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A full-field digital gradient sensing method is proposed for measuring small angular deflections of light
rays due to local stresses in transparent planar solids. The working principle of the method is explained,
and the governing equations are derived. The analysis shows that angular deflections of light rays can be
linked to nonuniform changes in thickness and refractive index of the material. In mechanically loaded
planar solids, the angular deflections can be further related to spatial gradients of first invariant of stres-
ses under plane stress conditions. The proposed method is first demonstrated by capturing the angular
deflection fields in two orthogonal directions for a thin plano-convex lens. The measured contours of con-
stant angular deflection of light rays are in good agreement with the expected ones for a spherical wave-
front. The method is also successfully implemented to study a stress concentration problem involving a
line load acting on an edge of a large planar sheet. Again, the stress gradients, measured simultaneously
along and perpendicular to the loading directions, are in good agreement with the analytical predictions.
The measured stress gradients have also been used to estimate stresses in the load point vicinity where

plane stress results hold. © 2012 Optical Society of America

OCIS codes:  100.2000, 120.3940, 280.4788.

1. Introduction

Full-field measurement of deformations, strains, and
stresses is necessary for understanding failure me-
chanisms in solids and for quantifying the associated
engineering parameters. Over the years, several op-
tical methods—photoelasticity, moiré interferometry,
laser speckle photography/interferometry, and coher-
ent gradient sensing, to name a few—have served as
measurement tools of experimental solid mechanics
[1,2]. These methods generally demand special opti-
cal characteristics of the material being studied,
sample surface preparation (birefringence, specular
reflectivity, and grating deposition) and/or coherent
optics to be implemented successfully. In recent
years, however, aided by tremendous advances
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in digital photography, image processing techniques,
and ubiquitous computational power, the digital im-
age correlation (DIC) method has emerged as a
popular optical metrology tool [3]. It requires little
or no surface preparation, uses ordinary white light
illumination, and can be fashioned to measure two-
dimensional (2D) (planar) or three-dimensional (3D)
displacement components. Further, DIC methods are
capable of accurate measurement of displacements
limited only by the experimental parameters such
as pixel resolution of the camera, optical magnifica-
tion, gray scale depth (texture and decoration) and
image correlation algorithm employed. The mea-
sured strains from DIC, however, are of relatively
lower accuracy due to a variety of reasons, including
first order Taylor’s series representation of displace-
ment gradients or numerical differentiation of
noisy displacement data. This could be an important
issue near stress concentrations where steep stress



gradients occur. In this context, it is attractive to
have a method capable of directly measuring stress
gradients in the whole field while preserving the sim-
plicity and versatility offered by DIC.

Since mechanical designs for strength and safety
are generally based on stresses, stress estimation
using an optical method adds to its usefulness. A
stress gradient measurement method offers advan-
tage of obtaining stress fields via numerical integra-
tion (generally, numerical integration of a noisy data
set is more robust when compared to numerical dif-
ferentiation of the same) of measured data if bound-
ary conditions are known. In many engineering
problems, particularly those dealing with stress con-
centrations or singularities, far-field conditions typi-
cally involve vanishing/negligible stress gradients.
Further, at locations far away from the stress riser,
stresses can be evaluated relatively accurately by
either using the boundary conditions of the problem
or supplementing measurements with a numerical
scheme (e.g., finite element analysis). This further
motivates the current research to introduce a full-
field optical method to first measure stress gradients
and subsequently estimate stresses from those
measurements.

In the current work, a stress gradient measure-
ment method that is based on elasto-optic effect
and uses a DIC approach is developed for mechanical
characterization of optically transparent planar so-
lids. It should be noted that the optical transparency
requirement, although possibly appearing restric-
tive, is an essential characteristic of solids used in
many engineering applications including automotive
windshields, electronic displays, aircraft canopies,
hurricane resistant windows, protective helmet vi-
sors, and transparent armor materials [4,5]. Over the
years, there has also been a great deal of interest in
developing novel transparent composites for a vari-
ety of other engineering applications [6-9], which
could benefit from the proposed method.

