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a b s t r a c t

The fracture behavior of particulate composite materials when subjected to dynamic loading has been a

great concern for many industrial applications as these materials are particularly susceptible to impact

loading conditions. As a result, many numerical and experimental techniques have been developed to

deal with this class of problems. In this work, the fracture behavior of particulate composites under

impact loading conditions is numerically studied via the two most important fracture parameters:

dynamic stress intensity factors (DSIFs) and dynamic T-stress (DTS), and the results are compared

with the experimental data obtained in Refs. [1,2]. Here, micromechanics models (self-consistent,

Mori–Tanaka, y) or experimental techniques need to be employed first to determine the effective

material properties of particulate composites. Then, the symmetric-Galerkin boundary element method

for elastodynamics in the Fourier-space frequency domain is used in conjunction with displacement

correlation technique to evaluate the DSIFs and stress correlation technique to determine the DTS. To

obtain transient responses of the fracture parameters, fast Fourier transform (FFT) and inverse FFT are

subsequently used to convert the DSIFs and DTS from the frequency domain to the time domain. Test

examples involving free–free beams made of particulate composites are considered in this study. The

numerical results are found to agree very well with the experimental ones.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are particularly susceptible to impact
loading conditions in which loads are applied rapidly, randomly or
deliberately such as those seen in aerospace, automotive, production,
or construction industries, etc. As a result, it is important to
understand the fracture behavior of composite materials under these
loading conditions. Conventional theories suggest that the fracture
behavior can be assumed by the crack initiation, propagation and
branching in the vicinity of a crack tip. The two important fracture
parameters which can be used to describe the dynamic fracture
behavior are the dynamic stress intensity factors (DSIFs) and
dynamic T-stress (DTS). Therefore, many numerical and experimental
techniques have been developed to study these parameters.

To determine the DSIFs and DTS experimentally, one needs to
measure the crack tip deformations during a dynamic fracture
event at high spatial and temporal resolutions. In the past
the focus has been primarily with the accurate evaluation of the
former although a few reports have addressed DTS measurements
in recent years. The works which have focused on DSIF

measurements include those of Dally [3] who used photoelasticity
and high-speed photography. Tippur and co-workers [4–7] have
used coherent gradient sensing (CGS) method to study the
dynamic fracture behavior of a variety of composite materials.
Kokaly et al. [8] have used moiré interferometry along with high-
speed photography to study aluminum alloys.

The recent advances in high-speed digital imaging at recording
rates exceeding a million frames per second has made it feasible to
study fast-fracture events using other methods and improve the
accuracy of measured fracture parameters. Recently, Kirugulige and
co-workers [1] used the method of digital image correlation (DIC)
and high-speed photography for the measurement of transient
deformations near a crack under dynamic loading. In their work,
random speckle patterns on a specimen surface before and after
deformation are acquired, digitized and stored. In the undeformed
image, subimages are chosen and the locations of similar subimages
are identified on the deformed image. Once the subimages are found
in the deformed image, the displacements can be easily estimated.
The obtained displacements are processed using least-squares
method to extract the DSIFs and DTS using asymptotic crack tip
field expressions. The measurement of these fracture parameters are
shown to favorably compare with their finite element analysis
results. Moving from the photographic methods, Jiang et al. [9] used
split-Hopkinson pressure bar apparatus to find the dynamic
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responses in a pre-cracked specimen. They derived simple formula
to find the DSIFs from dynamic responses using vibration analysis
method. Ivanyts’kyi et al. [10] applied dynamic torsion on a
cylindrical specimen with an external circular crack and proposed
a combined numerical and experimental method to determine the
DSIFs. Due to the significant influence of the T-stress on crack path
and crack growth direction, more and more experimental methods
devoted to the measurement of this parameter can be found in the
literature. For example, Maleski et al. [11] measured the T-stress
under both static and dynamic loading conditions by optimal
positioning of stacked strain gage rosette near a mode-I crack tip.

