
kinking directions are also studied in this investigation. 
Singh and Shetty 5 have used the Brazilian disk geometry 
to obtain the fracture toughness of ceramics under mixed- 
mode loadings. Williams 6 has provided analytical solu- 
t ions for  a fami ly  of  beam geometr ies  through 
energy-release-rate calculations. Mason et al. 7 have stud- 
ied dynamic, mixed-mode, K-dominant crack-tip fields. 
Suresh et al. 8 have reported experimental and numerical 
results on the mixed-mode fracture toughness of ceramic 
materials. 

A flexural fracture specimen is preferable in mixed- 
mode studies due to the simplicity of loading and compact- 
ness it offers. These features make beam specimens 
popular in composite-material fracture testing as well. In 
this paper, the feasibility of using a transversely cracked 
beam specimen (Type-A) for mixed-mode crack-tip field 
study is demonstrated. The specimen is useful for bimate- 
rial fracture toughness testing ~5 as well. The single crack- 
tip configuration of the specimen greatly reduces 
restrictions in terms of loading symmetry and thus pro- 
vides greater experimental consistency. A relatively new, 
wavefront shearing interferometry, coherent gradient 
sensing (CGS), is extended to the measurement of mixed- 
mode crack-tip fields in the specimen (see next section). 
The optical measurements are used in evaluating mixed- 
mode crack-tip parameters (see 'Mixed-mode Fracture 
Experiments' below). Due to the finite size of the speci- 
mens, higher order nonsingular deformations generally 
influence the crack-tip fields. Hence, the assumptions of K 
dominance are relaxed and higher order terms are included 
in the analysis of CGS patterns. It is demonstrated that 
CGS fringes, when used in conjunction with Williams' 
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Fig. 1 ~(a)  Schematic of the experimental setup for 
transmission CGS 
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Fig. l~(b)  Working principle of CGS 

mixed-mode asymptotic crack-tip fields, 16 provide accu- 
rate measurement of crack-tip parameters. Also, using 
beam theory, expressions for crack-tip energy-release rate 
and stress-intensity factors are explicitly derived and ex- 
perimental measurements are compared with the theoreti- 
cal counterparts, 

The paper also points out certain limitations of the 
mode-partitioning method reported in the literature. 6 This 
is an outcome of the optical investigation on an alternative 
modified three-point-bending specimen (Type-B), pro- 
posed in the literature 6 for mixed-mode fracture testing 
based on theoretical calculations. It is shown that the 
mode-partitioning method which uses a moment decom- 
position technique is limited to flexural specimens with a 
geometrical parameter ~ = 0.5. 

Coherent Gradient Sensing (CGS) 

CGS is a wave-front shearing interferometry which can 
be used to map gradients of deformations near cracks.]7' 18 
It provides full-field information, offers real-time capabil- 
ity and the sensitivity of measurement is easily control- 
lable. The method is relatively insensitive to random 
vibrations and rigid motions as well. Also, it can be used 
with opaque (reflection mode) as well as transparent solids 
(transmission mode). 

The schematic for transmission CGS is shown in Fig. 
l(a). A collimated laser beam is transmitted through a 
transparent fracture specimen. In the vicinity of a de- 
formed crack, nonuniform stress fields exist and hence the 
incident planar wavefront is perturbed upon propagation 

through the crack-tip region. One could view the perturbed 
wavefront to be made of several locally planar wavefronts 
with propagation vectors oriented in different directions. 
If ~(x~, x2), [~2(xl, x2) and ~3(xl, x2) denote the direction 
cosines of the local propagation vector d, then 

d=~/e i  i = 1 , 2 , 3  (l) 

where ei represent unit normals along Cartesian coordi- 
nates. The object wavefront, which carries information 
about crack-tip deformations, subsequently undergoes a 
series of diffractions as it propagates through two identical 
high-density Ronchi gratings, G~ and G2 (grating pitch p), 
which are spatially separated by a distance A along the 
optical axis [Fig. l(b)]. The gratings are chromium-on- 
glass master gratings with antireflection coatings and they 
have a nearly square wave transmission profile. From Fig. 
l(b), it is clear that the diffracted wavefronts Eco,1) and E(1,o) 
are spatially sheared versions of the object wavefront, The 
path difference between these two wavefronts is a function 
of the local direction cosines of the object wavefront. Also, 
because the propagation directions of E(0,i~ and E(i,0~ are the 
same, they will come to focus at a common point on the 
back focal plane of the filtering lens. The spatial frequency 
content of the object wavefront is filtered at the filtering 
plane and the interference patterns are photographed on the 
image plane. 

