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1. Introduction

There is a demand for an accurate, non-contact evaluation 
of surface topography of objects. Some optical sensors such 
as the Shack–Hartmann wave-front sensor [1], the lateral 
shearing interferometers [2], and the pyramid sensor [3] have 
all been used for this purpose. The current literature indicates 
that it is more efficient for these sensors to just measure the 
surface gradients instead of measuring the values of absolute 
height due to channel capacity limitations [4]. Integration 
algorithms are applied then to convert the measured gradi-
ents into topographic information. It can be concluded that 
a highly accurate, non-contact method for measuring surface 
gradients in combination with an accurate integration method 
are among the key factors to satisfactorily reconstruct surface 
topography.

As already noted, several optical metrology techniques 
for measuring surface gradients currently exist. Based on 
the type of illumination used, they can be divided into two 

categories, coherent (interferometric) and incoherent (moiré) 
methods [5–9]. In these, measurements are typically in the 
form of optical fringes and are analog in nature. Further, 
orthogonal gradients are generally evaluated by performing 
multiple or successive experiments (e.g. coherent gradient 
sensing or CGS method [7, 8]) which may require altering the 
setup. Also, the optical phase evaluation using phase shifting 
methods is often needed to determine gradients in the digital 
form. In recent years, however, digital image correlation (DIC) 
methods have become rather popular for measuring deforma-
tions, two or all three orthogonal displacements in the whole 
field, as they offer many advantages besides directly pro-
viding the required information in the digital form [10–13]. 
By taking advantage of this, a new full-field optical method 
called digital gradient sensing (DGS) method has been pro-
posed recently for measuring two orthogonal small angular 
deflections of light rays caused by stresses in planar solids 
[14, 15]. Subsequently, the method has also been extended to 
study optically reflective objects as well [16]. The simplicity 
of experimental setup, its accuracy and robustness make DGS 
attractive for measuring two orthogonal surface slopes and 
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stress gradients in the whole field. Subsequent quantification 
of surface profile or stresses from these measurements via 2D 
integration of measured data is valuable in many engineering 
applications.

There are several 2D integration methods reported in the 
literature. Broadly, they can be divided into two types: path 
dependent integration methods [17–19] and path independent 
integration methods [4, 20–24]. Path dependent integration 
methods such as trapezoidal rule or Simpson’s rule calculate 
the local height increments by directly integrating the func-
tion. These methods are easy to implement due to the sim-
plicity and efficiency in computing. However, the accuracy 
of results from these methods depends heavily on integration 
paths. Noise in measured data can propagate and accumulate 
along the integration path. Such errors can be mitigated in 
path independent integration methods because gradient data 
have global influence on the solution procedures and errors 
get uniformly dispersed over the whole surface [25].

Methods based on Fourier transforms [20] are a family of 
path independent integration methods which are fast and accu-
rate. However, these methods cannot deal with irregular sur-
face shapes which make it not very practical. Another family of 
path independent integration methods, which can also be fast 
and highly accurate, is least-squares based integration methods 
[21–24]. Hudgin [21] proposed a least-squares recursive algo-
rithm for wave-front reconstruction from phase difference and 
studied the propagation of noise. Southwell [22] proposed a 
more detailed least-squares integration algorithm for wave-
front reconstruction based on a rectangular grid configuration. 
Huang et  al [23] pointed out the assumption of biquadratic 
functions in Southwell grid configuration limited the algo-
rithm. They proposed an optimized algorithm by implementing 
iterative compensations. Li et al [24] pointed out that Huang’s 

algorithm was rather time consuming although the accuracy 
of reconstruction was significantly improved, and hence pro-
posed a more accurate and less time intense approach. Ettl 
et al [4] proposed another kind of integration method by using 
radial basis functions which showed robustness and high acc-
uracy. However, compared with Li’s method, it was found time 
consuming, especially when the dataset is incomplete. Huang 
et al [26] compared three families of 2D integration methods:  
(a) the Finite-difference-based least-squares integration 
methods, (b) the transform-based integration methods and (c) 
the Radial basis function based integration methods. Their per-
formance, advantages and weaknesses are discussed in details 

Figure 1. Schematic of r-DGS experimental setup.

Figure 2. Schematic explaining the working principle of r-DGS.
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for specific cases. Accordingly, Li et  al’s algorithm [24] is 
selected in the current work.