A few previous works have taken advantage of op-
tical transparency to study stresses and stress gradi-
ents in materials. A lateral shearing interferometer
called coherent gradient sensing (CGS) has been de-
veloped to study static and dynamic fracture me-
chanics problems [10-13]. In these works, optical
interference corresponding to stress gradients near
stationary and growing cracks has been evaluated
[14-16] and crack tip parameters extracted. A
Mach-Zehnder interferometer to quantify stresses
near an interfacial crack in optically transparent
poly-methyl methacrylate (PMMA) has been re-
ported [17]. A thickness change measurement meth-
od using electronic speckle pattern interferometry
and based on a Michelson interferometer has been
developed [18] for transparent plates. However, the
method does not consider refractive index changes
due to stresses.

In the following, a digital gradient sensing (DGS)
method is proposed for optically transparent solids.
The working principle of the method for detecting

local angular deflections of light rays in transparent
solids is explained and the governing equations are
derived. Then, the method is calibrated by measur-
ing angular deflections of light rays produced by a
thin plano-convex lens. Subsequently, DGS is used
to evaluate stress gradients near a line load acting
along the straight edge of a large planar sheet that
gives rise to stress concentration at the loading point.
The measurements are directly compared with the
analytical predictions for this problem. The measure-
ments are also used to estimate stresses in the vici-
nity of the stress concentration. Finally, the results
are summarized and conclusions are drawn.

2. Experimental Setup

The experimental setup for the DGS method is
shown in Fig. 1. It consists of a uniformly illuminated
speckle target, a planar transparent test object, and
a digital camera. The target is a planar surface
coated with a random speckle pattern produced by
spraying it with fine mists of black and white paint.
The transparent specimen to be tested is placed in
front of and parallel to the target plane at a known
distance A, where A = the distance between the mid-
plane of the specimen and the target plane.

A camera fitted with a relatively long focal length
lens is placed behind the specimen at a large distance
L(> A) and focused on the target plane through the
specimen in the region of interest. The target is uni-
formly illuminated using two white light sources.
The illumination sources are situated sufficiently far
away from the specimen to minimize thermal cur-
rents that may distort the speckle images and/or
heat the specimen during the experiment. The digi-
tal camera settings and lens parameters are selected
such that the aperture is sufficiently small for
achieving a good focus of speckles on the target while
keeping the salient features of the specimen plane
(e.g., specimen edges, and load point) discernible in
the recorded image for easy postprocessing of images.

Fig. 1. (Color online) Experimental setup for the DGS method to
determine planar stress gradients in phase objects.
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3. Working Principle

In Fig. 1, let the in-plane coordinates of the specimen
and target planes be denoted (x,y) and (xq,y,), re-
spectively, and the optical axis of the setup coincides
with the z-axis. Let the speckles on the target plate
be photographed normally through the transparent
specimen of nominal thickness B and refractive in-
dex n in its reference (no-load) state. That is, a gen-
eric point P on the target plane, corresponding to
point O on the specimen (object) plane, is recorded
by the camera in the reference state. When subjected
to mechanical load (e.g., due to force F' acting on the
edge of the specimen in Fig. 1), both refractive index
and thickness changes occur throughout the speci-
men depending on the local state of stress. A combi-
nation of these changes causes light rays to deflect.
That is, the light ray OP in the reference/undeformed
state now corresponds to O after the specimen de-
forms. By quantifying the spatial vector PQ and
knowing the separation distance A between the mid-
plane of the specimen and target, the angular deflec-
tion ¢ of the light ray can be determined relative to
the optical axis.

Let 7, j, and £ denote unit vectors for the Cartesian
coordinates defined with point O as the origin. When
the specimen is undeformed, the unit vector % is
collinear with OP, bringing point P(x,,y,) to focus
when imaged by the camera via point O(x,y). Upon
deformation, the optical path is locally perturbed,
thereby bringing a neighboring point Q(xy = 6,,y¢ =
6,) to focus. Here 6, and §, denote components of
the vector PQ in the x- and y-directions. Let the unit
vector corresponding to the perturbed optical path
OQ be

d=ai+fj+rk, 1)
where a, #, and y are the direction cosines of Ei, and ¢,

and ¢, are angular deflections in the x-z and y-z
planes, respectively, as shown in Fig. 2.

Fig. 2.

