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Abstract The interaction of a crack with perfectly
bonded rigid isolated inclusions and clusters of inclu-
sions in a brittle matrix is investigated using numerical
simulations. Of particular interest is the role inclusions
play on crack paths, stress intensity factors (SIFs) and
the energy release rates with potential implications to
the fracture behavior of particulate composites. The ef-
fects of particle size and eccentricity relative to the ini-
tial crack orientation are examined first as a precursor
to the study of particle clusters. Simulations are accom-
plished using a new quasi-static crack-growth predic-
tion tool based on the symmetric-Galerkin boundary
element method, a modified quarter-point crack-tip ele-
ment, the displacement correlation technique for evalu-
ating SIFs, and the maximum principal stress criterion
for crack-growth direction prediction. The numerical
simulations demonstrate a complex interplay of crack-tip
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shielding and amplification mechanisms leading to sig-
nificant toughening of the material.
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1 Introduction

Particle filled polymers are useful in a variety of engi-
neering applications—as light-weight structural com-
posites, as conducting polymers, as potting compounds
in electronic packages, as syntactic foams for civil and
marine structures, surface coats/paints for thermal insu-
lation, to name a few. Higher stiffness and fracture
toughness compared to unfilled (neat) matrix material
are some of the positive mechanical attributes derived
by reinforcing a matrix with stiff fillers. A favorable
increase in failure properties occurs in the presence
of secondary phases due to crack tip shielding, crack
deflection and twisting, and crack tip blunting mecha-
nisms. Filler particle size, shape and volume fraction,
the properties of constituent phases and filler–matrix
interface strength influence the toughening mechanisms
and in turn the failure properties. The experimental
results of particle size and filler–matrix adhesion ef-
fects on fracture behavior of heterogeneous media is
a motivating factor for the current study. Spanoudakis
and Young (1984a, b) observed a decrease in fracture
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toughness with increasing particle size for particles of
sizes 4–62µm in diameter at low volume fractions.
Unlike the monotonic trend in fracture toughness with
particle size, a minimum energy release rate (ERR) was
observed for 47µm particles. They also suggested that
poor inclusion–matrix bonding causes an increase in
ERR. Crack pinning followed by crack tip blunting was
anticipated to be the potential toughening mechanism.
Moloney et al. (1987) reported that for the particle sizes
ranging from 60 to 300µm, fracture toughness has neg-
ligible variation but weaker filler–matrix interface does
increase the fracture toughness due to possible crack
tip blunting. On the contrary, Nakamura et al. (1999),
Nakamura and Yamaguchi (1992) noticed prominent
increase in fracture toughness with increasing parti-
cle size for the sizes ranging from 2 to 42µm. The
increased crack deflection, interfacial debonding and
particle fracture were suggested as reasons for the in-
creased fracture toughness. They also concluded that
fracture toughness is unaffected by filler–matrix adhe-
sion strength. The contrasting results among previous
studies, possibly due to the narrow range of particle
sizes were addressed by Kitey and Tippur (2005a, b)
recently. They observed a non-monotonic bell shaped
variation in fracture toughness for 7–200µm particle
sizes. They observed localized crack tip blunting and
crack front trapping as potential toughening mecha-
nisms when filler particles were weakly bonded to the
matrix. For strongly bonded particles, on the other hand,
fracture toughness values were consistently lower com-
pared to the weakly bonded components. They have
attributed this difference to the crack front getting
trapped at weak filler–matrix interfaces causing local-
ized blunting and crack growth retardation. The weaker
interfaces also act as distributed attractors driving the
crack into modes II and III conditions in addition to
the dominant mode I, thereby increasing the crack path
tortuosity.

A few previous works have tried to explain toughen-
ing mechanisms using analytical and numerical stud-
ies. Atkinson (1972) calculated the stress field around a
crack tip for a symmetrically located crack in the pres-
ence of an inclusion. He concluded that inverse

√
r sin-

gularity exists for crack positions up to a distance very
close to the inclusion until the crack is not touching
the inclusion. In a similar investigation Erdogan et al.
(1974) calculated the generalized stress field around
the crack tip and stress intensity factors (SIFs) using
Green’s function for an arbitrarily oriented crack with

respect to a circular inclusion. A model predicting an
increase in fracture toughness due to crack deflection
and twisting around a secondary phase filler is pro-
posed by Faber and Evans (1983). They have shown
the dependence of fracture toughness on morphology
and volume fraction of the secondary phase, while the
fracture toughness is shown to be invariant relative to
particle size.

There have been several analytical and numerical
studies on the topic. Analytical approaches have been
developed for problems concerning cracks along the
interface of various types of inclusions (e.g., Tamate
1968; Sendeckyj 1974; Hwu et al. 1995). Numerical
techniques, including finite element method (e.g., [Li
and Chudnovsky 1993a,b Ferber et al. 1993; Lipetzky
and Schmauder 1994; Lipetzky and Knesl 1995; Haddi
and Weichert 1998]) and boundary element method
(BEM) (e.g., [Bush 1997; Knight et al. 2002; Wang
et al. 1998]), have been employed to investigate this
type of fracture behavior under static loading condi-
tions. Recently, the dynamic response of the interaction
between a crack and an inclusion using the time-domain
BEM has been studied by Lei et al. (2005). Note that the
dual BEM (DBEM) is used in Bush (1997) and Knight
et al. (2002) while the sub-domain BEM technique is
adopted in Wang et al. (1998) and Lei et al. (2005). Li
and Chudnovsky (1993) have numerically shown that
when a crack approaches a rigid inclusion in a relatively
compliant matrix, the crack tip is shielded from the far-
field stresses. This decreases stress intensification at the
crack tip and hence lowers the ERR. They also show
that typically, a crack tip gets shielded when the crack
approaches an inclusion while stresses are amplified
when the crack propagates away (departs) from the par-
ticle. Bush (1997) has investigated the effect of single
inclusion and an inclusion cluster on crack trajectory
and energy release rate. He considered two different
types of inclusions in his simulations; ones which were
perfectly bonded to the matrix and the others with inter-
face flaws or partially bonded to the matrix. He showed
that pre-existing flaws on inclusion–matrix interface at-
tract the propagating crack. The crack deflection around
an inclusion is noticed when the crack tip is one radius
away from the inclusion. Knight et al. (2002) examined
crack deflection/attraction mechanisms in a crack–par-
ticle interaction investigation by performing a series of
parametric studies for different Young’s modulus and
Poisson’s ratio mismatches. For the inclusions with and
without interphase regions between filler and matrix,
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Poisson’s ratio was shown to significantly affect crack
trajectories.

