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Abstract

A simple technique for complex stress intensity factor (SIF) determination in a bimaterial crack using
electrical strain gages is developed. The asymptotic radial and hoop strain equations are used to
compute the SIF by linear transformation. The location of the strain gage relative to the crack tip is
chosen through parametric study of the asymptotic ®elds. The need for higher order terms of the series
solution to describe the strain distribution at the gage location is discussed, and a correction procedure
using higher order terms is introduced. Static and dynamic experiments are conducted on epoxy/glass-
®lled epoxy bimaterial specimens in three point bend con®guration. Under static loading conditions, the
complex SIF estimated from the measured strains is in good agreement with the ®nite element results
obtained by extrapolation of crack ¯ank displacements. The applicability of the present method for
dynamic loading conditions is demonstrated by conducting impact tests in a drop-tower system and
comparing the measured data with dynamic ®nite element analysis. The measured dynamic SIF-time
history matches favorably with the numerical simulation. # 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Multiphase material interfaces are found in many advanced aerospace systems, structural
composites, thick ®lm coatings, encapsulation for electronic packaging and microelectronic

Engineering Fracture Mechanics 64 (1999) 87±104

0013-7944/99/$ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.
PII: S0013-7944(99)00058-2

www.elsevier.com/locate/engfracmech

* Corresponding author. Tel.: +1-334-844-3327.
E-mail address: htippur@eng.auburn.edu (H.V. Tippur)



solder joints. The interface between the two materials is a plane of low strength and the
common mode failure mode in such components is the fracture along the interface. The
strength of the bond line thus determines the overall mechanical strength of the whole
component. Hence, the determination of fracture toughness of bimaterial interface is important
in advanced material systems.

In bimaterials, the stress and displacement ®elds around the crack tip are intrinsically mixed
due to the material mismatch across the interface. The mixity of opening and sliding fracture
modes plays an important role in characterizing the bimaterial system and strongly in¯uences
the fracture toughness of the interface. Experiments have shown that the interface strength of
metal/polymer and ceramic/polymer systems is strongly in¯uenced by the mode mixity.

In the experimental determination of stress intensity factor (SIF) in a bimaterial, whole-®eld
optical methods such as laser speckles, coherent gradient sensor [1], and photoelasticity [2,3]
have been successfully used. The use of electrical strain gages in bimaterial fracture analysis is
rather limited, although strain gage techniques developed by Dally and Sanford [4,5] are well
established for homogeneous materials, and have since been extended for orthotropic materials
[6]. Only recently have strain gages been put to use in interfacial fracture studies [7]. The
advantage of a strain gage technique, apart from its simplicity in application, is in the dynamic
loading conditions. The use of strain gages signi®cantly reduces the instrumentation
requirements and permits computer based data acquisition. Also, the strain gage technique
would be of great advantage in the determination of loading rate dependence of fracture
toughness, as a large number of specimens must be tested. Hence, simple and adequately
accurate strain gage techniques suitable for static and dynamic complex SIF measurement for
the interface crack are needed.

As an engineering alternative, ®nite element calibration of standard test geometries is also
used to determine fracture toughness. The essential aspect of this technique is to obtain
calibration plots of load versus complex SIF for test geometries suitable for measuring
interface fracture toughness. In the experiments, only the load at the instant of fracture
initiation needs to be measured to obtain the critical SIF values. For example, O'Dowd et al.
[8] have reported calibration curves for a wide range of material combinations for common
fracture test geometries. This calibration or key-curve method would be inapplicable for
dynamic fracture studies as the calibration curves are obtained using static loading conditions.

In this paper, a simple strain gage method for complex SIF measurement is developed using
the asymptotic ®eld equations of the bimaterial crack. The formulation uses both hoop and
radial strain equations to estimate the complex SIF. The radial and hoop strains are measured
with a biaxial strain rosette mounted near the crack-tip. The strain gage location with respect
to the crack-tip is chosen by careful consideration of the ®eld parameters to maximize the
sensitivity of measurement and minimize the error in the data reduction scheme. The need for
higher order correction for correlating measured strains to SIF is discussed and a correction
scheme is introduced. The present method is applied for measuring complex SIF in a epoxy/
glass-®lled epoxy bimaterial under quasi-static and dynamic loading conditions.

