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Abstract

The nature of the singular ®eld around the crack in functionally graded material (FGM) is analyzed
parametrically using ®nite element method. The numerical simulations are carried out by varying the location of the

crack in the graded region for di�erent material gradients. Using linear material property variation in the gradient
zone, the in¯uence of material gradient and the crack position on the fracture parameters such as complex stress
intensity factor (SIF) and energy release rate are studied. The crack opening displacement pro®les of FGM are

compared with the homogeneous and bimaterial counterparts. The analysis shows that the fracture parameters of
FGM approach that of the bimaterial as the material gradient is increased, regardless of the position of the crack in
the graded region. The extent of applicability of the homogenous crack tip ®elds around the crack in FGM is

analyzed, and the results show that the size of the homogeneous ®eld reduces with the increase in material gradient.
Static fracture experiments are conducted on epoxy based FGM to determine complex SIF with electrical strain
gages, using the homogeneous ®eld equations to convert the strains to SIF. The measured SIF values compare
favorably with the numerical results providing a limited experimental validation of the computations and the use of

homogeneous ®eld for FGM. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Functionally graded material; Complex stress intensity factor; Energy release rate; Crack opening displacement;

Numerical simulation; Electrical strain gages

1. Introduction

The requirement for advanced materials with high temperature resistance coupled with high toughness
and thermal conductivity, has prompted research in the superalloy coating technology wherein the base
material is clad with temperature resistant coatings. By the very nature of the principle of coating a
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substrate, the coating material and the substrate have distinctly di�erent chemical and thermo-
mechanical properties. As a direct consequence, high residual stresses during the coating process and
high thermal stresses in service are introduced. Hence, the interface between the substrate and the
coating becomes a plane of weakness, and is prone to failures in service. Instead of coating a substrate
or bonding two dissimilar materials with a plane of discontinuity, components may be produced with a
progressive change in structure and properties (Niino et al., 1987). The material gradient eliminates the
sharp interface and signi®cantly relaxes the thermal stresses. Such nonhomogeneous material
compositions are collectively referred to as functionally graded materials (FGMs).

The microstructure of FGM is generally heterogenous, and the dominant type of failure in FGM is
the crack initiation and growth from the inclusions. Hence, the knowledge of crack growth and
propagation is important in designing components involving FGM and improving its fracture
toughness. Plane elasticity problems involving crack in FGM are solved by speci®cally assuming a
functional form, usually a linear or an exponential function. Assuming an exponential spatial variation
of the elastic modulus, Atkinson and List (1978), Dhaliwal and Singh (1978), and Delale and Erdogan
(1983) solved crack problems for nonhomogeneous materials subjected to mechanical loads. By further
assuming the exponential variation of thermal properties of the material, Jin and Noda (1993) and
Erogan and Wu (1993) computed thermal stress intensity factor (SIF) for nonhomogeneous solids. Yang
and Shih (1994) have obtained an approximate solution for an interlayer between two dissimilar
materials from the known bimaterial solutions. Gu and Asaro (1997a) considered a semi-in®nite crack in
a strip of FGM under edge loading and obtained SIF relations for many commonly used fracture
specimen con®gurations.

Recently, Erdogan (1995) has reviewed the elementary concepts of fracture mechanics of FGM and
identi®ed a number of typical problems relating to fracture of FGM. Eischen (1987) and Jin and Noda
(1994) have shown that the singular ®eld close to the crack-tip in a FGM is same as that of the
homogeneous medium and the square root singularity is also preserved. Crack de¯ection in FGM has
been considered by Gu and Asaro (1997b) who have reported the strong in¯uence of material gradient
on the crack kink angle when the crack is in the middle of the gradient zone. Tohgo et al. (1996) have
carried out numerical analysis of particulate FGM, and studied the in¯uence of material gradient on the
size of singular ®eld by comparing the FGM results with that obtained for homogeneous medium.