ThroUgh a first-order diffraction analysis, Tippur et  al. I7 
and Tippur 18 have related the interference patterns to the 
direction cosines, ~1 and [~2, of the object wavefront as 

13~- n~p 
A 

c~ = 1, 2 n~ = 0, +1, +2 .... (2) 

where n~ represent fringe orders. The above relationship 
is valid for small angular deflections of the light rays (113 
= 1). The direction cosines can be further related to the 
deformation field under a plane-stress assumption. A de- 
tailed analysis has shown that, for transmission CGS, the 
following governing relations between mechanical fields 
and optical patterns exist: 

- o c = l ,  2 
~x~ A (3) 

where ~lt, 62z are the through-the-thickness average of 
normal stress components, c is the elasto-optical constant 
(see Appendix A) for the material and B is the undeformed 
plate thickness. 

Mixed-mode Fracture Experiments 

Test Specimens and Optical Measurements 

Type-A specimens are made from commercially avail- 
able PMMA sheets of 9-mm nominal thickness (manufac- 
tured by CYRO Industries, Mt. Arlington, N J). The 
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Fig. 2--Transversely cracked beam specimen 
(Type-A) 

specimen geometry and the loading configuration is 
shown in Fig. 2. A 0.5-ram thick band saw is used to cut 
transverse slits of different lengths in these specimens. 
Sufficient care is exercised during cutting in order to 
minimize residual stresses along the crack flanks and at the 
crack tip. The cracked edge of the specimen is further 
notched to a depth of 12.5 mm to produce a slot of width 
of 6.25 mm. A matching pin is housed in this slot during 
the test. When the specimen is loaded, the pin induces a 
reactive force P1 between the upper and lower arms of the 
beam. A loose hole of 6.25-mm diameter is drilled in the 
lower arm for the purpose of applying the load P. Six 
different crack length (a) to loading distance (l) ratios, 
namely (aft) = 1.39, 1.65, 1.91, 2.15, 2.41 and 2.51, are 
studied. The height of the beam is H = 75 mm and the span 
of the beam L = 330 mm. The ratio ~ = (h/tl) = 0.5 in each 
case. 

The specimen is loaded using a plunger which is acti- 
vated by a hydraulic pump. A 0-3000-1b load cell is used 
for measuring the applied load P. The load cell is included 
in the setup in such a way that one end of it is attached to 
the loading end of the plunger while its other end is 
connected to a loading fork. The fork forms a pin joint with 
the specimen and applies the load P to the specimen. 

Transmission CGS is used in the present investigation. 
A collimated laser beam of diameter 50 mm is centered 
around the crack tip and transmitted through the specimen. 
The object wavefront undergoes a series of diffractions as 
it propagates through line gratings G~ and G2. The pitch of 
the line gratings, p, is 0.025 mm and the separation dis- 
tance between gratings, A, is 39 mm. The resulting dif- 
fracted wavefronts are brought to focus by the filtering 
lens. A series of discrete diffraction spots are visible on the 
filtering plane. A filtering aperture, placed at the back focal 
plane of the lens, filters either the +1 or -1 diffraction 
orders. The resulting interference patterns are photo- 
graphed at the image plane. Note that the imaging system, 
made of the filtering lens and the camera back, is focussed 
on the object plane. Typical fringe patterns around the 
crack tip for three (a/l) ratios when the grating lines are 
perpendicular to the xj axis are shown in Figs. 3(a)-(c). In 
regions around the crack tip, where plane stress is a good 
approximation, these fringes represent contours of 

3 ((~1 l "+'~22) 
cB , where G~I and ~22 are the thickness aver- 

ages of the normal stress components. The sensitivity of 

-4 �9 measurement is 6.4 x 10 radlans per fringe. It should be 
noted in these patterns that the fringe lobes are asymmetric 
about the crack, unlike in pure mode-I cases, 17 and thus 
qualitatively suggest a mixed-mode crack-tip deformation. 
Moreover, the fringe lobes rotate as (a/l) is varied, indicat- 
ing changing mode mixity. 