(Color online) Working principle of DGS.
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If the initial thickness and refractive index of the
specimen are B and n, respectively, the optical path
change, &S, for symmetric deformation of the speci-
men about the mid-plane in the z-direction, is given
by the elasto-optical equation [12]

1/2
5S(x,y) = 2B(n - 1)/ ,,d(z/B)
0

12
+ ZB/ ond(z/B). (2)
0

The two terms in the above equation represent the
contribution of normal strain in the thickness direc-
tion, ¢,,, and the change in the refractive index, én,
to the overall optical path change, respectively. The
refractive index change caused by local normal stress
in the specimen is given by the well-known Maxwell—-
Neumann relation [19]

5n(x’y) = Dl(o-xx + Oyy + Jzz)v 3)
where D; is the stress-optic constant of an optically
isotropic solid and 6,,, 0,,, and o,, are normal stres-
ses in the x-, y-, and z-directions, respectively. Using
generalized Hooke’s law for an isotropic, linear elas-
tic solid, the normal strain component ¢,, can be re-
lated to normal stresses (e, = I%[azz - 0(6y + 0y))).
That is, Eq. (2) can be written as

5S=2B (Dl—%(n—l))

1/2 O-ZZ
i [ 0 {<oxx+oyy>[1+D2 (U(% +Uyy))]}de/B), )

where Dy = [vD; +v(n - 1)/E]/[D; -v(n-1)/E], E is
the Young’s modulus, and v is the Poisson’s ratio of
the transparent solid In the above equation, the sec-
ond term D, (U s ) represents the degree of plane
strain that can“be neglected for applications where
plane stress assumptions (in-plane dimensions >
thickness of the specimen and o,, ~ 0) are reason-
able. Thus, for plane stress conditions, Eq. (4)
reduces to

68(x,y) = C;B(0yy + 0yy). (5)

where C, = D; — (v/E)(n - 1) is the elasto-optic con-
stant of the specimen material. In Eq. (5), the normal
stress components o,, and ¢,, denote integrated va-
lues over the specimen thickness.

The angular deflection of a generic light ray is
caused by the change in the optical path due to elas-
to-optic effects. Hence, the propagation vector can be
related to the optical path change as [12,20]

~ 9(8S)+

. iy a((ss)}, .

o 3 +k (6)

for small spatial gradients. From Egs. (1), (5), and (6),
for small angular deflections, the direction cosines



a and f are proportional to in-plane stress gradi-
ents as,

az 005 _ C(;BM and
0x 0x
_9(S) (0, + 0yy)
b=y =CB 5 @

A geometric analysis of the perturbed ray OQ
reveals the relationship between direction cosines
a and g and angular deflection components ¢, and
¢y, respectively. Referring to Fig. 2, the perturbed
ray subtends solid angles 6, and 6, with the x- and
y-axes. The angular deflections ¢, and ¢, as defined
earlier are also shown in Fig. 2. With reference to the

planes defined by 0QC, OQA, OPE and OPD,

1) o
cos@x:Ex, cosGyZﬁ,
5 5 €))
tan ¢, = Zx and tan ¢, = Zy
where R(= /A% + &2 + 62) is the distance between O

and @. From the above, expressions for the angular
deflection components can be obtained as

R &2 + 62
tang{)x:Kcos 0, =41+ xAzyCOS O,
9
R 82 + 62
tan d)y:Kcos 0, =1/1+ x:z Y cos 0,.

It can be noted from Eq. (9) that for small angular
deflections (or, §,, 6, < A), the expressions reduce
to ¢, ~ cos 0, = @ and ¢, = cos 6, = f. Thus, for the
case of small angular deflections of light rays,
Eq. (7) reduces to

b~ a= C(,Bia(axx + o) ,
o0x (10)
o 0(6yy + 0yy)
hy=p= CGBT,

which serve as the governing equations for the meth-
od and can be used to obtain stress gradients when
specimen parameters C, and B are known.

The above governing equations reveal that the an-
gular deflections ¢, and ¢,, and hence stress gradi-
ents in the x- and y-directions, can be obtained by
quantifying local displacements §,, 6, values first
and then dividing them by the separation distance
A. The displacements §,, 5, can be evaluated by car-
rying out a conventional 2D DIC between speckle
images recorded in the reference and deformed
states of the specimen. Hence the new method is

aptly named DGS. A subtle but important point to
note here is that displacements 6,, 5, are evaluated
on the target plane whose coordinates are (x,y), but
can be replaced with the specimen plane coordinates
(x,y) for A < L(see Fig. 1). Further justification of
this assumption is provided later on.