The key feature of the BEM approach is that only the
boundary of the domain is discretized and only bound-
ary quantities are determined. It is generally recognized
that the BEM is particularly well suited for linear elastic
fracture mechanics, as the method is known to provide
more accurate results for stress and there is no need
for re-meshing the boundary during the modeling of
crack propagation. Recently, the symmetric-Galerkin
boundary element method (SGBEM) has been devel-
oped (e.g., Bonnet 1995; Bonnet et al. 1998) and has
shown several key advantages in fracture applications:
(a) as the name implies, SGBEM formulation results in
a symmetric coefficient matrix; (b) the presence of both
displacement and traction BIE enables fracture prob-
lems to be solved without using artificial sub-domains;
(c) unlike BEM or DBEM, there is no smoothness
requirement on the displacement (e.g., Gray 1991; Mar-
tin and Rizzo 1996) in order to evaluate the hypersingu-
lar integral; thus, standard continuous and quarter-point
(QP) elements can be employed.

In both finite and boundary element fracture mod-
eling, the standard approach consists of incorporating
the

√
r displacement behavior at the crack tip by means

of the QP element (Henshell and Shaw 1975; Barsoum
1976), where r is the radial distance from the crack
tip. Recently, Gray and Paulino (1998) have proved
that, for an arbitrary crack geometry, a constraint ex-
ists in the series expansion of the crack opening dis-
placement (COD) at the tip. As discussed in Gray and
Paulino (1998), the QP element in general fails to sat-
isfy this constraint, and this has led to the development
of an improved modified quarter-point (MQP) element
(Gray et al. 2003). It was demonstrated in Gray et al.
(2003) that the accuracy of the computed SIFs using
the Displacement Correlation Technique (DCT) can
be significantly improved by incorporating this MQP
element into the SGBEM. This suggests that stress
methods such as the maximum principal stress crite-
rion (MPSC) (Erdogan and Sih, 1963) can effectively
be used as the criteria for crack-growth direction in a
quasi-static crack-growth prediction tool made up from
the SGBEM, the MQP, and the DCT.

The focus of this paper is on simulations of crack-
growth through particulate polymer matrix composites.
Of interest is the study of the effects of inclusion size,
eccentricity and crack tip shielding on crack path and
SIF, and the effects of particle arrangement and volume

fraction on the ERR of a brittle particulate composite
such as glass-filled epoxy. The simulations are carried
out using the crack-growth prediction tool mentioned
above. The performance of the tool is bench marked
by running crack growth simulations in an unfilled or
neat matrix and comparing the obtained SIF variation
with an available analytical solution. It is shown from
this work that, even with a simple local SIF method
such as the DCT, and a simple stress method for crack
growth direction, the proposed numerical tool is able
to capture complex interplay of crack–tip shielding and
amplification mechanisms for various crack–inclusion
interaction situations.

2 A Crack-growth prediction tool

2.1 SGBEM fracture analysis

This section provides a very brief review of the SGBEM
and its application to fracture. The reader is asked to
consult the cited references for further details.

Consider a domain B containing a crack�c = �+
c +

�−
c on which only tractions are prescribed and τ+

c =
−τ−

c (Fig. 1). The boundary integral equation (BIE)
without body forces for linear elasticity is given by
Rizzo (1967). For a source point P interior to the do-
main, if the displacements u+

c and u−
c are replaced

by the COD �uc = u+
c − u−

c on �+
c , and note that

τ+
c + τ−

c = 0, the BIE is written as

U(P) = uk(P)

−
∫
�b

[
Ukj (P, Q) τ j (Q)− Tkj (P, Q) u j (Q)

]
d Q

+
∫
�+

c

Tk j (P, Q)�u j (Q) d Q = 0, (1)
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Fig. 1 A body B containing a crack
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where Q is a field point, τ j and u j are traction and
displacement vectors, Ukj and Tkj are the Kelvin ker-
nel tensors or fundamental solutions, �b denotes the
outer boundary of the domain, and d Q is an infinitesi-
mal boundary length (for 2-D) or boundary surface (for
3-D cases).

It can be shown that the limit of the integral in Eq.
(1) as P approaches the boundary exists. From now on,
for P ∈ � = �b + �c, the BIE is understood in this
limiting sense.