Crack-tip Fields 

The method of transmission CGS provides gradients of 
(~hu + 6=) with respect to the xl or x2 coordinate. The 
measurements performed in this work are restricted to the 
xl gradients of ( ~  + ~22) only. Following Williams, 16 for 
a semi-infinite mixed-mode crack in an infinite elastic 
sheet, 

(b) 

(c) 

5 mm 

Fig. 3--Transmission CGS fringes 
representing contours of 
O~(G114"~22) . 

for Type-A specimens: 
cqxl 

(a) (a/l) = 1.39, (b) (a/l) = 1.91, 
and (c) (a/l) = 2.41 
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Here, the coefficients AN and BN are the undetermined 
constants of the series. Now, combining the above with eq 
(3) we have 

[ N N ] 
AN cos( ~ - 2 )~ + O N sin( ~ - 2)~ 

nip 
,5 

where c is the elasto-optic constant (the experimental 
determination of c for the model material is described in 
Appendix A) and m (= 0, +1, +2,...) represent fringe orders. 
Here, A~ and B~ are proportional to stress-intensity factors, 
K1 and KH respectively, and A2,...,AN, Bz,...,BN are the con- 
stant coefficients of higher order terms. Also, note that the 
term corresponding to N = 2, known as the 'T-term' in the 
fracture-mechanics community, is identically zero and 
does not contribute to the formation of CGS fringes. 

Now, a K-dominant field can be defined as the one in 
which the contribution from the higher order terms is 
negligible when compared to the first term (N = 1). Thus, 
for K dominance, eq (5) reduces to 

cBr-3/2 [ - K! cos(3~)/2) + KH sin(3~)/2)] - nip 
24242424  A 

specimens. Three-dimensional effects, generally prevent 
the data from within (r/B) = 0.5 from being analyzable 
using two-dimensional descriptions. For mode-I cracks, 
however, both optical data and finite-element results J7 

(4) have revealed that there are sectors or regions in the 
crack-tip vicinity where three-dimensional effects are 
minimal and the two-dimensional singular term is domi- 
nant. The data in these regions, although well within the 
(r/B)=0.5 limit, can be well described by the K-dominant 
field and thus suggest the validity mode-I fracture is linked 
to critical/s Similar information for mixed-mode cracks 
is not available at the moment. However, it is quite pre- 
dictable that such regions also exist in the mixed-mode 
crack-tip vicinity and the failure process is dependent on 
the critical values of K~ and K,. 

The lack of sizeable K-dominant regions beyond (r/B) = 
0.5 in Fig. 4(a), could be attributed to the influence of 

(5) higher order terms on the crack-tip fields. Nonsingular 
contributions generally influence the K-dominant field at 
these distances. Moreover, the proximity of the boundaries 
in finite-size specimens contribute to this to a greater 
extent. Thus, by using higher order terms in additional to 
the K-dominant terms in the analysis, it is possible to 
delineate the far-field effects from the dominant singular 
terms. The values of stress-intensity factors thus obtained, 
if in agreement with boundary measurements, are accept- 
able as reliable fracture parameters. Also, measuring/(/ 
and Kzz from the data obtained from a non-K-dominant 
region is again based on the assumption that stress-inten- 
sity factors can satisfactorily describe the fracture process 
close to the crack tip. 

To extract, stress-intensity factors from the fringe data 
in regions beyond (r/B)=0.5, a multiparameter least- 
squares data analysis is used. Denoting the right-hand 

(6) sides of eq (5) by Y and F, respectively, a function ~(Al, 
A2 .... AN, B1, B2,...BN; r, r is defined as 

Measurement of Kt and Ktl from Fringe 
Patterns 

It is evident from eq (6) that, for CGS patterns, one of 
the necessary conditions for K dominance to prevail in the 
crack-tip vicinity is that (nlr 3/2) remain constant for differ- 
ent ~ when plotted against (r/B). These constant values 
could be different for different ~. This condition alone, 
however, is insufficient to conclude K dominance. It is also 
necessary that the constants so obtained along different ~, 
when solved simultaneously, produce K~, and Kll which 
agree with the corresponding ones from boundary meas- 
urements. To test the above, fringe location (r) and fringe 
order (nl) data are measured all around the crack tip (-150 
deg < (~ < 150 deg) where fringes unambiguously intersect 
with radial lines drawn from the crack tip along different 
~). A typical plot of (nlr 3/2) versus (r/B) for different ~) is 
shown in Fig. 4(a) for the case of (a/l)= 1.91. Clearly, mr m 
is not a constant over any sizeable radial distance near the 
crack tip suggesting a general lack of K dominance. 