On the numerical modeling side, several numerical methods
have been developed to determine the DSIFs such as finite
difference method (FDM, e.g., [12]), finite element method
(FEM, e.g., [13]), boundary element method (BEM, e.g., [14]),
symmetric-Galerkin boundary element method (SGBEM, e.g.,
[15,16]) and scaled boundary finite element method (SBFEM,
e.g., [17]). In Ref. [15], boundary integral equations (BIEs) for
elastodynamics in the frequency domain are employed in
conjunction with a modified quarter-point crack-tip element
and displacement correlation technique (DCT) to accurately
calculate the DSIFs. A conversion of the frequency DSIFs to those
in the time domain is done by using fast Fourier transform (FFT)
and inverse FFT (IFFT) as described in Ref. [16]. Numerous
numerical methods such as FEM (e.g., [18]), BEM (e.g., [19]),
SGBEM (e.g., [20,21]), and SBFEM (e.g., [22]) have also been used
for determining the T-stress, while SBFEM (e.g., [22]), SGBEM
(e.g., [23]), and BEM (e.g., [24]) for the DTS. Phan [21] developed a
non-singular boundary integral formulation based upon a stress
correlation technique for evaluating the T-stress and the techni-
que is extended to cover the DTS in Ref. [23]. Song and Vrcelj [22]
extended the SBFEM to evaluate the DSIFs and DTS for two
dimensional problems without any requirement of internal mesh
and asymptotic solution close to the singular point. Sladek et al.
[24] used BEM to express path independent integral (M-integral)
formulation through the dynamic J-integrals for determining the
DTS on the basis of relation found between the M-integral and
T-stress. A comparison was conducted to the DTS values
computed by the M-integral, boundary layer and displacement
field methods for a rectangular plate with a central crack.

BEM have been recognized as an effective technique for
fracture analysis (e.g., [25]). The key feature of the BEM is that
only the boundary of the domain is discretized. This implies that,
for fracture analysis, the singular stress field ahead of the crack is
not approximated, and that remeshing a propagating crack is an
easier task. Among the variants of the BEM, SGBEM (e.g., [26]) has
several additional advantages: (a) its coefficient matrix is
symmetric as the name implies; (b) the use of both displacement
and traction BIEs enables fracture problems to be solved without
artificial sub-domains; and (c) unlike most variants of the BEM,
standard continuous elements can be employed. Thus, SGBEM can
easily exploit highly effective quarter-point quadratic elements
(e.g., [27]) to accurately capture the crack tip behavior.

In addition to important developments of the SGBEM for stress
and fracture analysis in elastostatics, the SGBEM for elastody-
namics in the Fourier-space frequency domain has recently been
extended to fracture applications [15,16,24]. Following an SGBEM
fracture analysis in the frequency domain, FFT and IFFT are
subsequently employed to convert the DSIFs and DTS from the
frequency domain to the time domain. These transient responses,
especially in the immediate aftermath of an impact loading, are of
special interest as most dynamic responses usually reach their
maximum value during this period.

In this work, the SGBEM for elastodynamics in the Fourier-space
frequency domain developed in Refs. [15,16,24] is employed to
evaluate the DSIFs and DTS for free–free beams made of particulate

composite materials. To this end, the effective material properties
ultrasonically measured are utilized. These numerical solutions are
compared with some known experimental results for the purpose of
validation.

2. Fracture analysis using SGBEM

In this section, fracture analysis using the SGBEM for 2-D
elastodynamics in the Fourier-space frequency domain is briefly
presented. More details of the technique can be found in, e.g., [16].