From Eq. (10) it can be noted that the sensitivity of
measurement of angular deflections ¢.and ¢, is de-
pendent on two parameters &, (or 6,) and A, which
provides added flexibility. The sensitivity of in-plane
displacement measurement (of §, or 4,) is typically
dictated by a number of parameters that affect 2D
digital image correlation methods, including speckle
characteristics/size, pixel size, sensor resolution, and
image processing algorithm employed. For the sake
of brevity, discussion of those issues is avoided here
and can be found elsewhere [3]. For the speckle
and camera parameters used in this study, in plane
displacement resolution is in the 3—4 ym range as
demonstrated in the works of Tippur and his co-
workers [21,22].

It is also interesting to note that Eq. (10) shows
that DGS method measures quantities identical to
the ones measured by the CGS method [10-12,23].
However, unlike CGS, DGS can be used to measure
two orthogonal stress gradients in transparent solids
simultaneously and does not use any coherent optics.
This capability can be exploited for determining
stresses (o,, + 0,,) from measured stress gradients,
as shown later in Section 6.

4. Calibration Experiment

To verify the DGS method, first the problem with a
well-defined angular deflection field of light rays pro-
duced by a plano-convex lens was studied. A target
plane with the speckle pattern was placed at a suffi-
ciently large distance (L =~ 1000 mm) from a record-
ing camera (Nikon D100 digital camera fitted with
a 28-300 mm lens using an extension tube and aper-
ture setting #11). A reference (undeformed) image of
the speckle pattern was recorded first. Then, a thin
plano-convex lens of a relatively long effective focal
length, f; = 1000 mm and clear aperture of 80 mm
diameter was introduced between the camera and
the speckle plane. The choice of a long focal length
thin lens allowed for relatively small angular deflec-
tions of light rays. The distance A from the effective
center of the lens to the speckle plane was 19.4 mm.
Care was exercised to align the center of the plano-
convex lens close to the optical axis of the camera. A
second image of the speckle pattern, this time
through the plano-convex lens, was recorded. The
size of the image recorded by the camera was ap-
proximately 60 mm x 40 mm rectangle in the central
region of the plano-convex lens. The recording of the
reference and perturbed speckle fields used a pixel
resolution of 1504 x 1000 pixels (1 pixel = 39.5 ym
on the target plane). The second speckle image can
be considered to be the “deformed” or “perturbed” im-
age whose angular deflection fields are given by
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a 2 2
¢y=—(x +y)=l an

where (5572~ ;/Zy ) describes the spherical wavefront due to
the plano-convex lens, and ¢, and ¢, are the angular
deflection fields w1th respect to the unperturbed
speckle image. As evident from the above equations,
the two orthogonal angular deflection fields are lin-
ear functions of the lens plane coordinates, x and y.
Hence, the contours of constant ¢, and ¢, should be
equally spaced with their principal directions in the
x- and y-directions, respectively.

To obtain the ¢, and ¢, fields, the in-plane displa-
cement fields (6, and §,) were first extracted from
images by performing 2D digital image correlation
between the reference and perturbed speckle record-
ings using a commercial DIC software, ARAMIS.
During the analysis, the images were segmented into
64 x 91 nonoverlapping facets or sub-images result-
ing in an array of 64 x 91 data points. For small
in-plane displacements (6, and 6, < A), angular de-

flection fields were obtained, such as ¢, = ‘S—X and

by = y . (The maximum values of 6, and §, were less
than 300 um.) The contour plots of the experimen-

tally obtained ¢,, ¢,, and the resultant angle ¢(=

\#2 + ¢2) fields are shown in Fig. 3. As predicted,

the contours of ¢, and ¢, are equidistant parallel
lines along the x- and y-directions, respectively,
and the contours of ¢ are equally spaced concentric
circles centered on the optical axis of the lens.

If the angular deflection fields are known, it is also
possible to quantify the focal length of the plano-
convex lens using Eq. (11) as, f; = £ = . For this ex-
periment, the measured focal lengths were 973 +
32 mm from the ¢, field and 988 + 42 mm from
the ¢, field. These are within 3% of the manufac-
turer-provided focal length of 1000 mm for the lens.