The absence of K dominance in the region within (r/B) 
= 0.5 observed in Fig. 4(a) can be attributed to three-di- 
mensional deformations in the immediate vicinity of the 
crack tip (Rosakis and Ravi-Chandar 19) in finite-thickness 
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Fig. 4--(a)  Variation of (nlr  3/2) with normalized ra- 
dial distance 
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where M is the total number of data points used in the 
analysis. In the curve-fitting procedure, �9 is minimized 

with respect to A~,...AN, B~,...B~. The values of ~/2A1 and 

N ~ B ~  n corresponding to the least-squares data fit are 

experimentally determined stress-intensity factors and are 
denoted by /~1Xpand/~1~ p. 

Each fringe pattern is first analyzed under the assump- 
tion of K-dominance IN = 1 in eq (6)]. A typical result 
shown in Fig. 4(b) for a (a/l) = 1.91. The disagreement 
between the experimental data and the least-squares fit is 
clearly evident and it suggests a need for including higher 
order terms in the least-squares analysis. However, the 
exact number of terms required to achieve a least-squares 
fit which conforms well with the optical data is unknown 
a priori. This problem is solved by inclusion of higher 
order terms in the least-squares data analysis to improve 
the agreement between the fit and experimental data. How- 
ever, the inclusion of higher order terms beyond a certain 
number tends to produce larger disagreement between the 
fit and the data. This may be attributed to the inherent 
'noise' in the digitized experimental data due to errors 
associated with locating fringe centers. However, there 
exists an optimum number of terms in the expansion which 
will provide the 'best' fit to the digitized data. Any number 
of terms different from this optimum N would produce 
larger deviations between the fit and the data. Standard 
deviation (S) is used as a measure for estimating the 
optimum number of terms required to obtain the 'best' fit. 
This is determined by finding the deviation of each data 
point from the corresponding point on the fit along discrete 
radial directions as follows 

S= (M_ I) ~ ~r - r  ), 
(8) 

The value of N is then increased in steps and S is calculated 
for each value of N. Figure 4(c) shows the 'best' fit for (a/1) 
= 1.91 wherein the agreement between the measured data 
and the fit is reasonably good. The broken circle represents 
the region corresponding to (r/B) = 0.5. The values of 
stress-intensity factors KI, K,, standard deviation S and 
higher order coefficients for (aft)= 1.91 are tabulated for 
different values of N in Table 1. From the table, it is evident 
that as N is increased, the variation of stress-intensity 

( b )  . " ' . ( c )  
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Fig 4- - (b)  least-square kit for K-dominant  terms (N = 
1 ), (e) least-square fit for higher order terms ('best fit'; N 
= 5), for (a/ l )  = 1.91 

factors is initially noticeable and each attains a stable value 
as the optimal N is approached. Thus, the values of stress- 
intensity factors from the 'best' fit also correspond to 
equilibrium values of the constant coefficients of r. -3/2 

Calculation of ~h, ~ ,  G from Beam Analysis 

In the following, the expressions for theoretical energy- 
release rate (G), and hence stress-intensity factors, K~ h and 
K~, are derived. Under the action of the load P (Fig. 2), the 
strain energy, Us, stored in the beam due to bending is 

f [M,(x)] . d [M1(x)] 2 -  fL [M,(x)+ M,(x)]2dx 
Vs= 2--T/ 1 ax+ j0 o ~ 2EIo 

(9) 

where, M,(x) and M1(x) are the respective moments in the 
upper and lower arms of the beam at any location x ;  

11 =~---~ Bh3,12=~---~ B(H'-h)3 and I0 = 1  BH3 are the mo - 

ments of inertia of the cross-sections of the upper arm, the 
lower arm and the uncracked portion respectively; and E 
is the Y o u n g ' s  modulus  of the mater ia l .  Let  r- 
R a I = P  ( l - L )  ] and RB denote the support reactions. 