In the following, the experimental details and working prin-
ciple of both reflection-mode DGS (r-DGS) and transmission- 
mode DGS (t-DGS) are briefly presented. Next, the  algorithm 
of the 2D integration method is explained along with its veri-
fication using an idealized function. Then, the feasibility 
of the 2D integration method in conjunction with r-DGS is 
discussed in detail using a Si wafer subjected to central and 
eccentric out-of-plane loading. This is followed by the dem-
onstration of extracting stress fields from measured stress 
gradients from t-DGS. Finally, the major results of this study 
are summarized.

2. Experimental setup and working principle

2.1. Reflection-mode digital gradient sensing (r-DGS)

A schematic of the experimental setup for r-DGS used to mea-
sure surface slopes is shown in figure 1. A digital camera, a 
reflective planar specimen, a micrometer, a beam splitter and 
a target plate are included in the figure. The target plate is 
decorated with random speckles using alternate mists of black 
and white paints. The beam splitter is placed between the 
specimen and target plate at an angle of 45° to the optical axis 
of the setup for the camera to photograph the speckles on the 
target via the specimen surface. The target plate is illuminated 
by a pair of cool LED lamps emitting white light.

For simplicity, the angular deflections of light rays only in 
the y-z plane are shown in figure 2. Initially, a point P on the 
target plate is recorded by the camera through a point O when 
the specimen is in its undeformed or reference state. When 

the specimen suffers out-of-plane deformation, a neighboring 
point Q on the target gets recorded by the camera through O. 
OP makes an angle yφ  with OQ and y i rφ θ θ= +  where iθ  and 

rθ (= iθ ) are incident and reflected angles relative to the normal 
to the specimen. The two orthogonal surface slopes can be 

expressed as tanw

y x y x:

1

2 :( )φ=∂
∂

. The local displacements y x:δ  

can be measured by correlating the undeformed image of the 
specimen with respect to the deformed image. Finally, the two 
orthogonal surface slopes can be determined using [16]:

w

y x:

1

2
tan

1

2

1

2y x y x
y x

: :
:( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟φ φ

δ∂
∂

= ≈ ≈
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 (1)

where Δ is the distance between the specimen and target plate 
and small angle approximation is evoked.

The experimental parameters including Δ, speckle charac-
teristics on target plate, sub-image size used for image correla-
tion control the accuracy of the method and the details can be 
found in [27]. Further, it should be noted here that the camera 
is focused on the target plane and the coordinates of the spec-
imen plane are used in the analysis subsequently. Therefore, 
based on the pin-hole camera approximation, a mapping func-
tion is used to transfer the information to the specimen plane 

as, x y x y: :L

L 0 0( ) ( )=
+∆

 where x y:( ) and x y:0 0( ) denote the 

coordinates of the specimen and target planes, respectively, 
and L is the distance between the specimen and camera [14].

2.2. Transmission-mode digital gradient sensing (t-DGS)

A schematic of the experimental setup for t-DGS method is 
shown in figure 3. Unlike r-DGS, in t-DGS a random speckle 
pattern on target plate is recorded through a transparent 

Figure 3. The schematic of the experimental setup for t-DGS technique to determine planar stress gradients in phase objects.
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specimen. White light is used here to illuminate the target. As 
in r-DGS, an undeformed or reference image is recorded first. 
That is, point P on the target plate which corresponds to point 
O on the specimen plane is recorded. The refractive index and 
thickness of the specimen change after imposing a load on the 
specimen. As a result, light rays from the initial path, which 
is referred to as the elasto-optical effect. In the deformed state 
of the specimen, an image is recorded. That is, a neighboring 
point of P, namely Q on the target plate is recorded through O 
on the specimen plane. The local displacements y x:δ  are mea-
sured by correlating the undeformed image with the deformed 
image of the specimen. The angular deflections of light rays 

y x:φ , which are related to in-plane stress gradients, can be 
expressed as [15]:

φ
δ σ σ

≈
∆
=

∂ +

∂
σ

( )
( )

C B
x y:x y

x y xx yy
:

:
 (2)

where Cσ is the elasto-optical constant of the specimen mat-
erial, B is its initial thickness, Δ is the distance between the 
specimen and target plate, and xx yyσ σ+  is the sum of two in-
plane normal stresses. Again, the pin-hole camera mapping 
function is used here to transfer coordinates of the target to 
the specimen.