A brief discussion on the fundamentals of bimaterial crack analysis is presented before the
details of formulation, the ®nite element scheme used for the veri®cation of the test results and
the experimental procedure are presented.
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2. Interface crack model

Consider an interface crack lying in the bond line between two homogeneous isotropic
elastic materials that are otherwise perfectly bonded as shown in Fig. 1. Let m,E and n be the
shear modulus, Young's modulus and Poisson's ratio of the materials, respectively. The linear
elastic solution in the crack tip region is developed using the bimaterial constant E (also known
as oscillation index) given by

E � 1

2p
ln
1ÿ b
1� b

, �1�

where b is one of the two Dundurs parameters [9].
A Williams' type expansion of the near-tip ®eld using well-known Muskhelishvilli complex

potentials is generated as described in [10]. The complete series solutions for the stresses are
given in Appendix A. The asymptotic near-tip stress ®eld can be expressed as

sij0
1��
r
p
h
K1SI

ij�y,ln r;E� � K2SII
ij �y,ln r;E�

i
, i,j � x,y: �2�

From the above equation it can be seen that the bimaterial cracks are always intrinsically
mixed mode regardless of the nature of the remote loading conditions. Therefore, a complex
SIF is de®ned as K � K1 � iK2 such that it reduces to KI � iKII if the material mismatch is

Fig. 1. Interface crack and the coordinate system.
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zero, where KI and KII are SIFs associated with pure mode-I and mode-II loading. The
complex SIF is related to the stresses by the following relationÿ

syy � isxy
�
y�0�

K�������
2pr
p riE, �3�

and to the crack-face displacements through

�v� iu�y�pÿ�v� iu�y�ÿp�
c1 � c2

2
������
2p
p �1� 2iE� cosh�pE�K

��
r
p �riE�, �4�

in the original form proposed by Hutchinson et al. [11], where ci � �ki � 1�=mi, i � 1,2.
The ratio of the individual SIF components is known as the mode-mixity and it can be

computed as the ratio of the shear to normal stresses ahead of the crack tip, or alternatively as
the ratio of sliding to opening displacements of the crack ¯anks. Using an arbitrary length
parameter L introduced by Rice [12], the mode mixity c is given by

c � tanÿ1
�

I�KLiE�
R�KLiE�

�
: �5�

Following Sun and Jih [13], the value of L is set to 2a, where a is the crack length.
Due to the oscillatory singularity, the linear elastic solution predicts inter-penetration of

crack faces even for internal pressure loading of the crack faces, and the presence of this
contact zone clouds the de®nitions of fracture parameters for the bimaterial crack. Rice [12]
has advanced a small-scale contact model wherein the contact zone can be ignored, provided
certain conditions on the remote loading is met. De®ning the remote loading mixity C as

C � tanÿ1
 
s1xy
s1yy

!
, �6�

and taking E � 0:15, which could be considered as the largest feasible value for combination of
two homogeneous solids with positive Poisson's ratios, Rice [12] has shown that the contact
zone can be neglected as long as C > ÿ508. This restriction could easily be met in any
practical experimental set-up. For smaller values of mismatch, the restriction on the loading
mixity is further relaxed. Hence, under tensile dominated crack loading, such as the ones
considered in this paper, the small-scale model would su�ce.