UsmgL Castigliano's--3 principle, it can be shown 16 that the 
reactive force P~ between the two arms is 

3 

Then, the expression for strain energy becomes 

a 
Us --- ~(Plx)2 dx + f [(RA -- PI)2EI2X - P(x -/)]2 dx 

0 0 
L 

+ f [Pxx + (RA - Pl) x - P(x - I)] 2 dx 
a 2Elo (10) 

where the discontinuity function (') is defined as (x -/) = 
(x - l) forx > I and, = 0 otherwise. Thus energy-release rate 
(G) for the cracked geometry can be expressed as 

l dUs 1FM  
G=B d a -  2BLE~I +E-~2" E~o J 

(11) 

where B is the thickness of the specimen and 

Pla = M 1  

(RA -Px) a - P  (a - l) =M2 

are the crack-tip moments in the upper and lower arms of 
the beam. Now, upon defining I = BH3/96 and the height 
ratio, ~ = h/H, the expression for energy-release rate in the 
homogeneous specimen becomes 
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TABLE I~VARIATION OF KI, KII, HIGHER ORDER TERMS, AND SWlTH NFOR (a//) = 1.91 

N S KI KH 

1 0.0279 1.03 -0.89 

3 0.0243 0.98 -0.79 

4 0.0245 0.91 -0.79 

5 0.0240 0.85 -0.79 

6 0.0247 0.85 -0.79 

(A3, B3), (A4), (A5, B~)... 

(-13.4, 9.1) 

(-30.5, 10.4), (170.2) 

(-29.8, 7.7), (220.8), (-861.2,-486.0) 

(-45.8, 1.6), (676.7), (-6764.0,-2371.7), (33459.0, 6613.0) 

Units of Kt and Ktt are MPa -,/-m-. Units of: (')3 iS MPa/'/m-; (')4 iS MPa/m, etc. N = 5 corresponds to the 'best' least- 
squares fit. 

a =  ] [M, (M, +M21  1 168--~ k ~3 -P (1 - -  ~)~ (121 

In order to calculate ~h and ~ from G, a mode-parti- 
tioning method outlined by Williams 6 is used. It should be 
pointed out, however, that the method is only applicable 
to the special case of ~ = 0.5. Through optical measure- 
ments and finite-element computations it is shown in 
'Mode Partitioning: Limitation' below that the generaliza- 
tion of the method for all ~, as presented in Ref. 6, is 
incorrect. 

The mode-partitioning method is basically a moment- 
decomposition technique in which the system of moments 
M~ and 11,/2 at the crack tip can be written in terms of Mr 
and M,, where Mt and MH, respectively, represent the 
moments responsible for pure mode-I and pure mode-II 
deformations at the crack tip. This moment decomposition 
is based on the assumption that the radii of curvature of the 
upper and lower beams should be equal in magnitude when 
the crack propagates under pure mode-I or pure mode-If. 
For pure mode-I deformation, the curvatures of the upper 
and lower beams have opposite signs, while they are 
identical for pure mode-II deformation as shown schemati- 
cally in Fig. 5. Thus it follows that for Type-A specimens 
(~ = 0.5), M~ = M1 + Mlt and M2 =/1411 - M~. After substituting 
forM~ and M2 in eq (12), and grouping the terms involving 
M~, and M,, energy-release rate can be expressed as 

G = ~ - ~  + 114121 (13) 

Thus, energy-release rate can be expressed unambiguously 
in terms of the energy-release rates associated with sym- 

~ = ~- ~0.5 

Fig. 5---Mode partitioning by moment decomposition 

metric deformations [G~(M~)] and anti-symmetric defor- 
mations [G,(M,)] as follows. 

G I -  m 

2 2 

E (]4) 

2 

a f t  = E 

9P212 ~II 2]2 

( ]5 )  

From the above equations, K~ h and K~ can be determined. 

R e s u l t s  

The results from the experiments and the beam theory 
for different (a/l) ratios are summarized in Figs. 6 and 7 
and Table 2. Figure 6 shows the variations of normalized 
theoretical and experimental values of Kt and K,  with 
respect to (a/l). The stress-intensity factors are normalized 
by ~ + - ~ , .  As noted earlier, the mode-mixity varies with 
(a/l); while Kt increases with (all) and Kjt decreases. The 
solid curves in Fig. 6 represent the theoretical prediction, 
while the triangles and boxes represent the experimental 
measurements. The experimental results shown corre- 
spond to the 'best' least-squares fit. The measurements are 
in good agreement with the beam model. Figure 7 shows 

1.00 . 