Consider a domain of boundary G containing a crack. Let
G¼Gb[G

þ
c [G

�
c where Gb is the boundary of the non-crack part,

and Gþc and G�c are the ‘‘plus’’ and ‘‘minus’’ surfaces of the crack,
respectively. Further, let Gb ¼Gbu[Gbt where Gbu and Gbt are the
boundary parts where displacement and traction are known,
respectively. Finally, let Gt ¼Gbt[G

þ
c and note that traction is

assumed to be known on the crack surfaces.
For a given angular frequency o and a source point P interior

to a 2-D domain of boundary G, the displacement BIE for
elastodynamics in the frequency domain is given by

UðP,oÞ � ukðP,oÞ�
Z
Gb

UkjðP,Q ,oÞtjðQ ,oÞ�TkjðP,Q ,oÞujðQ ,oÞ
� �

dQ

þ

Z
Gþc

TkjðP,Q ,oÞDujðQ ,oÞdQ ¼ 0 ð1Þ

where Q denotes a field point, Ukj and Tkj are the elastodynamic
kernel tensors (e.g., [28] or [16]), uj and tj are the displacement
and traction vectors, respectively, and Duj is the crack
displacement jump vector.

When P is off the boundary, Ukj and Tkj are not singular and it is
possible to differentiate Eq. (1) with respect to P, resulting in the
displacement gradients. By substituting these gradients into
Hooke’s law and then Cauchy’s relation, one gets the following
traction BIE:

T ðP,oÞ � tkðP,oÞ�nlðPÞ

Z
Gb

DkjlðP,Q ,oÞtjðQ ,oÞ�SkjlðP,Q ,oÞujðQ ,oÞ
� �

dQ

þnþl ðPÞ

Z
Gþc

SkjlðP,Q ,oÞDujðQ ,oÞ ¼ 0 ð2Þ

where nl is the outward normal vector to the boundary and the
elastodynamic kernel tensors Dkjl and Skjl can also be found in [28]
or [16]. This traction equation is required for dealing with crack
geometries.

It is known that the limits of the integrals in Eqs. (1) and (2)
exist as P approaches G. From now on, for a boundary source point
P, the displacement and traction BIEs are understood in this
limiting sense.

Unlike the collocation methods, the Galerkin approaches
enforce Eqs. (1) and (2) over the entire boundary. To obtain a
symmetric coefficient matrix as the name SGBEM implies, Eq. (1)
needs to be enforced over Gbu while Eq. (2) is enforced over Gt.
This is done by using the shape function cm, employed in
approximating the boundary tractions and displacements, as
weighting functions for these equationsZ
Gbu

cmðPÞUðP,oÞdP¼ 0 ð3Þ

Z
Gt

cmðPÞT ðP,oÞdP¼ 0 ð4Þ

The main computational task in numerically implementing
Eqs. (3) and (4) is the evaluation of their singular integrals.
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As these equations have a similar form as those in elastostatics, it
is convenient to employ a technique based upon the following
kernel decomposition:ZZ

IddQdP¼

ZZ
IsdQdPþ

ZZ
ðId�IsÞdQdP ð5Þ

where Id and Is denote an elastodynamic kernel and its elastostatic
counterpart, respectively. On the right-hand side of Eq. (5),
treatments for the elastostatic integral

RR
IsdQdP are known

elsewhere, while an evaluation of the second integral, which is
weakly singular at most, was discussed in, e.g., [16].

3. DSIFs by the SGBEM and displacement correlation
technique

Among the methods available for numerically evaluating
the DSIFs, the DCT is one of the simplest. For an angular frequency
o, the DSIFs are given by

KIðoÞ ¼ bm
ffiffiffiffiffiffi
2p
p

lim
r-0

DunðoÞffiffiffi
r
p ð6Þ

KIIðoÞ ¼ bm
ffiffiffiffiffiffi
2p
p

lim
r-0

DutðoÞffiffiffi
r
p ð7Þ

where Dun and Dut are the normal and tangential components of
the displacement jump vector, respectively, and r is the distance
to the crack tip.