3. The 2D integration method

The above two full-field optical methods, r-DGS and t-DGS, 
provide two orthogonal surface slopes and stress gradi-
ents in the region of interest as a rectangular array of data. 
Traditionally, surface topography and stresses in addition to or 
in place of surface slopes and stress gradients from such mea-
surements are quite useful in engineering applications. Hence, 
reconstructing the same from DGS is valuable.

In the field of surface reconstruction from slope data, 2D 
integration based on finite-difference is widely used to com-
pute topographic values from gradient data by least-squares 
procedures. Southwell proposed a traditional finite-differ-
ence-based least-squares integration (TFLI) algorithm for a 
grid configuration, as shown in figure 4, requiring the meas-
ured surface slopes and the evaluated topographic values are 
at the same spatial position [22, 26]. The relation between the 

slopes and the evaluated function values in a M  ×  N matrix in 
this approach can be expressed as [26]:
⎧
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(3)
where x, y are the local coordinates, s denotes the local surface 
slopes, f is the value of the function at (x, y). Equation (3) can 
be converted to a matrix form,

DF G= (4)
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Figure 4. Southwell grid configuration.

Meas. Sci. Technol. 27 (2016) 095203



C Miao et al

5

Equation (4) can be solved to get Fas,

F D D D GT T1( )= − (8)

where DT denotes the transpose of D.
The TFLI method is widely used for its simplicity and reli-

ability. However, in equation (3) the left-hand side is approxi-
mately equal to the right-hand side. Using Taylor’s theorem, 
it can be shown that this method has an error of O(h3) where 
h is the interval between two neighboring grid points [24]. In 

recent years, further research in this area has been reported 
specifically to improve the accuracy of the method. Huang 
et  al [23] proposed iterative finite-difference-based least-
squares integration (IFLI) method. They applied iterative com-
pensations to enhance TFLI method. However, IFLI method 
is much more computationally time consuming although the 
accuracy of reconstruction is higher. Li et  al [24] proposed 
a more accurate and less time consuming approach, the 
higher-order finite-difference-based least-squares integration 

Figure 5. Verification of HFLI method. (a) Original function, (b) reconstructed function, (c) reconstruction errors, (d) contours of 
derivatives of the function in the x-direction, (e) contours of derivatives of the function in the y-direction.
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Figure 6. The experimental setup used to study out-of-plane deformation of a silicon wafer.

Figure 7. Results from r-DGS for a clamped silicon wafer (30 mm dia., 360 µm thick) subjected to central deflection of 4 µm (left column) 
and 10 µm (right column). Row 1: contours of w,x; Row 2: contours of w,y; Row 3: contours of w,r. Note: (0, 0) is made to coincide with the 
loading point. Contour increments  =  0.5  ×  10−4 rad and 1  ×  10−4 rad, respectively.

Meas. Sci. Technol. 27 (2016) 095203
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(HFLI) method. It applies Taylor’s theorem and considers 
two additional adjacent slopes during iteration resulting in an 
algorithmic error of O(h5). In this method, the G matrix is 
expressed as4:

G G
G

x

y
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3.1. Algorithm verification

To verify the accuracy of HFLI method independently, a func-
tion f x y,( ) was defined as follows:

f x y x y x y x y xy y, cos 2 sin cos2 2 2( ) ( ) ( ) ( ) ( )= + − + + +
 (12)
The chosen range for x and y coordinates for this demonstra-
tion were from  −1.5 to 1.5 mm with an interval of 0.01 mm, 
resulting in a 300  ×  300 data grid. As evident from figure 5(a) 
the function includes significant complexities in its features. 
The corresponding slope contours in the x- and y-directions 
are shown in figures 5(d) and (e), respectively. After removing 
the piston errors [28], the reconstructed function using HFLI 
algorithm is shown in figure 5(b). The integration errors shown 
in figure 5(c) indicate the high accuracy of HFLI method. The 
integration errors on the edges are somewhat higher because 
of the lack of two adjacent slopes on the edges as evident 
from equations (10) and (11). The mean values of errors in the 
region away from the edges are essentially zero or negligible.