As noted in the previous section, in the DGS tech-
nique, the camera is focused on the target plane
through the phase object. Yet, the analysis uses the

coordinates of the specimen’s (phase object) mid-
plane situated at a distance of A away from the tar-
get interchangeably. This introduces a perspective
(or gap) effect. That is, a point O(x,y) on the specimen
corresponds to a point P(x,y,) on the target plane as
shown in the 2D schematic (see Fig. 4). This can be
taken into account by a mapping function between
the specimen and the target planes. With reference
to Fig. 4, tan 6 =} = 25, where y, and y, are coor-
dinates ¢ of the spec1men and target planes. This can
be used to account for the coordinates of the speci-
men plane as y, = (L +%x)Y¢- A similar mapping func-
tion for the horizontal coordinate is obvious and
implied. Using these relations, the contours of ¢,
and ¢, for the plano-convex lens were obtained and
are shown (broken lines) in Fig. 5 along with the con-
tours without any correction (solid lines). Evidently,
for the chosen experimental parameters, the differ-
ences are rather negligible in the entire field. The er-
rors close to the optical axis are minimum whereas
they increase as one moves away from the optical
axis.

5. Line Load on the Edge of a Planar Sheet

Next, a stress concentration problem of a line load
acting on the edge of a large planar sheet was studied
using the DGS method. A large (180 mm x 69.5 mm)
rectangular sheet of clear PMMA specimen (Young’s
modulus = 3300 MPa, Poisson’s ratio = 0.35, and
C, ~-1x 10719 m?/N) of thickness (B) 9.4 mm was
used in the experiment. The actual experimental set-
up is shown in Fig. 6. The specimen was placed on a
flat rigid base and subjected to line loading using a
cylindrical steel pin (7.7 mm diam.). A 5 kN capacity
Instron 4465 universal testing machine was used in
displacement controlled mode (cross-head speed
0.005 mm/ sec) to load the specimen. A target plate
painted with random black and white speckles was
placed at a distance A(= 30 mm) away from the spe-
cimen using an experimental setup similar to the one
shown in Fig. 1. Multiple heavy black dots of known
spacing between them were marked on the speckle
plane to relate the image dimensions to the actual
specimen/target dimensions. A Nikon D100 digital
SLR camera with a 28-300 mm focal length lens
(aperture setting #11) and an extension tube were

. RRERES

1 | 3 1
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Fig. 3.

(Color online) Contour plots of angular deflections (left to right) ¢,, ¢, and ¢ fields caused by a plano-convex spherical lens.

Contour interval = 2.5 x 10~3 rads. (The heavy dot in the angular deflection field is due to a reference mark on the speckle plate.)
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Fig. 4. Mapping coordinates of specimen and target planes.

used to record speckles through the specimen in
the load vicinity. The camera was situated at a
distance L of approximately 1040 mm from the
specimen.

At a small load (of a few Newtons), a reference im-
age of the target was recorded through the transpar-
ent specimen. As the load was increased gradually,
speckle images were recorded using time-lapse
photography (one frame every five seconds once) at
different load levels. One of the speckle images in
the load point vicinity corresponding to a 3520 N load
is shown in Fig. 7. A careful examination of the image
shows noticeable distortion/blurring of speckles near
the loading point, whereas they appear relatively
unaffected at far-away locations. The digitized
speckle images (1504 x 1000 pixels) recorded at dif-
ferent load levels were correlated with the one corre-
sponding to no-load/reference condition using a 2D
digital image correlation software, ARAMIS. As de-
scribed previously, an array of in-plane speckle
displacements on the target plane (and hence the
specimen plane) was evaluated and converted into
local angular deflections of light rays ¢, and ¢,. A
facet/sub-image size of 15x 15 pixels (1 pixel =

36.5 ym on the target plane) without any overlap
was used in the image correlation analysis for ex-
tracting displacement components. Figure 8 shows
the resulting contours of ¢, and ¢, for three repre-
sentative load levels in a square region around the
loading point. It is important to note that it is essen-
tial to account for rigid body motions and impose
proper boundary conditions of the problem to quanti-
fy the contour levels for further analysis. That is, in
the current problem, the boundary conditions, such
as asymmetric stress gradients (¢,) in the y direction
about the x axis, symmetric stress gradients (¢,) in
the x direction about the x axis, vanishing stress gra-
dients far away from the loading point, and stress-
free surfaces along the loading edge of the specimen
can all be utilized.

It is well known that the plane stress field near the
line load acting on an elastic half-space is given by
the Flamant solution as [24]

__%cos(e)__gi
~ B r aBr¥

(12)

3mm

A I

Fig. 5.