3. Numerical determination of SIF

A displacement extrapolation technique is developed using the de®nition of complex crack
opening displacement (COD) to compute the complex SIF in bimaterial specimens. The
complex COD, ddd can be de®ned as a vectorial sum as

ddd � Dv� iDu, �7�
where Dv and Du are the opening and the sliding displacement jumps across the crack faces.
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Considering only the K-dominant terms in the series solution for the bimaterial crack, the
relative displacements of the crack faces can be given as

Du�r� � u�r,p� ÿ u�r,ÿ p� � g
�
F1�f�K1 � F2�f�K2

� �������
2pr
p

,

Dv�r� � v�r,p� ÿ v�r,ÿ p� � g
�
F2�f�K1 ÿ F1�f�K2

� �������
2pr
p

, �8�
where

F1�f� � sin�f� ÿ 2E cos�f�,

F2�f� � cos�f� � 2E sin�f�,

f � E log

�
r

2a

�
,

g � c1 � c2
2
���
p
p �1� 2iE� cosh�pE� :

The complex COD can be related to the magnitude of the complex SIF factor by

jdddj � c1 � c2

4p
���������������
1� 4E2
p

cosh�pE�jKj
�������
2pr
p

: �9�

In this formulation, the small region of penetration in the crack face displacements predicted
by the linear elasticity is ignored based on Rice's small scale model as the displacements of the
nodes lying in r/a of 0.01±0.1 are used to compute SIF. From regression analysis of the nodal
displacement data using Eq. (9), the magnitude of K is obtained.
The mode mixity can be computed from the ratio of sliding and opening displacements using

Eq. (8). Representing K1 and K2 in terms of Du and Dv as�
K1

K2

�
� 1

g
�������
2pr
p �

F 2
1�f� � F 2

2�f�
��F1�f� F2�f�

F2�f� ÿF1�f�
��

Du
Dv

�
, �10�

and the ratio of SIFs can be obtained as

K2

K1
�
�
F2�f�=F1�f�

��Du=Dv� ÿ 1

�Du=Dv� � �F2�f�=F1�f�
� : �11�

The mode mixity is computed by taking the inverse tangent of the ratio of K2 and K1.
The numerical implementation of above equation needs further attention. Due to the

oscillatory nature of the singular ®eld, it has been suggested that mode mixity be de®ned as the
ratio of shear stress to opening stress at a speci®c distance from the crack tip [14]. Usually this
distance is de®ned as some characteristic length pertinent to the material under investigation.
However, considering that the nodes used in the computation are outside the oscillatory
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region, an extrapolation technique can be used to ®t a linear equation to the data points, and
taking the mode-mixity in the limit r tending to zero as

tan c � lim
r40

�
K2

K1

�
: �12�

To demonstrate the accuracy of the displacement approach, a bench mark problem is solved.
The problem considered is an edge-crack lying in the bond line between two dissimilar plates

Fig. 2. Comparison of jKj and c computed by COD extrapolation with published results �G � E2=E1�. ^r present,
Ð [15].
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subjected to remote tensile stress s0. The Poisson's ratio is 0.3 for both the materials. The
analysis is performed for various ratios of Young's moduli denoted by G �� E2=E1� and the
crack length-to-width ratio a/W. The non-dimensional SIF �� jKj=s0 ������

pa
p � and the mode-mixity

are compared with the results reported by Miyazaki et al. [15] in Fig. 2. The jKj and mode-
mixity values agree quite well with published results.

4. Theoretical analysis

The formulation to relate the strain to complex SIF takes in the K-dominant part of the
series solution, which has two unknowns namely K1 and K2. Hence, a minimum of two strain
measurements are required to solve for the SIFs. Ricci et al. [7] have measured radial strains at
two di�erent locations, and solved for the SIF values. However, as the strain gage technique
must be extendible to dynamic fracture testing, the gages must have the same location to avoid
the temporal shift in the strains measured by the two gages. A biaxial rosette mounted at some
location r would measure both the radial and hoop strains, providing the required number of
data for the formulation. Hence, radial and hoop strain equations are used to evaluate the
complex SIF by linear transformation.
The asymptotic equations for the stress ®eld around the bimaterial crack tip can be written