In Eqs. (6) and (7),

b¼
4bpbs�ð1þb

2
s Þ

2

4bpð1�b
2
s Þ

ð8Þ

and

bp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðc=cpÞ

2
q

ð9Þ

bs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðc=csÞ

2
q

ð10Þ

c2
p ¼

lþ2m
r

ð11Þ

c2
s ¼ m=r ð12Þ

where r is the mass density, c is the crack tip velocity, cp and cs

are the compressional and shear velocities, respectively, and l and
m are effective Lamé’s constants. For particulate composites, these
effective constants can be measured experimentally or deter-
mined using micromechanics models such as self-consistent or
Mori–Tanaka model (e.g., [29]). Note for elastodynamic analysis
that the internal damping of the material can be considered by
means of a complex shear modulus defined as

mc ¼ mð1þ2izÞ ð13Þ

where i is the imaginary unit and z is the damping ratio.
The DSIF calculations reported in this work are carried out

using the modified quarter point (MQP) element developed in Ref.
[27]. By using the MQP shape functions in Eqs. (6) and (7), the
mode-I and mode-II DSIFs can be obtained as follows:

KIðoÞ ¼
bm
3

ffiffiffiffiffiffi
2p
L

r
8Duð2Þn �Duð3Þn

� �
ð14Þ

KIIðoÞ ¼
bm
3

ffiffiffiffiffiffi
2p
L

r
8Duð2Þt �Duð3Þt

h i
ð15Þ

where L is the distance between the two end-nodes of the
crack tip element, and the superscripts (2) and (3) denote the
quarter-point node and the non-crack-tip end-node, respectively.

According to Eqs. (14) and (15), the DSIFs are directly given
in terms of the nodal values of the displacement jump of the
crack-tip element. As the MQP element enhances the accuracy
of the nodal displacement jumps obtained from a SGBEM
analysis, the use of the MQP directly improves the accuracy of
the obtained DSIFs.

4. DTS by the SGBEM and stress correlation technique

T-stress is a non-singular stress, which is the first non-singular
term in the series expansion of the stress component parallel
to the crack and ahead of a crack tip. In addition to the SIFs,
the T-stress has also been considered as an important fracture
parameter as numerous studies have shown that the sign and
magnitude of the T-stress can have a substantial influence on
the crack tip behavior. For a good review on the roles of the
T-stress on different fracture aspects, the reader is referred to the
work by Wang [30].

The stress distribution near a crack tip was early investigated
by Williams [31]. In polar coordinates (r, y) associated with this
crack tip (see Fig. 1), the stress components sij can be expressed by

s11 s12

s21 s22

" #
¼

KIffiffiffiffiffiffiffiffi
2pr
p

f11ðyÞ f12ðyÞ
f12ðyÞ f22ðyÞ

" #

þ
KIIffiffiffiffiffiffiffiffi
2pr
p

g11ðyÞ g12ðyÞ
g12ðyÞ g22ðyÞ

" #
þ

T 0

0 0

� �
þOðr1=2Þ ð16Þ

where the first two terms in the above equation are singular at the
crack tip while the third term for s11, which is parallel to the crack,
is finite. This finite term, denoted as T, is the so-called T-stress. Also
in Eq. (16), fij(y) and gij(y) are universal functions representing the
angular distributions of the crack tip stresses [31].

In the following, the stress correlation technique (SCT) is used to
determine the T-stress. By using the expressions for fij(y) and gij(y),
Eq. (16) can be explicitly expressed in vector format as follows:

s11

s22

s12

8><
>:

9>=
>;¼

KIffiffiffiffiffiffiffiffi
2pr
p cos

y
2

1�sin
y
2

sin
3y
2

1þsin
y
2

sin
3y
2

sin
y
2

cos
3y
2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ
KIIffiffiffiffiffiffiffiffi
2pr
p

�sin
y
2

2þcos
y
2

cos
3y
2

� �

sin
y
2

cos
y
2

cos
3y
2

cos
y
2

1�sin
y
2

sin
3y
2

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
þ

T

0

0

8><
>:

9>=
>;þOðr1=2Þ

ð17Þ

For y¼0 (along the crack direction and ahead of the crack tip)

s11

s22

( )
¼

KIffiffiffiffiffiffiffiffi
2pr
p

1

1

	 