As P is off the boundary, the kernel functions are
not singular and it is permissible to differentiate Eq.
(1) with respect to P , yielding the hypersingular BIE
(HBIE) for displacement gradient. Substitution of this
gradient into Hooke’s law gives the following HBIE for
boundary stresses:

S(P) = σk�(P)

−
∫
�b

[
Dkj�(P, Q)τ j (Q)− Skj�(P, Q)u j (Q)

]
d Q

+
∫
�+

c

Sk j�(P, Q) �u j (Q) d Q = 0 . (2)

Expressions for the kernel tensors Ukj , Tkj , Dkj�

and Skj� can be found in Bonnet (1995).
The Galerkin boundary integral formulation is ob-

tained by taking the shape functions ψm employed in
approximating the boundary tractions and displacements
as weighting functions for the Eqs. (1) and (2). Thus,∫
�

ψm(P)U(P) d P = 0 , (3)
∫
�

ψm(P)S(P) d P = 0 . (4)

A symmetric coefficient matrix, and hence a sym-
metric-Galerkin approximation, is obtained by employ-
ing Eq. (3) on the boundary �(u) where displacements
ubv are prescribed, and similarly Eq. (4) is employed on
the boundary �(τ ) with prescribed tractions τbv . Note
that� = �(u)+�(τ ). The additional boundary integra-
tion is the key to obtain a symmetric coefficient matrix,
as this ensures that the source point P and field point
Q are treated in the same manner.

2.2 Modified quarter-point element

The 2-D QP element is based upon the three-
equidistant-noded quadratic element. For t ∈ [0, 1],
the shape functions for this element are given by

ψ1(t) = (1 − t)(1 − 2t) ,

ψ2(t) = 4t (1 − t) , (5)

ψ3(t) = t (2t − 1) .

As mentioned in the Introduction, this QP element fails
to satisfy a constraint in the series expansion of the
COD at the crack tip (Gray and Paulino, 1998). A rem-
edy was presented in Gray et al. (2003) and this results
in the following MQP shape functions (ψ̂1(t) is not
required as �u = 0 at the crack tip):

ψ̂2(t) = − 8
3 (t

3 − t) ,

(6)ψ̂3(t) = 1
3 (4t3 − t) .

It can be observed that the modified shape functions
(6) still satisfy the Kronecker delta property ψ̂i (t j ) =
δi j . This new approximation is only applied to the COD,
as we must use the standard shape functions (5) for the
representation of the crack tip geometry. This ensures
that the property t ∼ √

r remains.

2.3 Stress intensity factors by the DCT

There are several approaches for numerically evalu-
ating SIFs. Among these approaches, the DCT based
upon the COD in the vicinity of the crack tip is a very
simple method. In case of using the MQP element, the
expressions for SIFs by means of the DCT are given by
(Gray et al., 2003)

KI = µ

3(κ + 1)

√
2π

L

(
8�u(2)2 −�u(3)2

)
,

(7)
KII = µ

3(κ + 1)

√
2π

L

(
8�u(2)1 −�u(3)1

)
.

where µ is the shear modulus, ν is Poisson’s ratio, and

κ = 3 − 4ν (plane strain) ,

(8)
κ = 3 − ν

1 + ν
(plane stress) .

Since SIFs are directly given in terms of the nodal
values of the COD at the crack tip element, the use
of MQP element herein is highly beneficial as it would
enhance the accuracy of the nodal CODs, thus the accu-
racy of the obtained SIFs. Further, energy release rate
G is calculated using SIFs by,

G = κ + 1

8µ
(K 2

I + K 2
II). (9)
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2.4 Maximum principal stress criterion

There are several criteria for predicting crack growth
direction (e.g., Erdogan and Sih, 1963; Sih, 1974). The
MPSC proposed by Erdogan and Sih (1963) is adopted
herein. According to this criterion, the crack growth
direction θc is perpendicular to that of the maximum
principal stress, and the crack will propagate when KI

exceeds the fracture toughness KIc of the material.
Since in the direction θc, σrθ = 0, i.e.

σrθ = KI sin θc + KII(3 cos θc − 1) = 0 (10)

thus,

θc = 2 tan−1

⎛
⎝ KI

4KII
± 1

4

√(
KI

KII

)2

+ 8

⎞
⎠ . (11)

A quasi-static crack-growth prediction tool based
upon the SGBEM, the MQP crack-tip element, the DCT
and the MPSC is employed for the simulations con-
ducted in this work. By incorporating the MQP shape
functions (6) into a SGBEM code, accurate CODs �u
at the mid and end nodes of any crack-tip element may
be obtained (see Eqs. (1) and (2)). The SIFs at the crack
tip of interest will then be evaluated by substituting the
related CODs in the DCT formulas (7). If KI ≥ KIc the
crack-growth direction θc of the crack tip in question
is determined by Eq. (11), and an infinitesimal crack
increment is added in that direction during the simu-
lation. As a result, remeshing a propagating crack is
straightforward. Only a new crack-tip element needs
to be added in the crack-growth direction θc while the
previous element discretization remains unchanged. At
issue is obviously the size of the new crack-tip ele-
ment. Smaller sizes, although leading to more time-
consuming simulations, are expected to result in more
accurate results.

3 Simulation results and discussion

To investigate the effects of particle arrangement and
volume fraction on crack and particle–cluster interac-
tion, a plane stress situation involving a cracked sheet
of dimensions 140 mm× 40 mm× 8 mm is considered1.
The material properties of the matrix and inclusions

1 The dimensions are chosen with future experimental simula-
tions involving optical interferometry in mind (Kitey and Tippur,
2005a)

are matched with those for epoxy and glass, respec-
tively, with an elastic modulus (E) 3.2 GPa and Pois-
son’s ratio (ν) 0.3 for epoxy and E = 70 GPa, ν =
0.3 for glass. The loading configuration considered in
all simulations is one of 3-point bending of an edge
cracked sheet/beam. A crack is located at the edge of the
sheet opposite to the loading point and along the load-
ing axis. The line joining the initial crack tip and load-
ing point is referred to as line-of-symmetry throughout
the article.