as

srr � 1��
r
p �

K1SI
rr
�y� � K2SII

rr
�y��, �13�

syy � 1��
r
p �

K1SI
yy�y� � K2SII

yy�y�
�
, �14�

where

SI
rr
�y� � o

h
2cos�y=2� f� � cos ŷ1 � sin y sin ŷ2 � 2E cos ŷ2 sin y

i
ÿ cos ŷ3

o
,

SII
rr
�y� � o

h
ÿ 2 sin�y=2� f� � sin ŷ1 ÿ sin y cos ŷ2 � 2E sin ŷ2 sin y

i
� sin ŷ3

o
,

SI
yy�y� � o

h
2cos�y=2� f� ÿ cos ŷ1 ÿ sin y sin ŷ2 ÿ 2E cos ŷ2 sin y

i
� cos ŷ3

o
,

SII
yy�y� � o

h
ÿ 2sin�y=2� f� ÿ sin ŷ1 � sin y cos ŷ2 ÿ 2E sin ŷ2 sin y

i
ÿ sinŷ3

o
,

ŷ1 � 3y=2ÿ f,
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ŷ2 � y=2ÿ f,

ŷ3 � 3y=2� f,

o � exp� ÿ E�pÿ y��,

f � E log�r=2a�:
With a plane stress assumption, the radial and hoop strain equations can be given as

Err � 1

E
��
r
p �

K1

ÿ
SI
rr ÿ nSI

yy

�� K2

ÿ
SII
rr ÿ nSII

yy

��
, �15�

Eyy � 1

E
��
r
p �

K1

ÿ
SI
yy ÿ nSI

rr

�� K2

ÿ
SII
yy ÿ nSII

rr

��
: �16�

In the above equations, only the compliant half plane of the bimaterial system is considered as
that would be the natural choice for strain gage ®xing. Hence, the Young's modulus and
Poisson's ratio are given in a generic fashion without the subscripts. The above equations can
be cast in a matrix form in terms of K1 and K2 as�

K1

K2

�
� E

��
r
p
" ÿ

SI
rr ÿ nSI

yy

� ÿ
SII
rr ÿ nSII

yy

�ÿ
SI
yy ÿ nSI

rr

� ÿ
SII
yy ÿ nSII

rr

� #ÿ1� Err
Eyy

�
, �17�

from which the complex SIF can be estimated once the radial and hoop strains are available.
The choice of r and y for mounting the strain rosette should be such that the conditioning of

the coe�cient matrix is minimized, and the sensitivity of the strain measurements is maximized.

Fig. 3. (a) Matrix condition number with respect to matrix inversion. (E � 0:05). (b) Expanded view for y from 808
to 1108.
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Also the gages must be located in the region prescribed by rr0:5B, where B is the thickness of
the specimen and 308ryR1508, for plane stress conditions to prevail [16,17]. Usually, the
radial distance r is in the range from 0.5B to 0.6B. Larger radii would result in signi®cant
reduction in the strain and would also place the gage outside the K-dominant region. At
smaller radii, strain-averaging e�ect of the electrical strain gage must be considered due to the
sharp strain gradients around the crack-tip. Ricci [7] have shown by parametric study that the
sensitivity curves ¯atten beyond r=B � 0:4, and the strain-averaging error is less than 0.2% if r/
B is greater than 0.4. Hence, in this paper, the gage is mounted at a radial distance of 0.6B
which ensures that the active grid of the strain gage is outside the 3D zone.
The mounting angle y must be chosen to ensure that the coe�cient matrix in Eq. (17) is well

conditioned to reduce errors in the matrix inversion. Fig. 3 shows the matrix condition number
of the coe�cient matrix for a mismatch parameter of 0.05. It can be observed from the ®gure
that the system becomes ill-conditioned for y approaching 1508 and least conditioning number
is achieved for an angle of 97.58. The angles for best conditioning for di�erent mismatch
parameters are shown in Fig. 4. The optimum angle for strain gage mounting falls in the range
from 85 to 1008 for most common values of E and n.
Within the narrow range of angles necessitated by the matrix conditioning number, a generic