4. Wafer subjected to central loading

The feasibility of HFLI method used in conjunction with 
r-DGS to obtain mechanically induced out-of-plane defor-
mation maps for a deformed thin silicon wafer subjected to 
central loading was considered next. A single-face polished 
360 µm thick silicon wafer of dimeter 50.8 mm was used in 
the experiment. The unpolished face was bonded to a thick 
steel washer with a circular aperture of 30 mm using a slow 
curing epoxy in order to simulate a thin circular plate with 
a circular clamped boundary. Another steel plate fitted with 
a micrometer at its center was positioned directly behind 
the silicon wafer. These two steel plates were secured in 

Figure 8. Comparison of analytical data and experimental data of 
w

y

∂
∂

 along the y-axis corresponding to three different imposed out-of-
plane deflections.

4 A correction to the expression reported in [26] has been incorporated in 
these expressions.
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a cylindrical lens holder. A target plate, decorated with 
random black and white speckles, was placed horizontally 
at 90° to the silicon wafer. The target was illuminated by 
two cool LED lamps to avoid air currents. A beam splitter 
was placed at 45° to both the silicon wafer and the target 
plate. It was also at 45° to the optical axis of the camera (see 
figure 6). The distance (Δ) between the silicon wafer sur-
face and the target plate along the optical axis was 62 mm.

A Nikon D100 digital SLR camera was focused on the 
target via the polished face of the silicon wafer. The camera 
was fitted with a 70–300 mm macro lens and an adjustable bel-
lows. A small aperture (F#  =  22) was selected for recording 
the speckles with a good focus. The distance between the 
silicon wafer and the end of lens (L) was 1403 mm. When 
the silicon wafer was under no load, an 8-bit reference 
image was recorded with a resolution of 1504  ×  1000 pixels  
(1 pixel  =  43.9 µm). Then, known central out-of-plane dis-
placements, w, were imposed on the silicon wafer using the 
micrometer tip and speckle images corresponding to the 
deformed states of the wafer were recorded. By correlating 

each of these speckle images with the reference image, the 
local displacements y x:δ  in the region of interest were meas-
ured. During correlation (using ARAMIS image analysis 
software), the images were sub-divided into 20  ×  20 pixels 
with 10 pixel overlap in the x- and y-directions, resulting in 
97  ×  133 matrix of data points in the field.

Two sets of orthogonal surface slope contours, w

x

∂
∂

 and w

y

∂
∂

 

measured from r-DGS are shown in figure 7 for two imposed 
central deflections, 4  ±  1 µm and 10  ±  1 µm. For complete-

ness, contours of w

r

∂
∂

 w

x

w

y

2 2( )( )⎛

⎝
⎜

⎞

⎠
⎟= +∂

∂
∂
∂

 are also shown, 

where r is the radial distance from the center of the wafer. The 
contours are plotted with increments of 50 and 100 micro-
radians in the two cases, respectively. It can be observed that 

the magnitude of contours of w

x

∂
∂

 and w

y

∂
∂

 are symmetric about 

x 0=  and y 0=  with a high concentration of contours near 

the loading point. The contours of w

r

∂
∂

 show circular symmetry, 

again with a higher concentration of contours around the 
loading point. As expected, slopes are zero along the circular 
edge (and beyond) of the Si wafer in the glued portion and 
near the loading point with a gradual transition in the inter-
mediate region.

The measurements from r-DGS are compared directly with 
the closed-form solutions for an elastic thin circular plate with 
a clamped boundary subjected to a centrally applied deflection 
using,

w

y

yw

R

x y

R

4
log

2

2 2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂
∂
=

+

 

(13)

where w is the out-of-plane deformation and R is the radius of 
the circular plate.

The comparisons shown in figure  8 are made between 
experimental and analytical data sets along the y-axis for 
different magnitudes of out-of-plane deformations. The 
least count of the micrometer used being 2 µm, results from 
w  =  2 µm is also added to this comparison. It can be readily 
observed that there is a good agreement between the two data 
sets with percentage error decreasing as imposed deflection is 
increased.