3.1 Benchmarking and mesh convergence

To ensure a high degree of accuracy of SIFs calculated
by BE simulations, first a single edge notched geometry
(see inset in Fig. 2(a)) of neat matrix material without
any inclusions is carried out. The geometry is a sym-
metrically loaded 3-point bend configuration. The ini-
tial crack length is chosen such that a/W = 0.25 where
W is the total width of the chosen geometry. In the
simulations, equal length boundary elements are used
to represent specimen edges including the initial crack.
This length is determined first by performing a con-
vergence study. The SIF results for different element
lengths varying from W/10 to W/40 as a function of
crack length are determined for a symmetrically loaded
3-point bend configuration using [Anderson 1995],

KI = 3 P L
BW 2

√
a

2
(
1 + 2 a

W

) (
1 − 2 a

W

)3/2

[
1.99 − a

W

(
1 − a

W

)

×
{

2.15 − 3.93
a

W
+ 2.7

( a

W

)2
} ]
. (12)

Non-dimensional SIF (= KI
B

√
W

P ) values from
SGBEM are compared with analytical results in Fig.
2(a) for different a/W ratios. With a decrease in element
length accuracy of SIF calculations increase. Good agree-
ment between calculated KI values using SGBEM and
analytical results are evident when an element length of
W/40 is used. For this choice, a high degree of accuracy
can be expected up to a/W = 0.75 with an error less
than 2.5%. Beyond a/W = 0.75, however, the accuracy
reduces due to the dominance of loading point stresses
on the crack tip stress field.

Next, the crack tip increment length in the direction
of propagation is determined separately to match exper-
imentally determined crack paths in a mixed-mode
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(a)

(b)

Fig. 2 (a) Comparison between the analytical results and
SGBEM results for various boundary element lengths, (b) Crack
propagation for mixed-mode loading; crack trajectory from BEM
is superimposed on experimentally obtained crack path for an
eccentrically applied load at the distance L/4 from the line-
of-symmetry

loading situation. The crack geometry used in the simu-
lations is the same as shown earlier for the mode-I case
(Fig. 2(a)), except for the location of the applied load.
The loading point is at a distance of L/4 from the line-of-
symmetry, where L is the span. Various crack tip incre-
ments were used before choosing�a/W = 6.25×10−3

in the simulations. The loading configuration, speci-
men geometry and the fractured epoxy specimen from
an experiment are shown in Fig. 2(b). The crack trajec-
tory from BE analysis is superimposed on experimen-
tally obtained crack path. Excellent agreement between
crack paths shows the accuracy of SGBEM in capturing
mode-mixity using the chosen crack tip increment.

3.2 Crack tip shielding

Next, crack growth is simulated in the presence of a
rigid inclusion in the crack path. When inclusions are
perfectly bonded to the matrix material, crack deflec-
tion is a prominent toughening mechanism. The crack
deflection depends on inclusion size, inclusion eccen-
tricity with respect to the crack orientation, the number
of inclusions surrounding the crack tip, etc. As men-
tioned earlier, a rigid inclusion in a relatively compliant
matrix shields the crack tip as it is approached. How-
ever, the shielding depends on the location of the inclu-
sion with respect to the initial crack orientation. Also,
the particle size, particle eccentricity, the number of
particles and arrangement of particles around the crack
tip are some of the other parameters which affect the
degree of shielding.

First a case when a cylindrical inclusion of diam-
eter d = W/10 is symmetrically located in front of a
crack tip is considered. In this, the inclusion is located
in front of the initial crack tip at p/W = 0.65, where
p is the distance of the center of the inclusion in the
x-direction (see Fig. 3(a)). The plot in Fig. 3(b) shows
the variation of nondimensional KI with crack length
a/W . For comparison the KI variation for the case of
the neat matrix is also shown. A sharp decrease in SIF
can be noticed from the plot as the crack approaches the
inclusion. The inclusion in front of the crack shows a
negligible effect on KI until the crack reaches a length
of approximately a/W = 0.45. This suggests that the
presence of rigid inclusion in front of the crack is felt
only when the tip is at the distance of ≈ 1d from the
inclusion. When the crack is d/4 away from the inclu-
sion, KI decreases substantially. The KI approaches
zero as the crack propagates further and reaches the
inclusion.

The accuracy of ERR calculations were validated
against the results reported in Ref. [Bush 1997]. The
geometry and loading configuration (see Figs. 3 and 7
in [Bush 1997]) is shown in Fig. 4(a). The inclusion
radius r is considered as L/20, where L is the length
of the planar body with an edge crack. The ratio of the
elastic modulii E p/Em is varied from 2 to 8, where the
subscripts p and m correspond to the inclusion and the
matrix, respectively. The Poisson’s ratio for the inclu-
sion and matrix are considered as 0.33 and 0.17, respec-
tively. In Fig. 4(b) nondimensional ERR, G/G0, is plot-
ted with varying nondimensional crack lengths, where
G0 is the ERR for the matrix. The crack tip shielding



Modeling of crack growth by symmetric-Galerkin boundary element method 17

(a)

Fig. 3 Crack tip shielding by a rigid inclusion in front of a mode-
I crack: (a) Loading configuration; (b) Comparison between SIF
variations in the presence and absence of inclusion

increases (i.e., G/G0 decreases) with increasing E p/Em .
The crack senses the rigid particle in front of it at least
from a distance of ≈ 5 radii. The observed G/G0 varia-
tions for various E p/Em are same as the ones reported
by Bush 1997) and hence suggests the accuracy of ERR
calculations from SGBEM in the presence of second-
ary phases. Minor differences in ERR value, when the
crack reaches the particle can be attributed to the differ-
ent methods of ERR calculation (DCT method in cur-
rent study).