In this work, the in¯uence of material gradient and crack location on the singular behavior of the
stress and displacement ®elds is studied by comparing the numerical results with the solutions known
for homogeneous and bimaterial cracks. Analysis of bimaterial interface cracks within the con®nes of
linear elasticity theory leads to prediction of impractical oscillations in stresses and displacements. By
considering the material gradients near the tip of the interface crack, the inadmissible oscillating
behavior of the interface is removed. The motivation for modeling the material gradient at the crack-tip
is the physical consideration that the di�usion and interpenetration in any bonding process would lead
to very steep, nevertheless continuous variation of material parameters across the interface. Thus, the
study of FGM would enhance the understanding of the fracture in a generic material, as the gradient
layer in FGM upon shrinking is expected to behave like a sharp interface, and upon expansion, the
fracture behavior would be analogous to a homogeneous material.

The basic ®eld equations and the de®nitions of complex SIF and energy release rate in the context of
a nonhomogeneous elastic medium are reviewed. The fracture behavior of FGM is characterized by
energy release rate, complex SIF and crack opening displacement (COD). The fracture parameters are
computed from the numerical results for di�erent material gradients and crack positions within the
gradient region. In the numerical simulations, linear material property variation is assumed as it closely
matches the property variation in the FGM samples fabricated in this study. The details of the
computational model, numerical results and static fracture experiments are presented in the following
sections.
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2. Crack-tip ®elds in FGM

Consider the plane elasticity problem of a ®nite crack lying in a medium with a general variation of
the shear modulus m, such as that shown in Fig. 1. The equation to be satis®ed by the Airy's stress
function f is
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where E �, n� are given by E, n under plane stress conditions and by E=�1ÿ n2�, n=�1ÿ n� under plane
strain conditions, E is Young's modulus, n is Poisson's ratio and r 2 is the Laplacian operator. Upon
expanding the above equation, the ®rst term in the governing di�erential equation for f involves the
biharmonic term identical to the homogeneous material, while the remaining terms involve the spatial
derivatives of the elastic moduli (Eischen, 1987). Hence, the elastic stress and displacement ®elds can be
derived using the stress function in variable separable form, identical to the homogeneous case. Hence,
the singular stresses near the crack tip can be given as
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where KI and KII are the mode-I and mode-II SIFs, respectively, and f I
ij�y� and f II

ij �y� are the standard
angular functions for a crack in homogeneous elastic medium.

Although the material gradient does not in¯uence the square-root singularity or the singular stress
distribution, the material gradient a�ects the size of the region in which the homogeneous solution is
valid. This di�ers from the case of homogeneous material in which the material property does not enter
the stress ®eld of a traction problem. The nature of stress ®eld of FGM also di�ers from the bimaterial
case in which the near tip stresses have oscillating singularity, and both SIF and angular functions
involve material properties re¯ected via mismatch parameter E as:
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ij are the angular functions.
When the crack is not parallel to the material gradient, the response of the crack in a FGM is always

Fig. 1. Crack geometry in a general nonhomogeneous medium.
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mixed mode regardless of the remote loading conditions due to the lack of symmetry in the material
properties. Hence, the complex SIF for FGM can be de®ned as KI � iKII, and the mode-mixity c can be
given as tanÿ1 (KII/KI). Due to the regular singularity of the crack tip ®elds in FGM, the mode-mixity
de®nition does not require an arbitrary length parameter in contrast to the bimaterial crack.

The energy release rate for a crack in FGM is given by

G � 1

E �
ÿ
K 2

I � K 2
II

�
, �4�

where E � is E0 for plane stress and E0=�1ÿ n2
0 � for plane strain; and E0 and n0 are the limit values of

Fig. 3. Finite element mesh for crack positioned at x1 � a:

Fig. 2. Parametric model of the FGM.
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Young's modulus and Poisson's ratio, respectively, at the crack tip. It must be noted that this de®nition
of G is same as that for the homogeneous material, and is independent of the orientation of the crack or
the form of material property variation.