The reconstructed 3D surface computed using integra-
tion of surface slope data and HFLI computations is plotted 
in figure  9(a) for the 10 µm deflection case. Figure  9(b) 
shows the corresponding contours of out-of-plane displace-
ments (w) at 0.5 µm increments. The circular contours in 
figure 9(b) demonstrates that the shape of the reconstructed 
figure matches well with the reality of the experiment both 
qualitatively and quantitatively. (Note that for all the plots 
in figures  7 and 9, the origin is made to coincide with the 
loading point.) The peak value of the height of the recon-
structed 3D surface is 10.41 µm with an acceptable error of 
4.1%. (The reconstruction for the smaller imposed deflection 
of 4 µm, not shown here for brevity, led to a peak value of 
4.81 µm, a deviation of 20.2%. Given the uncertainty of the 
imposed deflection of  ±1 µm, the reconstructed peak value 
is deemed reasonable despite a higher error.) The errors are 

Figure 9. Surface topography calculated via 2D integration using 
surface slope data and HFLI method: (a) 3D surface representation 
of reconstructed surface, (b) out-of-plane displacement (w) contours 
(0.5 µm increments). Note: (0, 0) is made to coincide with the 
loading point; red circle indicates the edge of the circular aperture 
of the steel washer.
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attributed to a combined effect of (a) micrometer backlash 
and human errors while imposing the out-of-plane displace-
ment, (b) the non-uniformity and finite compliance of the 
epoxy adhesive used to ‘clamp’ the Si wafer to the steel plate, 
(c) errors due to DGS measurements as well as integration 
errors in the HFLI method. Although it is beneficial to iso-
late each of these effects, it is difficult to do so practically. It 
should also be mentioned that the reconstructed surface along 
the glued boundary of the wafer shows non-zero deflection 
(approximately 1 µm instead of zero). This is attributed to a 
combination of reconstruction errors as well as compliance 
of the epoxy glue layer alluded to earlier.

The accuracy of HFLI method relies on the interval 
between two neighboring grid points. And, this interval in turn 
depends on the choice of sub-image size and pixel overlap 
used during correlation of the reference and deformed images 
while implementing r-DGS. Further, the overlap was selected 
for achieving correlation at all points in the region of interest 
with minimum noise in the plotted data. Therefore, the trade-
offs if any due to different interval choices on HFLI outcome 
was examined. Figure 10 shows the measured contours of w

y

∂
∂

 

for 20  ×  20 pixels sub-images with three different overlaps of 
0, 10, 15 pixels and the corresponding reconstructed surfaces. 
Higher number of overlapping pixels resulted in the interval 
(h) between two neighboring grid points getting smaller. In 
figure 10, it can be observed that the slope contours are gener-
ally in good agreement with each other with minor differences 
between the slope contours near the wafer boundary where the 
slopes are expected to be zero. However, the interval (h) for 
0 pixel overlap and 15 pixel overlap cases are different by a 
factor of 2 and 0.5 relative to the 10 pixel overlap case. The 
reconstructed surfaces for each of these cases are shown in 
figure 10. (Note that the plots appear darker as the grid density 
increases.) The difference of the peak values of out-of-plane 

displacement for the three cases relative to the imposed value 
range between 3.2% and 4.5% suggesting the robustness of 
the reconstruction. The height of the reconstructed surface for 
the zero pixel overlap case is the closest to 10 µm, however, it 
is less accurate due to the larger interval between neighboring 
grid points. As a result, 10 pixel overlap was judged appro-
priate for subsequent analyses.

5. Wafer subjected to eccentric loading

The measurement of slopes and reconstruction of out-of-plane 
deformations of a silicon wafer subjected to eccentric loading 
was attempted next. In this experiment, again out-of-plane 
displacements, w  =  4  ±  1 µm and 10  ±  1 µm, were imposed 
on the silicon wafer eccentrically at a distance of 5 mm away 
from the center of the wafer along the y-axis. Otherwise, 
the optical setup in this experiment was the same one used 
in the previous experiment. A 20  ×  20 sub-image size with  
10 pixel overlap was also used here to correlate the images in 
the deformed and undeformed states to get displacements y x:δ .

The two orthogonal surface slope contours, w

x

∂
∂

 and w

y

∂
∂

 for 

each of these imposed displacements are shown in figure 11. 