The crack tip shielding and amplification effects are
further explored by simulating a mode-I problem with a
pair of inclusions ahead of a propagating crack. A sym-
metrically located pair of inclusions with respect to the
crack orientation, as shown in Fig. 5, leads to crack
growth under mode-I conditions. Here the inclusions
are located at p/W = 0.5 or, W/4 away in the x-direc-
tion from the initial crack tip. The separation distance
‘s’ between inclusions is varied from d/8 to 2d, where
d = W/10. Figure 5 shows the variation of G/G0 with
a/W .

Denoting the inclusion location (the orientation of
the center of the inclusion(s)) in the x-direction as p/W ,

Fig. 4 Validation of ERR calculation from SGBEM in the pres-
ence of secondary phase filler, (a) Problem geometry and loading
configuration, (b) Variation of non-dimensional ERR for various
E p/Em , νp = 0.17, νm = 0.33

Fig. 5 Crack tip shielding and amplification effects due to a pair
of symmetrically situated inclusions in the crack path

it is evident that as the crack length approaches p/W ,
crack tip shielding effects begin to manifest as decreas-
ing ERR (G/G0 < 1) values with a/W . It can be noticed
that maximum shielding occurs when the crack tip is
approximately d/2 in front of the center of the inclusion.



18 R. Kitey et al.

(a) (b)

(d)(c)

Fig. 6 The effect of eccentrically situated rigid inclusions rel-
ative to the initial crack on crack deflection and energy release
rate; (a) Crack deflection with varying inclusion eccentricity; the
inclusion location is shown with respect to initial crack orienta-
tion; (b) Variation of maximum crack deflection from the line-

of-symmetry with inclusion eccentricity for inclusion diameter
d = W/10; (c) Variation in nondimensional ERR with a/W ; (d)
Crack propagation around a rigid inclusion from SGBEM simu-
lation

Further crack propagation decreases shielding. That is,
the nondimensional ERR reaches a value of unity when
the propagating crack length a/W reaches p/W . As the
crack propagates beyond p/W , an amplification of ERR
(G/G0 > 1) values can be seen. The maximum ampli-
fication is seen when the crack tip is at a distance of d/2
away from the center of the inclusion. The amplifica-
tion begins to vanish as the crack propagates away from
this location. The above crack shielding/amplification
effects are similar to the ones reported in Refs. [Li and
Chudnovsky 1993; Bush 1997].

From the plots in Fig. 5 it can also be seen that the
shielding/amplification effect increases as the inclusion
separation distance decreases. The effects are quite evi-
dent even when the inclusions are 2d apart. Interest-
ingly, the magnitude of maximum shielding is always

greater than the magnitude of maximum amplification
for a given value of s. If one were to associate the de-
crease in inclusion separation as a measure of increase
in filler volume fraction, these results suggest that even
at low volume fractions shielding effects are significant
and the effect increases as the filler volume fraction
increases.

3.3 Particle eccentricity effect

Next, interaction between a crack and an isolated inclu-
sion located eccentrically to the initial crack is
investigated. Of particular interest is the role inclusion
eccentricity plays on crack deflection and the result-
ing ERR variation during crack growth. As shown in
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Fig. 6(a), the center of the inclusion is located W/4 away
from the initial crack tip in the x-direction. The inclu-
sion eccentricity ‘e’ (the distance between the center
of the inclusion and the line-of-symmetry) is varied
from d/4 to 2d while the load is applied symmetrically
in a 3-point bend configuration as before. The crack
paths around inclusions for different values of eccen-
tricity are shown in Fig. 6(a). In these simulations, the
crack propagates nearly in a mode-I fashion until the
tip reaches a/W ≈ 0.45 or ≈ 1d in front of the center
of the inclusion. As the crack propagates further, the
angle of deflection2 increases. A sharp increase in the
angle of deflection can be noticed from a/W ≈ 0.45
onwards, when the crack is d/2 behind the the center
of the inclusion. The angle of deflection attains a max-
imum value at a/W ≈ 0.475. This is followed by a
decrease in the angle of deflection with the crack still
propagating away from the line-of-symmetry. When
the crack travels ≈ d/2 away from the particle location
p/W , the crack begins to propagate towards the line-of-
symmetry with a relatively small angle of deflection.
Plots suggest that the crack deflection increases as the
eccentricity decreases. A symmetrically oriented inclu-
sion (e = 0) can be viewed as a limiting case when the
crack gets stalled at the inclusion–matrix interface (see
Fig. 3(b)). The variation of maximum crack deflection
with inclusion eccentricity is shown in Fig. 6(b). From
the plot it appears that the maximum crack deflection
increases exponentially with decreasing eccentricity.

The effect of inclusion eccentricity on ERR is pre-
sented in Fig. 6(c). The figure shows the variation of
nondimensional ERR, G/G0, with a/W . It can be seen
from the plots that ERR decreases as the crack ap-
proaches the inclusion. The minimum value of ERR
occurs when a/W ≈ 0.45 or when the crack tip is
located ≈ d/2 behind the the center of the inclusion.
With further crack propagation, ERR values increase
and approach unity as a/W reaches p/W . An ampli-
fication in SIF and hence ERR can be noticed as the
crack starts propagating away (recede) from the inclu-
sion. This relatively small increase in ERR continues
until crack propagates a distance of approximately d/2
away from the inclusion. With further crack propaga-
tion, G/G0 decreases and asymptotically approaches
unity. Similar to the effects of eccentricity on crack

2 Angle of deflection is the absolute angle between the line-
of-symmetry (initial crack orientation) and the tangent to the
crack path at any instant.

deflection, G/G0 increases as the inclusion eccentricity
e decreases. The maximum effect can be seen for zero
eccentricity (also shown in Fig. 3(b)).