mounting angle must be chosen to maximize the sensitivity of the measurement. This angle is
determined from the angular distribution of Err and Eyy at a speci®c radius for di�erent
mismatch parameters. Fig. 5 shows the angular variation of radial and hoop strain for di�erent
mismatch parameters at r=B � 0:6. The peak radial and hoop strains occur in the
neighborhood of y � 908 for the entire range of material mismatch parameters considered.
Hence, a value of 908 could be used as a common angle for most bimaterial combinations. The
mounting angle of 908 considerably simpli®es the strain gage ®xing, as no extra angle marking
and alignment are necessary. Hence, the optimal location for the strain rosette would be r �
0:6B and y � 908 on the compliant side of the bimaterial.

Fig. 4. Strain gage mounting angles for di�erent mismatch parameters.
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5. Experimental Procedure

Static experiments are conducted on epoxy based bimaterial specimens to measure SIF using
the strain gage technique developed here. Bimaterial samples are fabricated by joining pure
epoxy and glass-®lled epoxy specimen halves with epoxy resin. Uncoated solid glass spheres
with mean diameter of 33 mm are used as ®llers in epoxy. The bonding surfaces are roughened
with 240-grit emery, and the surfaces are subsequently cleaned with laboratory-grade isopropyl
alcohol. The specimen halves are then positioned in an acrylic mould and a thin layer of epoxy
resin is applied over the bonding surfaces. Light clamping pressure is applied from the free
ends, and the sample is allowed to cure for seven days.
The static material properties are measured using strain gages, and the dynamic properties

are evaluated using ultrasonic wave velocity measurements as described in Ref. [18]. The static
and dynamic properties are listed in Table 1. The samples are machined to the ®nal dimensions
shown in Fig. 6. Three specimens are tested under a mid-span load of 100 N in three point
bend con®guration. A biaxial rosette (CEA-13-032WT-120 from Measurements Group) with
gage length of 0.81 mm is mounted at r � 0:6B and y � 908 from the crack tip.
Application of the relations developed using the asymptotic solution to the experimental

Fig. 5. Radial and hoop strains at r � 0:6B for di�erent material combinations (G � E2=E1).

Table 1

Static and dynamic material properties

Specimen Static Dynamic r (kg/m3)

E (GPa) n E (GPa) n

Epoxy 3.5 0.35 4.6 0.37 1150

Glass-®ll epoxy 10.8 0.29 13.0 0.32 1720
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data yielded a magnitude of complex SIF that agreed reasonably with the ®nite element value
of jKj � 0:6 MPa m1/2 and a mode-mixity value that is about three times higher than the
numerical value of c � ÿ6:68. The estimated SIF values for the three specimens are listed in
Table 2. The disagreement in mode-mixity is attributable to the inadequacy of the K-dominant
solution to describe the far-®eld strain distribution. The K-dominant solution for r � 0:6B is
compared with ®nite element results in Fig. 7(a), which clearly shows the inadequacy of the
asymptotic solution. Hence, higher order terms are added until satisfactory match is obtained.
Fig. 7(b) shows the comparison of FEA results with the analytical solution obtained using ®rst
eight-terms in the series.
It is clear from the results plotted in Fig. 7 that higher order terms must be included in the

formulation to get adequate accuracy. The Eqs. (15) and (16) can be modi®ed to take the
higher order terms into account as

EErr � rÿ1=2
�
K1

ÿ
SI
rr ÿ nSI

yy

�� K2

ÿ
SII
rr ÿ nSII

yy

���O�r�, �18�

EEyy � rÿ1=2
�
K1

ÿ
SI
yy ÿ nSI

rr

�� K2

ÿ
SII
yy ÿ nSII

rr

���O�r�, �19�
where O(r ) indicates all the higher order terms in r. To include the higher order terms, the

Fig. 6. Specimen geometry and strain gage location. All dimensions in mm.