(Color online) Contour plots of angular deflections of corrected (broken lines) and uncorrected (solid lines) for (left) ¢,, (middle) ¢,,

and (right) ¢ fields caused by a long focal length plano-convex lens. Contour interval = 2.5 x 1073 rads.
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Fig. 6. (Color online) (top) Experimental setup used for studying
stress concentration caused by a line load acting on the edge of a
large PMMA sheet. (bottom) The close-up shows loading pin rest-
ing on the top edge of the transparent specimen and speckles on
the target.

where F is the applied load, B is the thickness of the
half-space and (r,0) and (x,y) are the polar and Car-
tesian coordinates, respectively, as shown in Fig. 7.
Note that the hoop stress oy and shear stress o,
vanish for the Flamant solution. Since (o, + 0,,) =

fm{__
~ \soodmm |

C———

180 mm
P
<
M

Fig. 7. Line load acting on a (left) half-space and (right) an actual
speckle image recorded. Note the blurred/distorted region adjacent
to the loading pin in the enlarged speckle image.
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Fig. 8. (Color online) Measured (left) ¢, and (right) ¢, con-
tours near the loading point for different load levels.
Contour interval = 1 x 10~3 rads. (The left vertical edge of each
image corresponds to the loading edge where F' acts at the origin.)

(6, + 0g9) in plane stress, the normal (nonzero) ra-
dial stress o,.becomes singular/unbounded as the
loading point (r — 0) is approached. Therefore, the
in-plane stress invariant in a half-space subjected
to line load equals the normal stress in the radial di-
rection. From Eqgs. (10) and (12),

_ a(o-xx + ny) _ 8(0',,.)
¢, =C,B a5 = C,B o and
_ a(o'xx + O'yy) _ a(')-rr)
¢y =C,B 783/ =C,B 3 . (13)

Using Egs. (12) and (13), the equations for the
¢, and ¢, fields can be expressed as

2F cos(26)

2F sin(20)
7B r?

¢x == CUB 77,'_B rz .

and ¢,=C,B (14)

For comparison, the experimental and analytical
angular deflection contours for the case of F =
2022 N are shown in Fig. 9. The dominant triaxial
stress region where plane stress assumptions are
violated are expected close to the loading point. In
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Fig. 9. (Color online) Comparison of experimental and analytical
(top) ¢, and (bottom) ¢, contours for F' = 2022 N.

cracked bodies where a stress singularity of r~1/2 pre-

vails, a zone of dominant stress triaxiality has been
shown to exist near the crack tip (0 <r/B < 1/2) [12].
Based on that observation and assuming a dominant
triaxial stress region of similar size to occur in the
current case as well, agreement between analytical
solutions and experiment measurements are not ex-
pected to be good at least up to r/B = 1/2, shown in
Fig. 9 as a semi-circle centered around the origin. In
the regions outside the zone of dominant triaxiality, a
good qualitative and quantitative agreement be-
tween experimental and analytical contours can
be seen.

The ¢, and ¢, data corresponding to a particular
load case were used to back calculate the load F from
Eq. (14). Figure 10 shows the plot of load as a func-
tion of /B along 8 = 0° and 0 = 45° calculated from
¢, and ¢, fields, respectively, for the case when
F = 2022 N. From the graph, it can be seen that,
after an initial nonconformity up to r/B~ 0.6 in
the dominant triaxiality region, the extracted load
(symbols) values agree with the applied load mea-
sured from the testing machine (solid curve), further
confirming the previous observations.

6. Estimation of Stresses From Stress Gradients

Since DGS is capable of measuring stress gradients
in two orthogonal directions simultaneously, one can

2500
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Fig. 10. (Color online) Plot of experimentally extracted load (sym-
bols) at various radial locations from the two angular deflection
fields ¢, and ¢, along r, = 0° and r, § = 45°, respectively. Devia-
tion between the Flamant solution and measurement close to the
loading point where plane stress approximations are violated can
be seen.