0.80 l - 

E l  

0.60 

0,40 
u -ATOp 

- -  theore~ic~J 

0 
0"2/.30 1.50 1.70 1.90 2.10 2.30 2.50 

(,,ll) 

Fig. 6---Variation of normalized mode-I and 
mode-II stress-intensity factors with normal- 
ized crack length (a//) 
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TABLE 2--SUMMARY OF MIXED-MODE CRACK-TIP MEASUREMENTS IN TYPE-A SPECIMENS 
i 

a/I P ~h ~h K~t xv K~tt xp N KpXp(b) KtpXp(b) .vth .~/exp .~lexp(b) 

1.39 786 0.48 -1.02 0.66 -1.30 4 0.60 -1.14 64.8 63.1 62.2 

1.65 723 0.64 -0.89 0.84 -1.01 5 0.74 -0.87 54.3 50.3 49.6 

1.91 723 0.72 -0.74 1.03 -0.89 5 0.85 -0.79 45.8 40.8 42.9 

2.15 723 0.78 -0.60 1.02 -0.74 5 0.83 -0.64 37.6 36.0 37.6 

2.41 736 0.84 -0.48 0.97 -0.67 5 0.86 -0.49 29.7 34.6 29.7 

2.51 1364 1.18 -0.59 1.16 -0.56 5 1.02 -0.47 26.6 25.8 24.7 
(,)exp and (,)eW(b) correspond to the K-dominant field and the asymptotic field cases, respectively, of the experimental 
results. SIF values are in MPaqm-, ~ values are in degrees, and P is in Newtons. N corresponds to the optimum value 
that produces the best least-squares fit. 

a plot of the mode mixity parameter, g ( = tan -~ KHIKD 
versus (all). The solid line represents theoretical prediction 
and the circles are the experimental measurements. A 
fairly wide range of mode mixities, ~ = 20 deg - 65 deg, 
obtained suggest the appropriateness of the specimen for 
mixed-mode fracture studies. Table 2 summarizes all the 
results for the entire range of (a/l) investigated. The load 
levels to which the stress-intensity factors correspond are 
also listed. Two sets of results, namely the K-dominant 
case (when only the first term in the expansion field is 
used) and the asymptotic field case (when the optimum 
number of higher order terms are used) are presented in the 
table. The corresponding mode-mixity parameters are also 
listed. Clearly, inclusion of higher order terms improve the 
agreement between the experimental and theoretical val- 
ues. On the other hand, there is no appreciable change in 
the values of the mode-mixity parameter for the K-domi- 
nant and the asymptotic field cases. Thus, it suggests that 
the use of K-dominant field itself may be sufficient in 
obtaining reasonably accurate estimates of the mode 
mixity parameter in this specimen geometry. Finally, the 
agreement between the experimental results and the corre- 
sponding theoretical values show the viability of CGS as 
an effective technique in performing direct mixed-mode 
crack-tip measurements. 

90.00 
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30.00 
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Fig. 7--Variation of mode mixity with normalized crack 
length 

Mode Partitioning: Limitation 

As mentioned above, the method of mode partitioning 
is restricted to the case of ~= h/H = 0.5, When ~ ~ 0.5, 
alternative analyses are necessary to separate symmetric 
and asymmetric components of the total energy-release 
rate. On the contrary, the method is suggested for all values 
of ~ in Ref. 6. This, however, is found incorrect during the 
course of the present investigation.* 

In Ref. 6, an alternative transversely cracked beam 
specimen (Type-B) [see Fig.(8)] with varying ~ and con- 
stant crack length a is proposed for producing a wide range 
of mode mixities. (It should be noted here that this speci- 
men was considered initially by the authors for studying 
mixed-mode crack-tip fields and failed to produce a wide 
range of mode-mixities.) For this specimen, using argu- 
ments similar to the ones described in 'Calculation of K~ h, 
K~, G from Beam Analysis,' above, the mode mixity ~ is 
said to vary according to the relationship 

(16) 

* Recently, Williams and his coworkers (Charalambides, et al., Int. J. 
Fract., 54,1992) have addressed this by introducing the notion of global 
and local stress-intensity factors. 
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Fig. 8--Mixed-mode fracture specimen (Type-B) 
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in Ref. 6. Equation (16) is derived by partitioning the 
moments M~ and M2 as MI = Mr + MH and M2 = q ( M ,  - Mr).  