Table 2

SIF determination for the bimaterial system

Specimen Number K-dominant solution higher order solution

Err (mE) Eyy (mE) jKj (MPa m1/2) c (8) ~E rr (mE) ~Eyy (mE) jKj (MPa m1/2) c (8)

Bim-02 1153 ÿ526 0.62 ÿ22.6 1166 ÿ206 0.62 ÿ6.1

Bim-03 1175 ÿ539 0.63 ÿ22.7 1188 ÿ219 0.63 ÿ6.5

Bim-04 1150 ÿ524 0.62 ÿ22.6 1163 ÿ203 0.62 ÿ6.0
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coe�cients an and bn of the series solution given in Appendix A must be evaluated. If the
coe�cients are left undetermined in the formulation, then at the least, as many strain gages as
the number of terms desired are required. For instance, to obtain a eight-term solution, eight
strain gages must be used to obtain the SIF data, which would render the strain gage
technique impractical. However, a simpler, problem-speci®c solution is to obtain the
coe�cients of the boundary value problem once, and compute the correction factors to
compensate for the truncation of series in the formulation. The coe�cients can be evaluated
from optical measurements [19] or can be computed using numerical methods. In this work,
the coe�cients are evaluated from the FEA results using the least-squares analysis described in
Appendix B. The higher order correction needs to be computed only once for a given test
specimen con®guration, and in addition, it can used be directly for dynamic loading conditions
with certain restrictions on the loading rate.
Addition of higher order terms beyond the ®rst eight terms did not result in any appreciable

improvement in the agreement with the ®nite element results. Hence, only the ®rst eight terms
are considered in the analysis. Initially, the coe�cients for the series solution are computed
from the ®nite element stress data. Using the ®rst two terms of the series, the radial and hoop
strains at r and y corresponding to the strain-gage location are obtained. Then, the strains at
the same location are computed using the ®rst eight terms of the series. The di�erence between
the two-term solution and the higher order solution provides the correction factor.
The higher order correction can be applied to the measured strain to obtain the corrected

strain ~E ij from which SIF can be computed as

�
K1

K2

�
� E

��
r
p
" ÿ

SI
rr ÿ nSI

yy

� ÿ
SII
rr ÿ nSII

yy

�ÿ
SI
yy ÿ nSI

rr

� ÿ
SII
yy ÿ nSII

rr

� #ÿ1� ~E rr
~Eyy

�
: �20�

This higher order technique is used to correlate the strains to SIF and the results are listed in
Table 2. The ®nite element values are jKj � 0:6 MPa m1=2 and c � ÿ6:68. The SIF computed
from the corrected strain values match reasonably well with the numerical results.

Fig. 7. Comparison of K-dominant and higher order solutions with FEA.

P.R. Marur, H.V. Tippur / Engineering Fracture Mechanics 64 (1999) 87±10498



6. Application to dynamic testing

The applicability of the present formulation to impact testing is investigated in this section.
The dynamic fracture experiments are conducted on bimaterial samples with the gages
mounted at the same location as in the static case. The specimen is impacted with the initial
impact velocity of 0.5 m/s. The pertinent strain equations and correction factors derived in the
previous section are based on the static strain ®eld around the crack-tip. The same ®eld
equations are used in the dynamic loading conditions, as the initial impact velocity is low. The
SIF-time history obtained from dynamic fracture experiments are compared with the dynamic
®nite element simulations.
The impact experiments are conducted using an instrumented drop-tower system. The tup

and the support anvil are instrumented to measure the dynamic loads. The load signals and the
output from the strain-rosette ®xed on the specimen are ampli®ed using high frequency strain
ampli®ers. The ampli®ed signals are digitized using a 1-MHz data acquisition system. The
measured time-histories are shown in Fig. 8.