3. Computational model

The conventional isoparameteric ®nite elements are used for modeling the FGM. A very ®ne
rectangular mesh is used to adequately model the singularity and also the material property gradients.
For facilitating the ®nite element modeling and for notational convenience, the FGM specimen is
divided into three regions: the gradient region and the homogeneous regions on either side of the
gradient part as shown in Fig. 2. The boundaries of these regions are marked by dimensionless variables
using the normalized coordinate x: In Fig. 2, the model is bimaterial if a � b, and is homogeneous if
a � 1: The position of the crack is marked by x1, which can take a value from a through b:

A pre-processor program for the ®nite element analysis (FEA) software has been written, with which
the parameters a, b and x1 can be varied. Based on the user-de®ned parameter values, the pre-processor
code generates a rectangular mesh with eight-noded isoparameteric elements with 2 dof (degrees of
freedom) at each node. The elements in the gradient region are grouped into narrow parallel strips
parallel to the crack to facilitate material property modi®cation. In all the models used in the parametric
study, the material gradient is achieved by subdividing the graded region into 30 strips of elements with
linear material property variation. The ®nite element mesh with the crack positioned at a is shown in
Fig. 3, which contains 1928 elements and 5993 nodes.

The magnitude and phase of complex SIF are computed by extrapolating the nodal displacements
extracted from the FEA. The displacement equations of the bimaterial crack are used in the formulation
to relate the nodal displacements to the complex SIF. This technique is uni®ed for all the material types,
namely, homogeneous, bimaterial and FGM, and it has been calibrated for static and dynamic loading
conditions by Marur and Tippur (1998) and Marur (1999).

The energy release rate is computed using the standard J-integral formulation. Smelser and Gurtin
(1977) have shown that the J-integral can be extended without modi®cations to interface crack in a
bimaterial provided the crack is straight. In the case of the FGM, the path independence of the J-
integral holds only for the case of crack being normal to the direction of material property variation.
For general material property variation in relation to the direction of the crack, additional terms must
be included in the formulation as shown by Honein and Hermann (1997).

4. Analysis of fracture parameters

The geometry used for the parametric simulations is an edge-cracked specimen with uniform tensile
stress s0 applied at the boundaries. The ratio of upper and lower limits of Young's modulus is 3 and
Poisson's ratio is constant at 0.35. In the numerical implementation, the interface between the gradient
region and the compliant material is marked by a and the `sti�er interface' is marked by b: The
dimensions of the model simulated are: S � 6W, W � 4B and B � 6:25 mm.

For a given combination of two bulk materials, the crack in FGM is expected to behave like
bimaterial interface crack if the gradient zone denoted by �bÿ a� approaches zero and would be
analogous to a homogeneous crack if the graded zone is made large enough. Hence, the parametric
simulations are carried out by varying �bÿ a� for di�erent crack positions inside the graded region.
Three distinct crack locations are chosen: x1 � a, x1 � �bÿ a�=2 and x1 � b: For each combination of
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gradient zone size and crack position, the energy release rate, mode-mixity, complex SIF and COD are
computed.

4.1. Energy release rate

The energy release rate and mode-mixity for di�erent material gradients are computed by reducing
�bÿ a� in steps. Due to excessive element distortion, the gradient zone could not be reduced beyond 2%
of the total length of the specimen and the energy release rate and mode-mixity for the case of �bÿ a�
approaching zero are obtained by polynomial extrapolation. The variations of energy release rate
(normalized by the energy release rate of a corresponding bimaterial crack, Gb) for the three crack
positions are plotted in Fig. 4(a). The abscissa re¯ects the material gradient, where the origin represents
homogeneous case and in®nity represents a jump in material property (bimaterial case). The energy
release rates for homogeneous materials with Young's modulus corresponding to the Young's modulus
at three di�erent crack positions in FGM are also shown in the ®gure. It can be observed from the
®gure that the energy release rate of the FGM starts from the corresponding homogeneous value and
approaches the bimaterial value as the material gradient is increased. The rate of approach is di�erent
for di�erent crack positions.

The variation of mode-mixity (normalized by the mode-mixity of the bimaterial crack, cb� is shown in
Fig. 4(b). The mode-mixity of FGM approaches the bimaterial value asymptotically as the material

Fig. 4. The variation of G and c with material gradient. The labels I, II and III represent the G of homogenous cracks with E

same as that at a, �bÿ a�=2 and b, respectively.
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gradient is increased. The mode-mixity curves ¯atten out after a sharp increase from the base value in
all the three cases. It must be remarked that the mode-mixity of bimaterial is de®ned using an arbitrary
length parameter (which is set to 2a in this study) which renders the mode-mixity of bimaterial non-
unique. However, the length parameter has a weak in¯uence on the computed mode-mixity, which is in
line with the analytical results published by Rice (1988).