þ

T

0

	 

þOðr1=2Þ ð18Þ

Thus

T ¼ lim
r-0
½s11ðr,0Þ�s22ðr,0Þ� ð19Þ

In this work, Eq. (19) is evaluated using the BIE for the stress
components. Consider a crack in a finite domain as shown in
Fig. 1. Let P be the crack tip and P 0 be a point ahead of P and in the
x1-direction (y¼0). The boundary integral representation of the
stress components in Eq. (19) involves a limit process in which P 0

V. Guduru et al. / Engineering Analysis with Boundary Elements 34 (2010) 963–970 965
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tends to the crack tip P(r-0) and is given by [21]

sklðPÞ ¼

Z
Gb

DkljðP,Q ÞtjðQ Þ�SkljðP,Q ÞujðQ Þ
� �

dQ

� lim
P u-P

Z
Gþc

SkljðP u,Q ÞDujðQ ÞdQ ð20Þ

Note that, as the crack surfaces are symmetrically loaded,
Stj ¼ tþj þt�j ¼ 0 and thus the integrand term �DkljðP u,Q ÞStjðQ Þ

does not appear in the second integral.
For frequency-domain dynamic fracture analysis, the DTS for

an angular frequency o can be obtained by applying the Fourier
transform to Eq. (19). The result is

TðoÞ ¼ lim
r-0
½s11ðr,0,oÞ�s22ðr,0,oÞ� ð21Þ

Substituting the frequency-domain elastodynamic version of
Eq. (20) in Eq. (21) results in [23]

TðoÞ ¼
Z
Gb

DDjðP,Q ,oÞtjðQ ,oÞþDSjðP,Q ,oÞujðQ ,oÞ
� �

dQ

þ lim
P u-P

Z
Gþc

DSjðP u,Q ,oÞDujðQ ,oÞ
� �

dQ ð22Þ

where DDj ¼D11j�D22j and DSj ¼ S22j�S11j.
For all o40 and as P 0-P, the second integral in Eq. (22) must

be bounded as T-stress is a finite term. In order to demonstrate
that, let rewrite Eq. (22) as follows:

TðoÞ ¼
Z
Gb

DDjðP,Q ,oÞtjðQ ,oÞþDSjðP,Q ,oÞujðQ ,oÞ
� �

dQ

þ lim
P u-P

Z
Gþc

DSs
j ðP u,Q ÞDujðQ Þ

h i
dQ

þ lim
P u-P

Z
Gþc

DSjðPu,Q ,oÞ�DSs
j ðPu,Q Þ

h i
DujðQ ,oÞdQ ð23Þ

where DSs
j is the static counterpart of DSj.

After this equation being discretized, the only limits required
are those associated with the crack tip element. By denoting these
limits as Tct one gets

Tct ¼ lim
P u-P

Z
Gþct

DSjðP u,Q ÞDujðQ ÞdQ

þ lim
P u-P

Z
Gþct

DSjðP u,Q ,oÞ�DSs
j ðP u,Q Þ

h i
DujðQ ,oÞdQ ð24Þ

where Gþct is part of Gþc discretized by the crack tip element.

By using the standard quadratic shape functions to numeri-
cally implement Eq. (24), it can be shown that the first integral
in this equation is continuous as P 0-P [21]. The second integral
should also be bounded as its integrand is only weakly
singular [23]. As a result, the limit processes in Eq. (24) are not
necessary and the two integrals can be directly evaluated at the
crack tip (P 0 �P).

Here, T(o) given by Eq. (23) is evaluated as a post-processing
step after tj, uj, and Duj in this equation are available from the
processing stage of a SGBEM dynamic analysis. It can be observed
that using Eq. (23) to evaluate the DTS is much simpler and more
economic than using other techniques such as the interaction
integral method (IIM) (e.g., [24]). As shown in Ref. [23], this
technique also offers better accuracy for the DTS than the IIM.