The contours of w

r

∂
∂

 are also provided. As in the central loading 

case, all the contours are plotted with increments of 50 and 100 
micro-radians for the 4 µm and 10 µm cases, respectively. It 

can be observed that the contours of w

x

∂
∂

 and w

y

∂
∂

 are symmetric 

about x 0= , but asymmetric about y 0= . Accordingly, the 

contours of w

x

∂
∂

, w

y

∂
∂

 and w

r

∂
∂

 are relatively crowded in the posi-

tive y-direction. The noise at the circular clamped boundary 
and its vicinity in the figures are attributed to measurement 
errors in r-DGS. The reconstructed 3D surface calculated 
from HFLI is plotted in figure 12(a). Figure 12(b) shows the 

Figure 10. Contours of w,y for 20  ×  20 pixel sub-images with three different overlap and the corresponding reconstructed figures.
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corresponding contours of out-of-plane displacement (w) at 
0.5 µm increments. These plots demonstrate that the shape 
of the reconstructed surface matches the reality in the experi-
ment. Again, in figures 11 and 12, (0, 0) is made to coincide 
with the loading point. The peak value of the height of the 
reconstructed 3D surface is approximately 10.53 µm. Based 
on the elasticity theory for a circular plate loaded by an eccen-
tric concentrated force [31], the peak value of deflection is 
10.16 µm. Further, the location of the theoretical peak value 
is at (x  =  0, y  =  −0.8) or 0.8 mm away from the loading point 
along the  −y-direction. Compared with this theoretical value, 
the reconstruction error is an acceptable 3.6%. The sources 

of errors are the same as the ones discussed in the previous 
experiment. Evidently, the reconstructed surface shows asym-
metry as expected along with an obvious tilt due to higher 
stresses and deformation suffered by the epoxy adhesive layer 
along the boundary close to the loading point relative to the far 
away edges. That is, the reconstructed shape is tilted towards 
the positive y-direction, in agreement with the load point 
eccentricity relative to the center of the wafer.

As in the symmetric loading case, surface reconstruction 
for w  =  4 µm case was also carried out and the results are 
not shown in favor of brevity. The peak value of the height of 
the reconstructed 3D surface in this case was approximately 

Figure 11. Results from r-DGS for a clamped silicon wafer (30 mm dia., 360 µm thick) subjected to eccentric deflection of 4 µm (left 
column) and 10 µm (right column). Row 1: contours of w,x; Row 2: contours of w,y; Row 3: contours of w,r. Note: (0, 0) is made to 
coincide with the loading point. Contour increments  =  0.5  ×  10−4 rad and 1  ×  10−4 rad, respectively.
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5.12 µm with an error of 26% relative to the theoretical value  
4.06 µm. Again, due to the uncertainty of the imposed deflection  
of  ±1 µm, the reconstructed peak value was deemed reasonable.

6. Dynamic mode-I crack propagation in 
 transparent PMMA

The previous two experiments have demonstrated the feasi-
bility of coupling r-DGS methodology with HFLI approach 
for reconstructing surface profile due to mechanical defor-
mation. Next, the work is extended to transmission-mode 
DGS (or, t-DGS) to extract stress field data from measured 
orthogonal stress gradient data to study dynamic crack propa-
gation in brittle polymers such as PMMA. First, the dynamic 
crack growth in PMMA sheets was studied using t-DGS 
technique in conjunction with ultrahigh-speed digital photog-
raphy. The schematic of the experimental setup employed is 
shown in figure 13. A Hopkinson pressure bar (a 25 mm dia., 
1.8 m long 7075-T6 aluminum bar) was used for subjecting 
a pre-notched (40° V-notch) PMMA specimen to wedge-
loading using a gas-gun and a striker bar (a 25 mm dia. and 
225 mm long aluminum rod). A Cordin-550 ultrahigh-speed 
digital camera with 32 independent 1000  ×  1000 pixels 