As could be observed from Fig. 4, the crack at the middle of the gradient region closely follows the
bimaterial case. For any given size of the gradient region (alternatively, the material gradient), the crack
positioned at the middle of the graded region has the energy release rate closest to the bimaterial value,
and has the highest mode-mixity among the crack positions.

4.2. Complex stress intensity factor

The magnitude and phase angle of complex SIF for di�erent crack lengths, for two sizes of the
gradient region, bÿ a � 1=6 and 1/18, are plotted in Fig. 5. The magnitude of SIF is normalized by
s0

������
pa
p

, where s0 is applied remote tensile stress and a is the crack length. From the ®gure, it can be
seen that the magnitude of SIF is about the same for various material types and signi®cant di�erences
are seen in the mode-mixity values. For any given a/W ratio, the mode-mixity of FGM increases
substantially with the reduction in the gradient region, which is in line with Fig. 4 where monotonic

Fig. 5. Variation of magnitude of SIF and mode-mixity with crack length.

P.R. Marur, H.V. Tippur / International Journal of Solids and Structures 37 (2000) 5353±5370 5359



increase in the magnitude of mode-mixity with decrease in �bÿ a� is shown. As observed in the previous
section, the crack positioned at the middle of the gradient zone closely follows the bimaterial case.

At low a/W ratios, the mixity values for the bimaterial crack and FGM crack are distinctly di�erent,
and they approach a common value as the a/W ratio is increased. In FGM, the mode-mixity increases
with a/W ratio, regardless of the position of the crack in the gradient region. This is in contrast to
bimaterial crack, wherein the mode-mixity decreases with the crack length.

Since the magnitude of SIF is about the same for cracks in both FGM and bimaterial, the variation
in mode-mixity comes from the mode-II contribution. Thus, the mode-II SIF is in¯uenced more by the
material gradient. This observation is in consonance with the analytical results published by Gu and
Asaro (1997b), who have shown that KII is strongly dependent on the material gradient.

4.3. Crack opening displacement

The crack face displacements in di�erent material systems for two a/W ratios, 0.1 and 0.5, are
analyzed in this section. The gradient zone size is same at 1/18 of the specimen length for the FGM.
The displacements of nodes lying in the region prescribed by r from 0.01a to 0.1a are used in the

Fig. 6. Crack opening and sliding displacement pro®les for di�erent crack lengths for the gradient zone size of �bÿ a� � 1=18:
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computations. From the nodal displacements, the opening and sliding displacement jump across the
crack faces, denoted by Dv and Du respectively, are computed. Fig. 6 shows the sliding and opening
displacements normalized by gs0a, where

g � j c1 � c2
2
���
p
p �1� 2iE�cosh�pE� j, �5�

i � �������ÿ1p
, cj � �1� kj �=mj, kj � 3ÿ 4nj for plane strain and kj � �3ÿ nj �=�1� nj � for plane stress. The

subscript j takes the value of 1 and 2 corresponding to material 1 and 2, respectively. From the ®gure, it
can be seen that the crack opens by di�erent magnitudes depending on the material type, and the
di�erences in Dv among the material types are not as signi®cant as in Du: With the increase in a/W
ratio, the sliding displacement of FGM increases and approaches that of the bimaterial crack.

With the COD plots shown in Fig. 6, the variation of complex SIF with material gradient discussed in

Fig. 7. Comparison of COD pro®le of homogeneous material with FGM.
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the previous section can be explained. In the case of bimaterial crack, Dv and Du re¯ect the strength of
K1 and K2, respectively. For homogeneous and gradient materials, the crack face displacements relate to
mode-I and mode-II SIF through

Dv�r� � 1� k
2pm

KI

�������
2pr
p

,

Du�r� � 1� k
2pm

KII

�������
2pr
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As the sliding displacements are more sensitive to elastic gradients, mode-II SIF is, consequently,
strongly in¯uenced by the gradients in the elastic properties.