5. Obtaining transient responses from frequency-domain
results

For the dynamic analysis of a system in the frequency domain,
the dynamic response F (output, such as DSIFs or DTS) of the
system and the load P (input) are related by

FðoÞ ¼HðoÞPðoÞ ð25Þ

where H(o) is called the frequency response. Since H(o)¼
F(o)/P(o), the frequency response is the response of the system
due to a unit harmonic load P(o)¼eiot.

Fig. 2 depicts a model for obtaining the time history (transient
response) from frequency response analysis of damped systems
such as those considered in this paper. In this model, the problem
under a unit harmonic load (eiot) is analyzed first using the
SGBEM to obtain the frequency response H(o). In the mean time,
the time-dependent load P(t) is converted to the frequency
domain (P(o)) by means of FFT. Relation (25) is then employed
to obtain the dynamic response F(o) in the frequency domain.
Finally, IFFT is used to transform F(o) into the time domain F(t).

A procedure for obtaining the transient responses by FFT and
IFFT can be summarized as follows:

(a) Determine a frequency resolution Df (o¼2pf) which needs
to be small enough to minimize the loss of frequency
information.

(b) Perform a SGBEM analysis for a series of frequencies, namely
f¼0, Df, 2Df, y, (N/2)Df¼ fNyq, where N¼2m and m is a
positive integer, to obtain the frequency response H(o) for the
first (N/2+1) samples. Here, the Nyquist frequency fNyq needs
to be chosen such that frequency responses above fNyq are not
significant and can thus be discarded. Note that the very first
sample (k¼1) is the static sample (f¼0).

(c) For the last (N/2�1) samples (k¼N/2+2, y, N), H(o) must be
determined such that it is conjugate symmetric about the
Nyquist frequency (see Fig. 3 for an example where
fNyq¼1.024 MHz), i.e.,

HðkÞ ¼ conjðHðN�kþ2ÞÞðk¼N=2þ2,. . .,NÞ ð26Þ

P

r

x2

x1

Crack tip 

+Γc

−Γc

Γb

P’

Fig. 1. Crack tip P and crack tip coordinate system x1–x2.

SGBEM Problem 
under 

Load FFT 

IFFT 

Fig. 2. A model for obtaining the transient responses using FFT and IFFT.
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(d) Perform FFT for the time-dependent load P(t) for the N

samples (k¼1, y, N);
(e) Calculate F(o)¼H(o)P(o);
(f) Perform IFFT for F(o) to obtain the transient response F(t).

Note that the period and time resolution (sampling interval) of
this transient response are Tf¼1/Df and Dt¼Tf/N, respectively;

(g) If the calculated Dt does not provide a good resolution for the
shape of the transient curves, interpolation [32] can be used
to improve this resolution. This is done by increasing the
value of Nyquist’s frequency while requiring no extra SGBEM

analysis as extra zeros are added to the frequency response
(see Fig. 4 where the Nyquist frequency is doubled from 1.024
to 2.048 MHz). As a result, the number of samples N is
increased accordingly which enhances the resolution of the
transient curves.

More details on this frequency domain analysis can be found
in, e.g., [17] where studies on the effects of the frequency
resolution Df and Nyquist’s frequency fNyq on the computational
cost of the analysis were presented.

6. Test problems

For the validation purpose of the proposed numerical
techniques discussed in the previous sections, two dynamic
fracture problems with known experimental results reported in
Refs. [1,2] are selected. These problems involve the mode-I [1] and
mixed-mode [2] dynamic fracture of three-point bend beams. As
the subject of dynamic crack propagation is beyond the scope of
the present work, the validation here is limited to the time
instants before crack initiation. According to Refs. [1,2] the crack
initiation occurred before a noticeable impact force on the
supported anvils (see, e.g., Figs. 5 and 6) because of greater time
lag in wave propagation. As the supports do not play any role in
the dynamic analysis of the DSIFs and DTS before the crack
initiation, instead of three-point bend beams, free–free beams are
employed in the numerical simulations presented herein.