It should be be emphasized here that the crack growth
and ERR calculations are based on propagation occur-
ring in the matrix material at all times. If the crack were
to enter the matrix–inclusion interfacial region, crack
tip fields corresponding to dissimilar material inter-
faces will have to be used [He and Hutchinson 1989].
Simulations reported here correspond to the crack
growth occurring close to an interface yet in the matrix
only as a sub-interfacial crack. An example of the same
for the case of e = d/4 is shown in Fig. 6(d).

For the sake of completeness, the combined effects
of shielding and eccentricity are studied next using a
pair of inclusions located eccentrically with respect to
the line-of-symmetry (see Fig. 7). The separation dis-
tance ‘s’ between the inclusions is kept constant (s =
d/2) while the eccentricity of the inclusion nearest to
the line-of-symmetry is varied from d/2 to 3d/4. The
variation of crack path for various eccentricities are not
shown here for brevity which showed similar eccentric-
ity effect as for the case of single inclusion (Fig. 6(a))
with an exception of relatively small crack deflections.
The variation of G/G0 with a/W is plotted in Fig. 7.
Plots overlap on each other in most part except when
the crack propagates between a/W ≈ 0.4 and 0.5 (i.e.,
from a distance ≈ 1d in front of the particle center) for
various eccentricities. Small but monotonic variation in
minimum value of G/G0 can be noticed with increasing

Fig. 7 Variation of G/G0 with a/W in the presence of eccen-
trically located pair of inclusions showing the combined effect
of shielding and inclusion eccentricity (Note: Eccentricity of the
inclusion-pair is defined for the nearest inclusion center relative
to the crack)
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inclusion eccentricity. The lowest magnitude of G/G0

(at a/W ≈ 0.45) decreases with decrease in eccentric-
ity, the minimum being for the case of symmetrically
located pair of particles. Interestingly the eccentricity
of a pair of particles is noticed to be playing negligible
role on amplification.

3.4 Particle size effect

In this part the effect of inclusion size on crack deflec-
tion and ERR is investigated. An inclusion is located at
a distance W/4 away from the initial crack tip with an
eccentricity of d/2 (see Fig. 8(a)). The inclusion diam-
eter is varied from W/40 to W/5. The crack paths for
various sizes of inclusions at p/W = 0.5 is shown in
Fig. 8(a). Again, the load is applied symmetrically in a
3-point bend configuration. Evidently, the crack prop-
agates in a mode-I fashion until the inclusion is ≈ 1d
in front of the crack tip. As the distance between the
inclusion and the crack tip decreases, crack deflection
increases. The angle of deflection attains a maximum
value when the crack tip is at a distance of ≈ d/4 from
the particle center. Interestingly, the crack deflection
keeps increasing even after the crack tip grows past
the particle centerline. Maximum crack deflection oc-
curs when the crack travels across the inclusion and
propagates d/2 away from the inclusion center. With
further crack propagation a slight reversal of angle of
deflection can be seen and the crack travels towards the
line-of-symmetry with a relatively small angle. Also it
can be noticed that the presence of a larger inclusion
is felt earlier by the crack tip. The amount of crack
deflection increases with the increase in inclusion size.
Figure 8(b) shows the variation of maximum deflec-
tion from the line-of-symmetry with inclusion diam-
eter. For an eccentricity of d/2, plot suggests that the
maximum deflection varies monotonically (with slight
non-linearity) with inclusion size.

The inclusion size effect on ERR is shown in Fig.
8(c). Plots show the variation of G/G0 with a/W for var-
ious inclusion sizes. The size effect in terms of decreas-
ing ERR is evident for all inclusion sizes. As one would
expect, the effect can be noticed much earlier as the par-
ticle size increases. The largest among the chosen inclu-
sions shows the lowest non-dimensional ERR, while in
case of smallest inclusion the crack propagates with
G/G0 ≈ 1 until a length of a/W ≈ 0.40. For all inclu-
sion sizes G/G0 decreases when the crack propagates

Fig. 8 Role of particle size on crack deflection and ERR: (a)
crack deflection in the presence of inclusions of various diame-
ters for a fixed eccentricity e = d/2; (b) variation of maximum
crack deflection from the line-of-symmetry with inclusion diam-
eter; (c) variation in non-dimensional ERR with a/W

towards the inclusion, which attains a minimum when
the crack tip is at a distance of d/2 from the inclusion
centerline. This is similar to the results obtained in
case of crack-tip shielding and inclusion eccentricity
effects. With further crack propagation G/G0 increases
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and reaches a maximum just before it travels d/2 across
the center of the inclusion. This is followed by a mono-
tonic but gradual decrease in G/G0. Similar to the pre-
vious results, for all inclusion sizes greater shielding
occurs while the crack is traveling towards the inclu-
sion compared to the amplification effect while reced-
ing from the inclusion. Also from the plots it can be
noticed that these effects increase with an increase in
inclusion size.