The opening and sliding displacements are linear in
��
r
p

for the homogeneous and FGM cases as could
be noted in Eq. (6). In Fig. 6, the variation of Dv is quite linear for all the material types except for the
case of crack positioned at x1 � a in the FGM, which has nonlinearity at larger radius from the crack-
tip. The variation of Du for cracks in FGM is linear for most part of r/a values considered, except for
the crack positioned at x1 � a:

The nature of variation of opening and sliding displacement with radial distance clearly shows that
the sliding displacement is the factor that distinguishes the crack at a sharp interface from that at a
graded interface. Alternatively, this can be stated that mode-mixity is the key parameter that
distinguishes the nature of the interface crack. To gain further insight into the crack face deformations
in FGM, the crack opening pro®les of FGM are compared with the homogeneous and bimaterial cracks
in the following sections.

4.3.1. Comparison with homogeneous material
The crack opening pro®les for di�erent crack positions in FGM are compared with that of the

homogeneous medium in Fig. 7. The crack face displacements are normalized by s0a=E0, where E0 is
the Young's modulus at the crack-tip. The crack opening pro®les for the three crack positions are
di�erent and asymmetric, and are also di�erent from the symmetric homogeneous case. This variation is
due to the di�erences in mode-mixities, although the angular distribution of stresses and displacements
of FGM are identical to the homogeneous case.

Contrary to the expectation, the deformations for the crack positioned at the compliant boundary of

Fig. 8. Comparison of COD pro®le of bimaterial with FGM.
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the graded zone are lesser than the corresponding homogeneous crack. The opposite holds true for the
crack positioned at the sti�er interface. This phenomenon is not apparent from the asymptotic
displacement equations for FGM.

4.3.2. Comparison with bimaterial
The crack opening pro®les for the cracks positioned at the sti� and compliant interfaces in FGM are

compared with that of the corresponding bimaterial crack in Fig. 8. The upper crack ¯ank of the
bimaterial nearly coincides with the upper ¯ank of FGM with the crack at the compliant interface, and
the lower crack ¯ank of bimaterial matches with the lower ¯ank of FGM crack at the sti�er interface.
The matching of crack opening pro®les is seen in both the cases where the gradient zone sizes di�er by a
factor of 3 and the a/W ratios vary by a factor of 5. In the limit the gradient region is removed, the
upper and lower crack ¯anks of FGM and bimaterial would coincide.

4.4. Singular stress ®eld

In this section, the numerical stress data obtained from the FEA of FGM are compared with the
analytical homogeneous crack-tip solution. The region of validity of the homogeneous crack-tip solution
in FGM is also investigated. As fracture experiments are conducted on FGM with the crack position at

Fig. 10. Angular stress distribution at di�erent radii. �bÿ a � 1=6); crack at �x1 � a). � series solution with eight-terms, ÐÐÐ

FEA.

Fig. 9. Comparison of K-domiant stress ®elds with numerical data for crack at �x1 � a). Ð ± Ð K-dominant solution, ÐÐÐ

FEA.
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x1 � a, only this con®guration is analyzed. Two gradient zone sizes, bÿ a � 1=6 and 1/18, are chosen,
while maintaining the a/W ratio at 0.3 in both cases. The stresses along two di�erent radii r=a � 0:06
and 0.5, are used in the comparison.

It is usually presumed that the asymptotic homogeneous ®elds are valid close to the crack-tip in
FGM. However, the K-dominant solution does not provide a good match for FEA results even for a
low r/a ratio of 0.06 as illustrated in Fig. 9. Higher-order terms of the series solution are needed to
bring about a good agreement between the analytical and numerical results. The coe�cients of the
higher-order terms are obtained by solving the homogeneous version of the ®nite element model shown
in Fig. 3. Two sets of coe�cients are obtained by solving for pure mode-I and mode-II loading cases.
The two sets of coe�cients are multiplied by the individual components of the complex SIF of FGM
and are linearly superposed to obtain the analytical stress distribution as described in Appendix A.

The ®nite element results are compared with the homogeneous series solution, obtained with ®rst
eight-terms of the series, in Figs. 10 and 11. At low r/a ratios, the match between the numerical results
and the homogeneous series solution is quite good for both the gradient zone sizes. However, as the
radial distance is increased, the match between the two is less satisfactory. The mismatch is more
pronounced for steeper material gradients. Increasing the number of higher-order terms beyond eight in
the analytical solution did not result in any perceptible improvement in the agreement between the
numerical and analytical solutions. Hence, the mismatch of the numerical and analytical results could be
due to the invalidity of homogeneous solution in FGM at the radial distance being considered.