As mentioned earlier, the beam geometry, size, materials and
loading conditions are adopted from Refs. [1,2] where experi-
mental data for the DSIFs and T-stress are available. Fig. 7 shows a
schematic for free–free beams used in the test examples of this
Section. Here, L¼200 mm, B¼8.75 mm (specimen thickness),
W¼50 mm, e¼0 (mode I) or 25.4 mm (mixed mode), and crack
length a¼10 mm.

6.1. Numerical vs. experimental results for the DSIFs (mode-I case)

In this case, the beam is made from an epoxy prepared by
mixing a bisphenol-A resin and an amine base hardner in the ratio
100:38 [1]. Young’s modulus, Poisson’s ratio, and the mass density
of the cured material measured ultrasonically are E¼4.1 GPa,
u¼0.34, and r¼1175 kg/m3, respectively [1]. The beam is
subjected to an impact load P at the center of the top surface
(e¼0) with time history depicted in Fig. 6. A damping ratio
z¼0.5% is employed for the numerical analysis [1]. For the case
discussed herein, the time history before the crack initiation for
the DSIFs is of interest.

Fig. 3. Conjugate symmetry about Nyquist’s frequency of frequency response H(o).

Fig. 4. Doubling time resolution by doubling Nyquist’s frequency.

Tup

Left anvil Right anvil 

Fig. 5. Specimen configuration for mode-I dynamic fracture experiment.
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The frequency responses of the DSIFs are obtained using
SGBEM with the following data: Df¼25 Hz, N¼212

¼4096,
fNyq¼51.2 KHz. This results in the following values for the
transient analysis using FFT and IFFT: Tf¼1/Df¼40 ms and
Dt¼Tf/N¼9.766 ms. In order to obtain accurate DISF results, a
convergence test was carried out in which these results were
plotted versus mesh refinement. This test suggests that a total of
65 elements for the boundary and 5 uniform elements for the
crack are sufficient to achieve convergence, thus the accuracy of
the SGBEM solution.

The SGBEM transient solution up to the crack initiation (at
about 133 ms [1]) is shown in Fig. 8 together with the experimental
and FEM results digitized from the related plot reported in Ref. [1].
Note in this case that the Nyquist frequency is doubled from 51.2
to 102.4 KHz to enhance the resolution of the SGBEM curves
shown in Fig. 8. It can be seen from this figure that (a) the SGBEM
solution for the mode-II DSIF (KII) is zero as expected for this
mode-I fracture case and (b) the SGBEM solution for KI agrees very
well with both the experimental and FEM results.

6.2. Numerical vs. experimental results for the DSIFs (mixed-mode case)

For this mixed-mode test, the beam is made from a syntactic
foam prepared by a mixture of 25% of hollow micro glass spheres
in a low-viscosity epoxy matrix. Young’s modulus, Poisson’s ratio,

and the mass density of the cured material measured ultra-
sonically are E¼3.02 GPa, u¼0.34, and r¼870 kg/m3, respectively
[2]. To create a mixed-mode fracture, the beam is subjected to an
impact load P at a distance e¼25.4 mm from center of the top
surface of the beam. The time history of this load is depicted in
Fig. 9 [2]. Again, a damping ratio z¼0.5% [2] is used for the
dynamic analysis of the DSIFs for this case.

The same data as those reported in Section 6.1 are employed
here to obtain the transient response of the mode-I and mode-II
DSIFs (KI and KII) up to the crack initiation time (at about 175 ms
[2]). These SGBEM solutions are compared with the experimental
and FEM results as depicted in Fig. 10 where an excellent
agreement can be seen.

6.3. Numerical vs. experimental results for the dynamic mode-mixity

c (mixed-mode case)

The dynamic mode-mixity c is defined as the relative amount
of in-plane shear stress to the normal shear stress. This parameter
is related to the DSIFs as

cðtÞ ¼ tan�1 KIIðtÞ

KIðtÞ

� �
ð27Þ

L/2 

e

a

W

L

P

Fig. 7. Geometry and loading of the free–free beam model.