Here q = [(1 - ~)/~]3 is a scalar obtained by satisfying the 
equal curvature condition for the upper and the lower arms 
of the cracked beam. If eq (16) were correct, pure mode-II 
conditions exist when ~ ~ 0 and pure mode-I conditions 
when ~ --+ 1. Optical measurements near the crack tip for 
three different cases of ~ = 0.25, 0.50 and 0.75, however, 
indicate that the above expression of mode mixity and 
hence mode-partitioning method is invalid for values of 
~0.5. 

Cracked-beam specimens of the above said ~ are made 
from a PMMA sheet of 9-mm thickness. Other dimensions 
of the specimen are crack length a = 90 ram, span of the 
beam L = 330 mm and height H = 75 ram. The beams are 
loaded as shown in Fig. 8 and the corresponding transmis- 
sion CGS fringes are shown in Fig. 9. As it can be seen, 
the fringe rotation, a qualitative measure of changing mode 
mixity, is approximately the same for all three values of ~. 
To measure crack-tip parameters/~/xp and K~I] p, the fringe 
patterns are analyzed using the procedure described in 

(a) 

'Measurement of Ks and Kit from Fringe Patterns.' Also, 
two-dimensional finite-element computations corre- 
sponding to the different ~ are performed using ALGOR 
FEA software. The path independent J integral 2~ near the 
crack tip is evaluated for each case. An example of the 
near-tip finite-element mesh and the corresponding path 
of integration is shown in Fig. 10. 

For quasi-static problems, for a crack extension in the x~ 
direction, the J integral is given by 

~ = 1 , 2 ,  i = l , 2  (17) 

where F is an arbitrary closed path surrounding the crack 
tip, We is the strain-energy density, ui denotes the in-plane 
displacement components, and ~ represents the traction 
components (cyJj, lj are the direction cosines). By express- 
ing the crack-tip stress, strain and displacement fields as 
sums of symmetric and antisymmetric components, Kishi- 
moto, et  al. 2~ have shown that for a mixed-mode (mode-I 
+ mode-I1) crack tip, Jr, and Jsl, symmetric and antisym- 
metric components of Jl respectively, may be calculated. 
They are further related to the local crack-tip stress-inten- 
sity factors as follows. 

~:+ 1 K,2 J~ = - - ~  i 
(18) 

(b) 

~:+1 
J,t= /~, 

8B (19) 

where n = (3 - v)/(1 + v) for plane stress, B is the shear 
modulus and  J~ = Jr + J , .  From the above equations, the 
numerical values of stress-intensity factors, K FEA and 
K71/EA, are found. 

(C) | 

5 mri l  

Fig. 9--Transmission CGS 
fringes representing contours 

of o-)((Y114-O"22) for Type-B speci- 
e)x1 

men with (a) ~ = 0.25, (b) ~ = 
0.5, (c) ~, = 0.75 

Fig. 10--Finite-element mesh near the 
crack tip and integration path 
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TABLE 3--LIMITATION OF MODE-PARTITIONING METHOD DEMONSTRATED USING TYPE-B SPECIMEN 

P t~l ~p(b) K~H xp{b) KI FEA K~IIEA K~l K~ll 

0.25 267 0.88 -0.84 0.86 -1.02 0.05 -0.19 

0.50 983 1.10 -0.98 1.00 -0.91 1.20 -1.04 

0.75 1826 0.88 -0.97 0.73 -0.83 8.77 -1.27 

KI and KII are in MPa(m). 1/2 P is in Newtons. 

In Table 3 experimental and numerical values of stress- 
intensity factors along with the values based on eq (16) for 
the three cases of ~ are compared. The experimental and 
numerical results for ~ = 0.25 and { = 0.75, while in 
reasonably good agreement with each other, contrast heav- 
ily with the ones based on eq (16). All three values are in 
fairly good agreement when { = 0.5. While preparing this 
report, the authors have come across a review article on 
mixed-mode fracture of layered materials by Hutchinson 
and Suo 14 wherein this error in Ref. 6 is also pointed out. 