F=1077 N 2.74 mm F=l1077 N ' 2.74 mm

A&7

TF=1552 N zamm|
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“N\F=2022 N 7T

Fig. 11. (Color online) Measured resultant angular deflection of
light rays (left column) ¢and (right column) estimated radial stress
o, contours for various load levels. Contours are plotted every 1 x
1072 rads and 2 MPa, respectively. (The left vertical edge in each
image is the edge where the line load acts horizontally at the
origin.)
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estimate the stresses (o, + 0,,)(= 0,, in this case), in
the region of interest from measured gradients. This
can be done as follows:

Using Eq. (14), the resultant of ¢, and ¢, can be

obtained as
2F
—_ |42 2 _
¢ = ¢x—|—¢y—C,,B” oF (15)

Evidently, the expression for ¢ in Eq. (15) is indepen-
dent of 6, suggesting that contours of ¢ are circular
(semi-circular in this case) relative to the origin. This
can be verified by generating contours of ¢ from
measured¢, and ¢,, that is, for each facet/sub-image,
¢ value was computed in the load point vicinity. The
first column in Fig. 11 shows the measured contours
of ¢ for the three load levels considered in Fig. 8. The
resulting contours are indeed semi-circular (except
near the free edge of the specimen where edge effects
affect ¢, and ¢, computations) centered about the
loading point, confirming the prediction by the Fla-
mant solution. A direct comparison of measured ¢ va-
lues with the predicted ones from Flamant solution is
presented in Fig. 12 (top) for a representative case
showing a good agreement between the two.

Now, by inspecting the analytical expressions of ¢
[Eq. (15) and Eq. (12)], it becomes clear that stress

F=2022N

2.74 mm

Analytical

Experimental |

Contour levels are in
x1e-3 radian

2.74 mm |
—

Analytical

Experimental |

Contour levels are in
MPa

Fig. 12. (Color online) Comparison between experimental and
analytical (top) ¢ and (bottom) radial stress (c,.) contours for
F = 2022 N.
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0yr(= 0y +0,,) can be estimated under plane
stress conditions by simply multiplying ¢ values
with the corresponding (r cos f)values if ¢ data
are available from experimental measurements as
(O +0yy) =0 = % (r cos 6).The second column
in Fig. 11 shows the stress contours thus obtained
for all the three load levels considered in Fig. 8.
The contour plots of the experimentally estimated
and analytical stress fields for a representative case
of F = 2022 N are shown in Fig. 12. Again a good
agreement between estimated and predicted
contours of normal stress o, near the loading point
where plane stress conditions exist is seen demon-
strating the viability of the DGS method for stress
estimation purposes besides stress gradient mea-
surement in this case.

It should be emphasized here that direct numeri-
cal integration of measured stress gradients could
also be used to estimate o,,(= o, + 0,,) if far-field
boundary conditions are known.

7. Conclusions

An optical method, digital gradient sensing (DGS),
based on elasto-optic effect and digital image corre-
lation methodology is proposed for measuring stress
gradients in transparent planar objects. The method
employs a relatively simple experimental setup and
does not use coherent optics. The reliance of the
method on prevailing digital recording technology
and image processing algorithms used for digital im-
age correlation/registration methods offers addi-
tional advantages. The potential of the method to
inspect and evaluate phase objects (such as lenses)
or characterize the mechanical performance of trans-
parent structural materials (such as transparent ar-
mor) subjected to external loads is enormous.

Here, the working principle of DGS has been ex-
plained, and the necessary governing equations have
been derived. The analysis shows that the method is
capable of measuring small angular deflections of
light rays produced by nonuniform changes in the
thickness and/or refractive index of the material.
In mechanically loaded planar objects, the angular
deflections are in turn related to the gradients of

9(0,+0yy)
ox

the first invariant of stresses, namely or

w under plane stress conditions. The possibility
)y

of measuring such stress gradients in two orthogonal
directions, simultaneously, makes it possible to esti-
mate stresses (o, + o, )when aided by analytical
expressions.

The DGS method has been first demonstrated
using angular deflection fields produced by a pla-
no-convex spherical lens. The measured contours of
constant angular deflection of light rays and the de-
duced focal length are in good agreement with the
expected value. The method has also been success-
fully implemented to study a stress concentration
problem involving a line load acting on the edge of
a large planar sheet. Again, the measured stress
gradients parallel and perpendicular to the loading



direction have been measured and are in good agree-
ment with the predictions based on an idealized
Flamant solution in regions where plane stress con-
ditions hold. Aided by the functional form of the
Flamant solution, the two orthogonal stress gradi-
ents have also been combined to estimate the radial
stresses in the load point vicinity.

Partial support for this work through grant
WI11NF-08-1-0285 from the U.S. Army Research
Office is gratefully acknowledged.