3.5 Crack propagation through particle clusters

Next, simulations of crack growth through idealized
clusters of particles in a brittle and compliant matrix
is undertaken. In a typical particulate composite sec-
ondary phase is randomly distributed in a matrix at a
known volume fraction. In the present work, this situ-
ation is approximated using a particle–cluster. Particle
distribution, particle size, inter particle distance (clus-
ter radius), and cluster orientation relative to the initial
crack orientation, are some of the parameters which can
be used to characterize a cluster. In this study, a six-
particle-cluster (see Fig. 9(a)) with a centrally located
particle surrounded by five others at the corners of a
uniform pentagon is used. Unlike square, hexagonal or
octagonal arrangements of particles, this pattern cap-
tures randomness of fillers in a matrix to a greater de-
gree while being characterized by a few simple param-
eters. In the current study, a single cluster is positioned
ahead of a crack tip in the loading geometry used ear-
lier. The cluster geometry for a chosen particle diameter
d is defined in terms of (i) distance between particles
on the periphery and the center one (cluster radius R)
and (ii) the smallest angle (θ ) of the surrounding parti-
cles from the line-of-symmetry, as shown in the figure.
Clearly, the crack particle cluster interaction and its
effects on crack path and ERR depend on the cluster
orientation θ and a measure of volume fraction, which
are investigated next.

3.5.1 Effect of cluster orientation

As the propagating crack negotiates various members
of a particle-cluster, the crack path become tortuous
causing greater energy dissipation and higher overall
fracture toughness compared to a neat matrix. In this
context, it is interesting to address the effect of parti-

Fig. 9 Interaction between a crack and a particle cluster with
a pentagonal arrangement: (a) cluster orientation is defined in
terms of θ . Crack path in the presence of particle cluster is shown:
(b) crack deflection in the presence of particle cluster of various
orientations; (c) variation of ERR with a/W showing the effect
of cluster orientation

cle arrangement such as cluster orientation relative to
the initial crack impingement. Accordingly, the role of
angular parameter θ (see Fig. 9(a)) on crack growth
behavior through a particle cluster is studied next. In
these simulations, the center of the cluster is consid-
ered to be located at a distance of C/W ≈ 0.4 where C
is the distance of the center of the inclusion from the
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initial crack tip. The cluster radius is considered as 2d,
d being the inclusion diameter. The angle θ is varied
from 21◦ to 33◦ for the pentagonal arrangement used
here. Figure 9(b) shows the crack propagation for var-
ious cluster orientation angles. Evidently, significant
crack path deflections within the cluster can be noticed
from the figure. The crack deflection from the first par-
ticle influences the subsequent growth towards the sec-
ond and so on. The crack, already deflected away from
the line-of-symmetry of the cluster at the first inter-
action, undergoes further deflection due to the central
particle of the cluster. As the crack propagates further
and away from the central particle, the effect of next
neighboring particles can be noticed. The differences in
crack paths are greatest when the crack interacts with
the first particle of the cluster. That is, crack deflec-
tion increases monotonically with increasing angular
parameter θ . The opposite trend is evident when the
crack reaches the central particle—the crack deflection
at the central particle of the cluster decreases with θ .
Once the crack recedes from the central particle, all
crack paths essentially coincide as the crack leaves the
cluster. These observations suggest that, the net effect
of the angular parameter θ on cumulative crack deflec-
tion is small even though crack paths within the cluster
are significantly different.

The above observations can be further quantified in
terms of ERR for each crack path corresponding to
different values of θ . The effect of the change in θ
on ERR is shown in Fig. 9(c). Nondimensional ERR
is plotted against a/W for various cluster orientations.
Plots show significant variation in G/G0 as the crack
propagates and interacts with surrounding particles.
Interestingly, ERR values for all cluster orientations
are lower when compared to the case of unfilled (neat)
matrix material. This suggests lowering of crack tip
stress intensification as various elements of the cluster
are encountered by the crack resulting in an overall in-
crease in fracture toughness of the material. The cluster
orientation affects crack propagation and hence G/G0

differently. As can be seen from the plots that for 300

orientation, the first particle interaction gives lowest
G/G0, while for the case of 210 orientation the center
particle in the cluster affects G/G0 the most. For other
orientations, the values of G/G0 are bounded by the
values for these two cases. In order to estimate which
cluster orientation dissipates the most energy, average
value of nondimensional ERR (ERRa) for each case is
determined. Here, ERRa is defined as,

ERRa = 1

(a/W )

∫
G

G0
d

( a

W

)
. (13)

The ERRa for the crack propagation between a/W =
0.25 and 0.70 has been evaluated. For the chosen cluster
orientations 21◦, 24◦, 27◦ and 30◦, the ERRa values are
0.83, 0.83, 0.84 and 0.80, respectively. Thus, it can be
again be concluded that the effect of cluster orientation
has negligible effect on energy dissipation.

3.5.2 Effect of cluster volume fraction

The effect of particle volume fraction on crack growth
is considered next. This can be done by changing ei-
ther the cluster radius (R) and keeping the particle size
(d) constant or by changing the particle size and keep-
ing the cluster radius constant. To avoid particle size
effects, an investigation is performed for various clus-
ter radii with a fixed particle size.3 It has already been
shown in the previous section that cluster orientation
has only a small effect on ERR. Therefore the cluster
orientation is chosen such that the central particle of
the cluster is located symmetrically at C/W ≈ 0.4 rel-
ative to the initial crack tip and the particle nearest to
the initial crack tip has d/3 eccentricity (e) as shown
in Fig. 9(a). Defining a control volume to find volume
fraction is not straight forward for the chosen pentago-
nal cluster arrangement because it cannot be replicated
symmetrically in all directions. Therefore instead of
volume fraction, a parameter ‘area ratio’ is defined for
quantification purpose. The area ratio, AR, is defined
as the ratio of the total area occupied by the particles
inside the pentagon to the total area of the pentagon
itself.