sensors was used for recording the speckle images during the 
dynamic fracture event. The specimen was at a distance of 
approximately 850 mm in front of the camera. A target plate 
decorated with random black and white speckles was placed 
behind the specimen at a distance (Δ) 29.3 mm away from the 
mid-plane of the specimen. The region of interest in this study 
was in the crack tip neighborhood (52 mm  ×  52 mm). A pair 
of heavy dots (figure 14) marked on the target plate were used 
to relate the dimension on the image to the actual specimen/
target dimensions. Prior to loading the specimen, a set of 32 
images of the speckles were recorded at 200 000 frames per 
second through the specimen in its undeformed state. Next, 
without altering any of the camera settings, the specimen was 
dynamically loaded by impacting the long-bar with the striker 
bar (striker velocity ~ 14 m s−1). The impact event triggered 
recording of a second set of 32 images in the deformed state 
at the same framing rate. Thus, a total of 32 pairs of images 
in the deformed and undeformed (reference) states were 
recorded at 5 µs intervals between successive images. Two 
representative speckle images in the region of interest, one in 
the undeformed state and the other in the deformed state are 
shown in figures 14(a) and (b), respectively. The speckle pat-
tern shown in figure 14(b) corresponds to a time instant 95 µs 
after crack initiation at the initial notch tip. It can be seen that 
the speckles are noticeably distorted in the near vicinity of the 
propagating crack tip (in the deformed image) whereas they 
seem largely unaffected in the far-field. The corresponding 
image pairs from each sensor were correlated separately. 
Further details of the experiment are previously reported by 
Sundaram and Tippur [29]. During image correlation5, each 
image was segmented into 25  ×  25 pixels sub-images. An 
overlap of 20 pixels (i.e. a step size of 5 pixels) was used 
during analysis. This resulted in 194  ×  194 matrix of data 
points in the region of interest for each of the two orthogonal 
displacement fields. The corresponding angular deflections of 
light rays were subsequently determined using the known dis-
tance Δ between the specimen and the target planes. Figure 15 
shows the angular deflection plots at three select time instants. 
The crack velocity history for such a crack growth has been 
previously reported in [29]. Using the angular deflection fields 
along the x-direction mode-I and mode-II SIFs were evaluated 
using an over-deterministic least-squares analysis based on 
the asymptotic expressions for the measured stress gradients 
(See [29] for details),
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Figure 12. Surface topography calculated via 2D integration using 
surface slope data and HFLI method: (a) reconstructed 3D surface, 
(b) out-of-plane displacement (w) contours (0.5 µm increments). 
Note: (0, 0) is made to coincide with the loading point; red circle is 
the circular aperture of the steel washer.

5 The image correlation was carried out in r-DGS also using the image 
analysis software ARAMIS®.
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where f and g denote functions of instantaneous crack velocity, 
and r ,l l( )θ  denote the contracted crack tip polar coordinates 
for a growing crack, Cσ is the elasto-optic constant of the mat-
erial (−1.08  ×  10−10 m2 N−1), and B is its initial thickness. 
Further, r ,l l( )θ  can be expressed in the local Cartesian coor-

dinates ′ ′( )x y,  as, α= +′ ′{( ) ( ) } /
r x yl

2
L
2 2 1 2

 and tanl
y

x
1 Lθ = α− ′

′( ). 

The coefficients of A t1( ) and D t1( ) in the asymptotic series are 
related to the mode-I and mode-II stress intensity factors 
(SIF) K tI( ) and K tII( ), respectively, as A t K t 2I1( ) ( ) /π=  and 
D t K t 21 II( ) ( ) /π= . The functions f and g are [29],
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plane stress. Data in the region (0.25  <  r/B  <  0.75) and 
(−135°  <  θ  <  135°) near the crack tip was used for analysis. 
Figure 16 shows the plot of SIF history evaluated. As this is a 
mode-I crack growth, KII is expected to be relatively small if 
not zero. Further, it can be seen that the KI remains approxi-
mately same throughout the window of observation.

Using the SIFs evaluated from the stress gradient fields, the 
xx yy( )σ σ+  fields around the moving crack tip were obtained 

using the mode-I K-dominant expression for stresses as [30],

K t

r
f V

2
0, ,xx yy

I( ) ( ) ( )σ σ
π

θ+ = = (16)

where V is the crack velocity,

Figure 13. Schematic of the experimental setup used for dynamic fracture study.

Figure 14. Speckle images in the undeformed (top) and deformed 
(bottom) states recorded by the high-speed camera though the 
PMMA specimen.
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Figure 15. Angular deflection contour plots (contour interval  =  5  ×  10−4 rad) proportional to stress gradients of x y( )σ σ+  in the x- and  
y-directions.
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the shear and longitudinal wave speeds of the material. 
Contour plots of constant xx yy( )σ σ+  for a time instant 100 µs 
after crack initiation are shown in figure 17(a).