References

1. W. N. Sharpe, ed., Handbook of Experimental Solid Mechanics
(Springer, 2008).

2. N. Shukla and J. W. Dally, Experimental Solid Mechanics
(College House, 2010).

3. M. A. Sutton, U. Orteu, and H. Schreier, Image Correlation for
Shape, Motion and Deformation Measurements (Springer,
2009).

4. E. Strassburger, “Ballistic testing of transparent armour
ceramics,” J. Eur. Ceram. Soc. 29, 267-273 (2009).

5. P. Patel, G. A. Gilde, P. G. Dehmer, and J. W. McCauley, “T'rans-
parent armor,” AMPTIAC Newsletter 4(3), 1-9 (2000).

6. S. Iwamoto, A. N. Nakagaito, H. Yano, and M. Nogi, “Optically
transparent composites reinforced with plant fiber-based na-
nofibers,” Appl. Phys. A: Mater. Sci. Process. 81, 1109-1112
(2005).

7. E. J. A. Pope, M. Asami, and J. D. Mackenzie, “T'ransparent
silica gel-PMMA composites,” J. Mater. Res. 4, 1018-1026
(1989).

8. S. Ravi, “Development of transparent composite for photoelas-
tic studies,” Adv. Compos. Mater. 7, 73-81 (1998).

9. H. Yano, J. Sugiyama, A. N. Nakagaito, M. Nogi, T. Matsuura,
M. Hikita, and K. Handa, “Optically transparent composites
reinforced with networks of bacterial nanofibers,” Adv. Mater.
17, 153-155 (2005).

10. H. V. Tippur, “Coherent gradient sensing—a Fourier optics
analysis and applications to fracture,” Appl. Opt. 31, 4428—
4439 (1992).

11. H. V. Tippur, “Coherent gradient sensing (CGS) method for
fracture mechanics: a review,” Fatigue Fract. Eng. Mater.
Struct. 33, 832-858 (2010).

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, “Optical
mapping of crack tip deformations using the methods of trans-
mission and reflection coherent gradient sensing—a study of
crack tip K-dominance,” Int. J. Fract. 52, 91-117 (1991).

H. V. Tippur and A. J. Rosakis, “Quasi-static and dynamic
crack-growth along bimaterial interfaces—a note on crack-
tip field-measurements using coherent gradient sensing,”
Exp. Mech. 31, 243-251 (1991).

J. Kimberley and J. Lambros, “Dynamic crack kinking from a
PMMA/homalite interface,” Exp. Mech. 44, 158-166 (2004).
dJ. J. Mason, J. Lambros, and A. J. Rosakis, “The use of a co-
herent gradient sensor in dynamic mixed-mode fracture-
mechanics experiments,” J. Mech. Phys. Solids 40, 641-661
(1992).

S. Ramaswamy, H. V. Tippur, and L. Xu, “Mixed-mode crack-
tip deformations studied using a modified flexural specimen
and coherent gradient sensing,” Exp. Mech. 33, 218-227
(1993).

J. K. Sinha, H. V. Tippur, and L. M. Xu, “An interferometric
and finite element investigation of interfacial crack tip fields:
role of mode-mixity on 3-D stress variations,” Int. J. Solids
Struct. 34, 741-754 (1997).

X. J. Dai, H. Yun, and Q. Pu, “Measuring thickness change of
transparent plate by electronic speckle pattern interferome-
try and digital image correlation,” Opt. Commun. 283,
3481-3486 (2010).

J. W. Dally and W. F. Riley, Experimental Stress Analysis, 4th
ed. (College House, 2005).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge,
1999).

M. S. Kirugulige, H. V. Tippur, and T. S. Denney, “Measure-
ment of transient deformations using digital image correla-
tion method and high-speed photography: application to
dynamic fracture,” Appl. Opt. 46, 5083-5096 (2007).

M. S. Kirugulige and H. V. Tippur, “Measurement of surface
deformations and fracture parameters for a mixed-mode
crack driven by stress waves using image correlation techni-
que and high-speed photography,” Strain 45, 108-122
(2009).

H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, “A coherent
gradient sensor for crack tip deformation measurements—
analysis and experimental results,” Int. J. Fract. 48,
193-204 (1991).

R. G. Budynas, Advanced Strength and Applied Stress
Analysis (McGraw-Hill, 1998).

20 April 2012 / Vol. 51, No. 12 / APPLIED OPTICS 2097