An approximate estimate of the region in which the homogeneous asymptotic solution is applicable
for a crack in FGM has been derived by Jin and Batra (1996). Neglecting the gradients of Poisson's
ratio, Jin and Batra (1996) have shown that the homogeneous crack-tip solution will be valid in the
region where the following inequalities are satis®ed:
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For unidirectional variation of material properties, it is su�ce to satisfy the ®rst inequality in the above
equation. For the gradient zone sizes of bÿ a � 1=6 and 1/18, the numerical estimates for r/a can be
obtained as
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Fig. 11. Angular stress distribution at di�erent radii. �bÿ a � 1=18); crack at �x1 � a). � series solution with eight-terms, ÐÐÐ

FEA.
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respectively. For bÿ a � 1=6, the ratio r/a should be far less than 1.1 for the homogeneous solution to
be valid. In Fig. 10(b), the normalized radius of 0.5 is lesser than 1.1, although not far less than 1.1 as
required by ®rst inequality, the homogeneous solution provides a reasonable ®t to the ®nite element
results. In the case of bÿ a � 1=18, the normalized radius of 0.5 is more than the limit prescribed by
Eq. (8) for this gradient, resulting in poor match between the analytical and numerical results.

5. Experiments

Static fracture experiments are conducted on epoxy based FGM samples with the crack positioned at
the compliant side �x1 � a). The FGM specimens are fabricated using the gravity-assisted casting
technique (Marur and Tippur, 1998) with two-part slow curing epoxy and uncoated solid glass sphere
®llers. This casting technique has been successful in producing FGMs with gradient region from 15 to
21 mm in length, with consistent material properties. The variation of elastic properties in the FGM
sample is determined by mounting strain rosettes along the length of the specimen and loading the
specimen in cantilever con®guration with dead weights. Young's modulus is obtained from the slope of
load versus longitudinal strain plot, and Poisson's ratio is computed from the ratio of transverse to
longitudinal strain. The variation of Young's modulus in the gradient region is shown in Fig. 12. It can
be observed from the ®gure that the variation of modulus within the gradient region is quite linear. The

Fig. 13. Specimen geometry. All dimensions in mm.

Fig. 12. Variaton of static Young's modulus of the FGM specimen.
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Poisson's ratio variation is also linear within the graded zone, with the upper and lower limits at 0.35
and 0.28 for epoxy and glass-rich sides, respectively.

The samples are machined to the ®nal dimensions as shown in Fig. 13. The specimen is loaded in
three point bend con®guration under 100 N midspan load. A 0.81 mm biaxial strain rosette (CEA-13-
032WT-120 from Measurements Group Inc.) is mounted at r � 3:5 mm from the crack tip at an angle
of 908 as described in Appendix B. The upper limit of the radius of valid zone predicted by Eq. (7) for
this specimen is 10.5 mm. Since the strain gage is located well within this prescribed region, the
homogeneous crack-tip solution is expected to be valid. The measured radial and hoop strains are
converted to complex SIF data using the formulation described in Appendix B. The SIF computed from
the strain data are jKj � 0:65 MPa m1/2 and c � ÿ3:458, while the ®nite element results are jKj � 0:59
MPa m1/2 and c � ÿ3:248: The good agreement between the numerical and measured data provides a
limited experimental validation of the applicability of the homogenous stress ®eld around the crack in
FGM.

6. Discussion

The fracture parameters of FGM starting from the homogenous values approach the bimaterial
values as the material gradient is increased. The rate of approach to the bimaterial values is dependent
on the position of the crack within the gradient region. The crack at the middle of the gradient region
closely follows the bimaterial case in terms of the energy release rate and the mode-mixity.