The xx yy( )σ σ+  fields around the moving crack tip were 
also obtained by integrating the measured orthogonal stress 
gradient fields and HFLI method. Figure  17(b) shows the 

xx yy( )σ σ+  fields from HFLI algorithm at a select time instant 
of 100 µs during dynamic crack growth corresponding to 
the stress gradient contours shown in figure 17(a). It can be 
seen that both the stress fields have qualitative similarities 
near the crack tip vicinity. However, it should be empha-
sized that the reconstructed stresses, unlike the theoretical 
counterpart, encompass all the far-field effects (or, the 
higher order terms). In light of this, the contours do deviate 
both qualitatively and quantitatively from the ones shown 
in figure  17(a) based on K-dominant (one-term descrip-
tion) in equation (16). The 3D surface plot of reconstructed 
stress around the crack tip is shown in figure 18 that indi-
cates severe stress amplification in the immediate crack tip 
vicinity.

To compare the xx yy( )σ σ+  fields obtained from these two 
methods more effectively, xx yy( )σ σ+  values were evaluated at 
select directions namely (r, θ  =  0°) and (r, θ  =  45°) relative 
to the crack tip (θ  =  0° denotes crack growth direction) are 
plotted in figure 19. We can see a good agreement between 
the two plots in the region (0.25  <  r/B  <  0.75) where the data 
was selected for performing the least-squares analysis. For 
r/B  >  0.75 the K-dominance is lost and for r/B  <  0.25 there is 

Figure 16. Mode-I and II SIFs for a dynamically growing crack in 
a monolithic PMMA.

Figure 17. xx yy( )σ σ+  fields (contour interval  =  0.75 MPa) obtained 
integration by (a) using KI and KII measured from the DGS fields 
along with analytical expression for stress fields and (b) using HFLI 
method. The black horizontal line represent the growing crack 
faces.

Figure 18. The 3D surface plot of stress around a moving crack tip 
reconstructed using HFLI.
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significant stress triaxiality whereas contours based on equa-
tion (16) are based on 2D (plane stress) assumptions.

7. Conclusions

In this work, the feasibility of surface profile evaluation and 
stress field mapping from r-DGS and t-DGS methods are dem-
onstrated. This is accomplished by coupling DGS output with a 
HFLI scheme implemented in the Southwell configuration. DGS 
being a DIC-based method capable of providing two orthogonal 
gradients simultaneously, it naturally lends itself to the imple-
mentation of algorithms in the Southwell configuration.

First, the surface profile measurements are demonstrated 
successfully using a ‘clamped’ reflective Si wafer subjected to 
out-of-plane concentrated load applied centrally and eccentri-
cally in two separate sets of experiments. The imposed deflec-
tion has been recovered using the HFLI scheme with good 
accuracy relative to the accuracy of the micrometer used. For 
10  ±  1 µm imposed deflection cases, the recovered values 
show approximately 5% deviation from the expected value. 
The reconstruction has also revealed non-zero out-of-plane 
deflections in the ‘clamped’ regions of the plate due to the 
compliance of the epoxy adhesive layer. The phenomenon is 
pronounced in the eccentric loading case with the glued edge 
closer to the loading point show higher deflections relative 

to the far-away edge. The analysis of data with different data 
intervals show that the method is quite robust and the peak 
value variations are relatively negligible among the three 
cases considered.

Further, reconstruction of xx yy( )σ σ+  stress fields from 
stress gradients is demonstrated for the case of a dynamically 
growing crack in a transparent polymer (PMMA) sheet. For 
a time instant of 100 µs after crack initiation, the stress gra-
dient fields used in conjunction with HFLI algorithm resulted 
in obtaining stress fields with qualitative similarities to the 
theoretical (or, the so-called K-dominant) counterparts. The 
comparison was limited because the crack tip SIF were evalu-
ated by analyzing measured gradients close to the crack tip 
in conjunction with the asymptotic series expansion based on 
2D assumptions. Accordingly, only the first coefficient (KI) of 
the expansion was used to recreate the theoretical stress fields. 
The reconstructed/experimental stresses and the theoretical 
values agree quite well in the crack tip vicinity although they 
deviate from each other due to the higher order effects far 
away from the crack tip and due to triaxial effects very close 
to the crack tip.
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