Figure 10(a) shows crack deflections in the presence
of particle cluster for 10% to 25% area ratios. Similar
but distinct crack paths can be seen for various val-
ues of AR. As with the cluster orientation study, crack
paths show dependency on the value of AR. Earlier
crack deflection can be noticed for the case of 10% AR
due the presence of a particle much closer to the initial
crack tip when compared to other AR values. With an
increase in AR, the crack deflections occur at differ-
ent a/W values sequentially. The first interaction is the

3 C
W = 3

40 in this case. A different particle diameter is chosen
compared to the previous computations so that simulations can
still be performed for lower volume fractions without the cluster
geometry interfering with the initial crack tip.
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Fig. 10 Interaction of a crack with a particle cluster to study the
effect of volume fraction: (a) crack deflection for various volume
ratios; volume ratio is changed by expanding the cluster radius
R shown in Fig. 9(a); (b) variation of energy release rate with
crack growth

only dominant distinguishing feature among the differ-
ent crack paths. The paths tend to merge while propa-
gating around the central inclusion. That is, the crack
trajectory is essentially same between a/W ≈ 0.54 and
0.60 in the figure. With further crack propagation the
paths show variation with AR. The distinct crack paths
beyond a/W ≈ 0.60 are due to the difference in sur-
rounding inclusion locations. Interestingly, when com-
pared to the crack deflection in the presence of a single
particle (Figs. 6(a), 8(a)), prominent and higher crack
deflection can be noticed for the cluster for all values
of AR.

Figure 10(b) shows the variation of nondimension-
al ERR with a/W for various area ratios. A combined
effect of crack tip shielding and amplification, parti-
cle size effect and particle eccentricity with respect to
propagating crack can be seen in terms of distinct G/G0

variation for different ARs. For lower AR values the

decrease in ERR can be noticed earlier due to the prox-
imity of initial crack tip to the nearest particle. But this
also gives rise to an early amplification as the crack
propagates away from the particle. The amplification
effect is more prominent for lower AR values due to
its larger inter-particle separation distance. In case of
higher ARs, however, the amplification effect is rela-
tively suppressed due to the proximity of next neighbor-
ing particle. When a crack negotiates the first periph-
eral particle of the cluster, the lowest G/G0 occurs at
different a/W values depending upon the particle loca-
tion with respect to the initial crack tip. Even though
the plots show distinct variations of G/G0 for various
ARs when a crack propagates around its first encoun-
ter, they all tend to follow the same path as the central
particle is approached. For all values of AR, nearly the
same G/G0 variation between a/W = 0.5 and 0.58 is
evident. Further crack propagation shows the effect of
next neighboring particle effect on G/G0, where again
lowest G/G0 occurs at different a/W depending upon
the particle location. This is followed by some increase
in G/G0 similar to the amplification effect, and then a
monotonic but gradual decrease in G/G0.

Here again the area ratio effect is quantified using
average ERR, ERRa , defined earlier in Eq. (13). A
crack propagates different distances within the parti-
cle cluster due to different cluster radius for each AR.
Hence, the same crack propagation length can not be
used to evaluate ERRa . Subsequently, a crack propaga-
tion length of 2R within the particle cluster is consid-
ered for comparison. For 10%, 15%, 20% and 25% AR
values, the ERRa values have been calculated as 0.88,
0.86, 0.85 and 0.83 respectively. A monotonic decrease
in ERRa with increase in AR can be noticed. This in
turn suggests that the material becomes relatively more
resistant to crack propagation with increase in volume
fraction of secondary phase rigid fillers.

4 Concluding remarks

An SGBEM-based tool is developed to simulate crack
growth in a heterogeneous brittle material system. Sim-
ulations are performed to study crack paths and to
compute SIFs under plane stress conditions. The quasi-
static crack-growth prediction tool is first bench marked
and simulations are performed to examine the particle
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size, eccentricity and the shielding effects on crack
growth in the presence of isolated inclusions. In these
simulations the secondary phases are assumed to be
perfectly bonded to a brittle and relatively compliant
matrix. Subsequently, crack growth through idealized
particle clusters of uniform pentagonal arrangement are
studied. The results are summarized as follows:

• A propagating crack is affected by a rigid inclusion
in terms of energy release rate ahead of visible crack
deflection. That is, ERR values are affected when
the crack is a few inclusion diameters (d) away from
it. On the other hand crack deflection is noticeable
only when the crack is ≤ 3d/2 from the center of the
inclusion while approaching it. For both symmetric
and eccentric inclusions (with respect to the initial
crack orientation), the energy release rate is mini-
mum when the crack tip is at a distance of ≈ d/2
from the center of the inclusion. As eccentricity
increases, the crack deflection decreases while the
energy release rate increases.

• Crack tip shielding and amplification increase with
decrease in inter particle separation distance in a
particle-pair arranged symmetrically relative to the
crack. For an eccentrically arranged particle-pair,
on the other hand, the crack tip shielding is greater
when compared to the symmetric case. However,
eccentricity has negligible effect on amplification.
In general, shielding effects are greater than ampli-
fication effects when a crack propagates around a
particle.

• Crack deflection increases and the energy release
rate decreases with increase in particle size when
the size of the reinforcement is in the range d/W =
2−20%. A propagating crack is influenced by a
larger particle in front much earlier than the smaller
ones. Yet, the crack deflection is relatively unaf-
fected by the inclusion when the tip is at a distance
of ≥3d/2 from the center of the inclusion.

• A crack propagating through a particle cluster shows
distinct crack trajectories for various cluster orien-
tations. The cluster orientation, however, has neg-
ligible effect on overall energy dissipation.

• The crack path depends upon the cluster area ratio,
AR. The total energy dissipation decreases with in-
crease in cluster AR. This suggests that the material
becomes more resistant to the crack propagation for
higher area ratios.
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