The variation of magnitude and phase of complex SIF of FGM with crack length for two di�erent
material gradients are studied. The magnitude of SIF is comparable to that of the bimaterial crack,
while signi®cant di�erences are seen in the mode-mixity values. With the increase in crack length, the
mode-mixity of FGM increases regardless of the position of the crack in the graded region. In contrast,
the mode-mixity decreases with a/W ratio for bimaterial crack. For a given crack length, the mode-
mixity of FGM cracks ultimately reach the bimaterial value as the material gradient is increased.
However, at low a/W ratios, typically below 0.2, there is a substantial di�erence in the mode-mixity
values of FGM and bimaterial.

The COD pro®les of cracks positioned at di�erent planes in FGM are di�erent and none of them
match with that of the homogenous crack. This variation is due to the di�erences in mode-mixity for
di�erent crack positions in the graded region, although the asymptotic ®elds are identical in all the
cases. The crack positioned at the compliant boundary in FGM has lesser COD than a corresponding
homogenous crack, and the opposite holds true for the crack positioned at the sti�er boundary. The
reasoning for this unintuitive behavior could not be advanced as generic full-®eld solutions are not
currently available in the literature. The deformed upper and lower crank ¯anks of bimaterial coincide
with the upper and lower crack ¯anks of the cracks positioned at the boundaries of compliant and sti�
sides of FGM, respectively. In the limit the gradient zone is removed, the COD of FGM would be
identical to that of the bimaterial.

The angular stress distributions at di�erent radii around the crack tip are obtained from the FEA
data, and are compared with the homogenous crack-tip solution. The results show that although the
homogenous solution is valid close to the crack-tip, the K-dominant terms provide a poor match to the
numerical results. Higher-order terms are needed to achieve a good agreement between the analytical
and numerical solution within the region where the homogenous crack-tip solution is valid. The
relations proposed by Jin and Batra (1996) provide a good estimate of the size of the homogeneous ®eld
around the crack in FGM.
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7. Conclusions

The singular ®eld around a crack in FGM with linear property variation is parametrically studied,
and the fracture parameters are compared with that of the homogeneous and bimaterial cracks. The
geometric parameters, namely the position of the crack within the gradient zone, size of the gradient
region and the crack length are varied. For each combination of the parameters, the energy release rate,
complex SIF, mode-mixity and CODs are computed. The crack in FGM, regardless of the position in
the graded zone, approach the bimaterial crack behavior as the gradient is increased. Among the crack
positions considered, the crack at the middle of the graded zone has characteristics that are closest to
the bimaterial cracks. The mode-II SIF is strongly in¯uenced by the material gradient and the crack
position, and this is apparent from the strong dependence of sliding displacements of the crack ¯anks on
the material gradient. The size of the singular ®eld reduces with the increase in the material gradient and
K-dominant terms of the series solution do not describe the ®eld adequately even close to the crack-tip.
Static fracture experiments are conducted on epoxy based FGM to determine complex SIF using
electrical strain gages. The SIF values estimated from the measured strains compared favorably with
numerical results providing a limited experimental validation of the numerical results.
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Appendix A. Computation of mixed-mode stress ®eld

To describe the mixed-mode stress ®eld around the crack-tip in FGM, the coe�cients of the series
solution for the homogeneous medium must be determined. As mode-mixity changes with the material
gradient, the coe�cients must be evaluated for each specimen con®guration. The complete solution of
each specimen con®guration as a boundary value problem is a laborious and time-consuming process,
especially for parametric analysis. In this study, a simple solution is proposed to compute the mixed-
mode stress ®eld by method of superposition. Two sets of coe�cients are computed corresponding to
the pure mode-I and mode-II loading cases. Once the series coe�cients are known, the stress ®eld for
any mode-mixity can be computed by linear superposition as described below.

The complete series solution for the stress ®eld around a crack lying in a homogeneous elastic
medium can be given as

srr �
XN
n�0

R�An�rnÿ1=2
�
cos ŷ1 � cos y1 � �1ÿ 2n�sin y sin ŷ2

�
�J�An�rnÿ1=2

�
3sin ŷ1 � sin y1 ÿ �1

ÿ 2n�sin y cos ŷ2
�
� 2R�Bn �rn

�
cos ny� cos�n� 2�yÿ nsin y sin�n� 1�y�� 2J�Bn�rn

�
ÿ sin nyÿ nsin y cos�n� 1�y�, �A1�
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syy �
XN
n�0