Fig. 8. Numerical vs. experimental solutions for the mode-I and -II DSIFs (mode-I

case).

Fig. 9. Impact loading history for mixed mode case [2].
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Fig. 6. Impact loading history for mode-I dynamic fracture experiment [1].
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This section is devoted to a comparison between the numerical
and experimental solutions for the dynamic mode-mixity of the
mixed-mode fracture case described in Section 6.2. Here, the
SGBEM solution for the dynamic mode-mixity c is found by using
the corresponding DSIF solution obtained in Section 6.2. As seen
in Fig. 11, the SGBEM solution for c is favorably compared to the
experimental and FEM results. Although the FEM solution appears
to better match the experimental result than the SGBEM solution,
any comment on the accuracy of the SGBEM solution should be
inconclusive at this point as error estimates are unavailable for
the experimental curve [2].

6.4. Numerical vs. experimental results for the dynamic biaxiality

ratio b (mode-I case)

A dimensionless representation by the stress biaxiality ratio
was first proposed by Leevers and Radon [33] as

b¼ T
ffiffiffiffiffiffi
pa
p

=KI ð28Þ

where a is the crack length.
For dynamic analysis of cracks, the same concept can be

adopted to define the dynamic biaxiality ratio. Its time history is
thus given by

bðtÞ ¼
TðtÞ

ffiffiffiffiffiffi
pa
p

KIðtÞ
ð29Þ

As the dynamic biaxiality ratio is directly related to the DTS,
this parameter is used in this section to assess the accuracy of the
SGBEM solution for the DTS.

The mode-I fracture case of Section 6.1 is re-visited here. The
SGBEM solution for the DTS for this problem is obtained using the
technique discussed in Section 4. Again, the same data as reported
in Section 6.1 are employed to obtain the transient response of the
DTS. Finally, this DTS and the time history of the mode-I DSIF
obtained in Section 6.1 are used in Eq. (29) to produce the
transient response b(t) up to the crack initiation (at about 133 ms)
as shown in Fig. 12. The SGBEM solution can be seen to agree very
well with the FEM solution while both these numerical solutions
appear to be covered by the scattered data from the experimental
measurement.

7. Conclusion

Transient analysis of the DISFs and DTS for some particulate
composites, using the SGBEM for 2-D elastodynamics in the
Fourier-space frequency-domain, in conjunction with the DCT
(for the DSIFs) and SCT (for the DTS), is reported in this paper. To
this end, effective material properties of particulate composites
are required and they need to be measured experimentally or
determined using micromechanics models. This transient analysis
is performed for two fracture situations involving free–free beam
models under mode-I and mixed-mode fracture. Here, frequency
responses of the DSIFs and DTS are produced by the SGBEM.
Subsequently, the FFT and IFFT are employed to convert the
frequency-dependent solutions of these damped systems to
time-dependent ones (transient responses or time histories).
The two fracture cases are chosen from previous studies where
experimental results are available. The motivation behind this
work is to assess the accuracy of the SGBEM solutions via
comparisons with experimental results rather than with those
obtained from other numerical techniques. Four test examples,
involving the mode-I DSIF, mixed-mode DSIFs, dynamic mode-
mixity, and dynamic biaxiality ratio, are studied. Overall, the

Fig. 10. Numerical vs. experimental solutions for the mode-I and -II DSIFs (mixed-

mode case).

Fig. 11. Numerical vs. experimental solutions for the dynamic mode-mixity c.

Fig. 12. Numerical vs. experimental results for the dynamic biaxiality ratio b(t).
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SGBEM solutions agree very well with both the experimental and
FEM solutions for all these examples. As excellent agreements
have also been observed between the SGBEM solutions and those
from other numerical methods such as FDM, BEM and SBFEM (see
[16]), the numerical technique reported in this paper shows to be
an effective tool for dynamic fracture analysis. Extending this
technique to 2-D dynamic crack growth analysis is currently
being pursued by the authors.
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