Fig. 8. Impact test data for a bimaterial specimen.
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The measured tup force and anvil reaction time histories are applied as traction boundary
conditions to a 2D ®nite element model with eight-noded isoparameteric plane stress elements.
The full length of the specimen (including the overhangs) is modeled without imposing any
displacement constraints [20]. The dynamic values of the Young's modulus and Poisson's ratio
are used in the model.
For the purpose of comparing the measured strain directly with numerical simulations, the

radial and hoop strains from a node placed 3.5 mm from the crack-tip (corresponding to the
strain gage location) in the ®nite element model are extracted. The computed strains are
compared with the measured data in Fig. 9(a). The agreement between the two is good until
the time of fracture (=428 ms). Since the measured and computed strain histories match, the
SIF-history derived from strain gage measurement would match with the ®nite element
simulation, provided the technique developed here holds good in the dynamic case. The
measured strains are transformed to complex SIF-time history using Eq. (20) and they are
compared with the SIF-time history computed by ®nite element analysis in Fig. 9(b). The close
agreement between the measured and computed SIF establishes the applicability of the present
method in the low-velocity impact tests.

7. Conclusions

A simple technique for complex SIF determination in bimaterials using electrical strain gages
is presented. The strain ®eld around the bimaterial crack tip is investigated and pertinent
equations to relate the measured strain to SIF using only K-dominant terms is presented. The
strain gage location with respect to the crack tip is chosen to minimize the conditioning of the
coe�cient matrix and to maximize the sensitivity of the measurements. The need for higher
order terms to describe the strain ®eld, and the inapplicability of method of undetermined
coe�cients is discussed. A correction procedure using the higher order terms of the series
solution is introduced. The coe�cients of the higher order terms are obtained using ®nite
element results in conjunction with least-squares analysis. Static loading experiments are

Fig. 9. Comparison of measured strain and SIF with FEA results.
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conducted on epoxy/glass-®lled epoxy bimaterial system, and the measured SIFs agree quite
well with the ®nite element results obtained using extrapolation of CODs. The applicability of
the present method for impact testing is established by using the method to measure complex
SIF under low-velocity impact loading. The complex SIF histories obtained from the strain
records compare well with ®nite element simulations until the time of fracture.
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Appendix A. Series solution for stresses around a bimaterial crack

The complete series solution for stress ®eld around a crack lying along the bondline between
two dissimilar isotropic homogeneous materials is given below.
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where

y1 � �nÿ 1=2�yÿ f,

y2 � �nÿ 3=2�yÿ f,

y3 � �nÿ 1=2�y� f,

ŷi � yi � 2y,

f � E ln�r=2a�,

o � exp� ÿ E�pÿ y��,

ĉi � ci=�c1 � c2�,

ci � �1� ki�=mi,
L � 2a, ki � 3ÿ 4ni for plane strain and ki � �3ÿ ni �=�1� ni � for plane stress, and mi is the
shear modulus. The subscript i takes the value of 1 and 2 corresponding to materials 1 and 2,
respectively.

Appendix B. Least-squares analysis

The system of equations for the stress ®eld around the crack tip can be represented in a
generic form as

s �
X1

m�0,1,2,...
amfm�r,y� �B1�

where am are the set of coe�cients to be determined. The Eq. (B1) can be represented in matrix
form as
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for n-number data with m terms of the series. The set of data thus obtained can be compactly
represented as

�A�n�mfXgm� fBgn: �B3�
A solution fX g� of this system of equations is the one that minimizes the squares of residues of
fV gn de®ned by the dot product [21]

V 2 �
ÿ�A�fXg�ÿfBg�T�

ÿ�A�fXg�ÿfBg�, �B4�
where the dimensions of the matrices are omitted for clarity. Then, the solution fX g� which
minimizes V 2 is the solution of the N equations

@V 2

@fXg� � �A�
T�A�fXg�ÿ�A�TfBg, �B5�

or

�A�T�A�fXg�� �A�TfBg, �B6�
which can be compactly written as�

�A
�
fXg��

�
�B
	
, �B7�

where � �A � � �A�T�A� and f �Bg � �A�TfBg. Care must be taken while inverting the matrix � �A �
which is often ill-conditioned due to the singularities in the problem. Hence, special algorithms
such as QR or Household algorithms must be used to ensure stable results.
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