R�An�rnÿ1=2
�
3cos ŷ1 ÿ cos y1 ÿ �1ÿ 2n�sin y sin ŷ2

�
�J�An �rnÿ1=2

�
sin ŷ1 ÿ sin y1

� �1ÿ 2n�sin y cos ŷ2
�
� 2R�Bn�rn

�
cos nyÿ cos�n� 2�y� nsin y sin�n� 1�y�

� 2J�Bn�rn
�ÿ sin ny� nsin y cos�n� 1�y�, �A2�

where

y1 � �nÿ 1=2�y,

y2 � �nÿ 3=2�y,

ŷj � yj � 2y, j � 1, 2,

and An and Bn are complex coe�cients. The coe�cient of the ®rst term in the series is related to the
complex SIF �� KI � iKII� through

K � 2
������
2p
p

ÅA0: �A3�
The stress distribution is fully de®ned once the complex coe�cients are determined. The coe�cients can
be obtained from optical measurements or can be computed using numerical methods. In this study, the
coe�cients are computed using least-squares analysis of ®nite element data as described in Ref. (Marur,
1999).

Two sets of coe�cients, AI
n and BI

n, AII
n and BII

n , where the superscripts I and II correspond to pure
mode loading cases with �KI � 1 and KII � 0� and �KI � 0 and KII � 1), respectively, are evaluated. In
addition, for each FGM specimen type, the complex SIF is computed using the nodal extrapolation
technique. Then, the series coe�cients for the mixed-mode ®eld can be computed as

An � KIA
I
n � KIIA

II
n , �A4�

Bn � KIB
I
n � KIIB

II
n : �A5�

By substituting these `scaled' coe�cients in Eqs. (A1) and (A2), the radial and hoop stress distribution
can be obtained.

Appendix B. Strain to SIF formulation

With a plane stress assumption, the strain ®eld around a crack in homogeneous medium can be given
as

Err � 1

E0

�������
2pr
p �

KI

ÿ
f I

rr ÿ n0f I
yy

�� KII

ÿ
f II

rr ÿ n0f II
yy

���O�r�, �B1�

Eyy � 1

E0

�������
2pr
p �

KI

ÿ
f I

yy ÿ n0f I
rr

�� KII

ÿ
f II

yy ÿ n0f II
rr

���O�r�, �B2�
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where

f I
rr
�y� �

�
5

4
cos

y
2
ÿ 1

4
cos

3y
2

�
,

f II
rr
�y� �

�ÿ5
4

sin
y
2
� 3

4
sin

3y
2

�
,

f I
yy�y� �

�
3

4
cos

y
2
� 1

4
cos

3y
2

�
,

f II
yy�y� �

�ÿ3
4

sin
y
2
ÿ 3

4
sin

3y
2

�
,

E0 and n0 are Young's modulus and Poisson's ratio at the crack tip, respectively. As shown in this
paper, the higher-order terms of the series solution must be considered to adequately describe the stress
®eld around the crack tip in FGM. The in¯uence of higher-order terms can be considered in the
formulation as a correction factor which is computed as the di�erence between the two-term solution
and the higher order solution. The correction factor evaluated using eight-terms of the series is applied
to the measured strain to obtain the corrected strains, ~Err and ~Eyy, from which the SIF values can be
computed as�

KI

KII

�
� E0

�������
2pr
p " ÿ

f I
rr ÿ nf I

yy

� ÿ
f II

rr ÿ nf II
yy

�ÿ
f I

yy ÿ nf I
rr

� ÿ
f II

yy ÿ nf II
rr

� #ÿ1� ~Err
~Eyy

�
: �B3�

The radial and hoop strains are measured by mounting a biaxial strain rosette near the crack tip. The
strain gage must be located in the region prescribed by rr0:5B, where B is the thickness of the
specimen, for plane stress condition to prevail. Within this zone, r and y must be chosen such that the
coe�cient matrix in the above equation is well conditioned and the sensitivity of measurement is
maximized. For most common values of n, the angles from 85 to 1008 provide best conditioning of the
matrix and peak strains occur in the neighbourhood of y � 908 as shown in Ref. (Marur and Tippur,
1999). Hence, the strain rosette is mounted at r � 0:6B and y � 908 on the compliant side of the
specimen.
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