Conclusions 

The appropriateness of a transversely cracked beam 
specimen (~ = 0.5) for mixed-mode fracture studies is 
examined through direct optical measurements. Optical 
method of transmission CGS has been used for mapping 
mixed-mode crack-tip deformations and measuring crack- 
tip parameters. Because of the finite size of the specimens, 
nonsingular higher order terms are seen to affect the optical 
data measured in regions beyond the r /B = 0.5 limit. The 
higher order effects have been successfully delineated 
from the singular contributions using mixed-mode asymp- 
totic expansion field. A method of extracting Kt and Kit 

using an over-deterministic least-squares analysis is pre- 
sented. The coefficients of the singular term provide the 
experimental stress-intensity factors. A relatively wide 
range of mode mixities have been produced by simply 
varying the parameter (a/l) in this specimen. Theoretical 
counterparts are obtained from a flexural analysis by cal- 
culating the total energy-release rate followed by mode 
partitioning. The experimental measurements are found to 
be in good agreement with the predictions based on beam 
theory. 

Limitations of the mode-partitioning method suggested 
in the literature are also pointed out in this investigation. 
It is found that the mode-partitioning method based on 
moment decomposition is limited to the case of { = 0.5 and 
alternative analyses are essential when { ~ 0.5. This is an 
outcome of an optical investigation on an alternative three- 
point-bend fracture specimen which is said to produce a 
wide range of mode mixities for different ~ (0 <_ { < 1). 
Finite-element calculations complement experimental 
measurements in pointing out this limitation. 
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Appendix A 
A calibration experiment to determine the elasto-optic 

constant c for PMMA is described here. The experiment 
is carried out using a sheet of 9-mm thick PMMA. The 
loading device, the rate of loading, the optical setup and 
the load transducer are all identical to the ones used in 
mixed-mode fracture study. The sheet is subjected to a line 
load acting on an edge as shown in Fig. 11 (a). Transmis- 
sion CGS is used to map deformations due to the applied 
load. The interference patterns represent contours of con- 

(,) x," / f  
i" 

J 

(b) 

Fig. 11--(a) Line load acting on a half 

space, (b) contours of 3(~11+cr22) o-)xl fringes 

for P = 1500 N 

TABLE 4--MATERIAL CALIBRATION 

n~ r /B c x 10 ~~ (m2/N) __ 

0.5 1.62 -0.80 

1.0 1.20 -0.86 

1.5 0.97 -0.87 

2.0 0.86 -0.88 

2.5 0.77 -0.88 

3.0 0.70 -0.87 

3.5 0.66 -0.89 

4.0 0.62 -0.90 

a(cru-~zz) 
stant axl . The fringe pattern, corresponding to a 

load level o f P  = 1500 N, is shown in Fig. I l(b). 
For a half space subjected an edge load, the Xl gradient 

of ((~1 + (h2) is given by 22 

~((YI1 + ~22) _ 2P cos2~ 

0x~ ~r -r---  (20) 

where r and (~ are the polar coordinates of a generic point 
with the point of application of the load as the origin. Using 
the governing equation for transmission CGS [eq (3)], we 
can write 

cB 2P cos2~) _ nip 

/~r 2 - A (21) 

where nl(= 0, +1, _+2,...) represent fringe orders, and c is 
the elasto-optic constant. Along g) = 0, the fringe orders are 
negative and the above equation simplifies to 

C = 
n ~prcr 2 

2PBA (22) 

The fringe pattern, shown in Fig. 11 (b), is digitized along 
{~ = 0 to obtain r corresponding to different fringe orders 
n~. The value of c is calculated for each data set using eq 
(22). A tabulation of c corresponding to different values of 
(r/B) and nl is shown in Table 4. An average value of c = 
-0.87 • 10 ~~ m2/N is used as the elasto-optic constant for 
the model material. It should also be pointed out that a 
least-squares analysis using the left-hand side of eq (21) 
as the fitting function is also used to calculate c. The value 
of c thus obtained is within three percent of the average 
value obtained along ~ = 0 deg. 
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