
J O U R N A L O F M A T E R I A L S S C I E N C E 3 7 (2 0 0 2 ) 1649 – 1660
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Effective mechanical properties of microballoon-dispersed epoxy and urethane are studied
under quasi-static and dynamic loading conditions. Elastic modulus measurements of
these mixtures over a volume fraction range of 0–0.45 are in good agreement with
Hashin-Shtrikman lower-bound predictions for two-phase mixtures comprising of randomly
distributed spherical pores in an elastic matrix. The measurements have also been
predicted accurately by a LEFM based pore-flaw model for a selected flaw size to pore size
ratio. These imply that the microballoons offer negligible reinforcement due to extremely
small wall thickness to diameter ratio. Accordingly, feasibility of using these materials to
simulate controlled porosity for tensile strength and fracture toughness modeling is
explored. Measured tensile strength and fracture toughness values decrease monotonically
similar to the Young’s modulus variation with volume fraction of microballoons. Guided by
the measurements linear elastic models for porous materials that predict tensile strength
and fracture toughness of these mixtures are proposed and validated. The tensile strength
predictions are in very good agreement with measurements for both epoxy and urethane
compositions. The quasi-static crack initiation toughness prediction captures the
measurement trends rather well in both cases. The agreement between the measurements
and predictions are modest for epoxy matrix while they are good for urethane
compositions. Based on fracture surface micrography, an empirical corrective procedure is
advanced to improve the agreement between the measurements and the model. The
dynamic crack initiation toughness measurements for epoxy, on the other hand, are in
excellent agreement with the predictions. C© 2002 Kluwer Academic Publishers

1. Introduction
Porosity in dense engineering materials is often unde-
sirable for load-bearing applications. In other instances
porosity is highly beneficial for weight and cost reduc-
tion, enhancing damping and thermal characteristics
and, improving specific strength. Examples of natural
processes taking advantage of distributed porosity, as
in human bone [1] and wood, are also abundant. In-
spired by these biological materials, attempts to create
porous metallic implants of high degree of compatibil-
ity with human tissue are also reported [2, 3]. However,
research in this area continues as the mechanical prop-
erties of these deteriorate to a greater proportion with
the introduction of porosity [4, 5].

Designing for optimum specific stiffness and/or spe-
cific strength is an important goal in engineering [6]
where modeling mechanical properties of porous ma-
terials assumes great deal of significance. Influence of
porosity on brittle systems such as ceramic matrix com-
posites is well documented in a recent monograph by
Rice [7]. Among the early investigations into the me-
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chanical characterization of cellular materials, Gibson
et al. [8] have presented mechanics based analyses
of two-dimensional honeycomb structures. They have
considered bending, buckling and plastic collapse of
cell walls (‘struts’) for developing expressions for effec-
tive mechanical properties. It is shown that ratio of the
properties of the cellular material relative to that of the
‘strut’ are of the form C(ρ/ρs)q , where ρ is the effec-
tive density, ρs is the density of the wall material, C and
q are constants dependent on cell geometry. Using di-
mensional arguments, Gibson and Ashby [9] have sub-
sequently extended this concept to three-dimensional
cellular materials where the constant C is determined
experimentally. In their later work, Maiti et al. [10],
have introduced a semi-empirical relationship that also
shows that fracture toughness ratio of the cellular mate-
rial relative to its wall properties to depend on the den-
sity ratio. Krstic and Erickson [11, 12] have taken a lin-
ear elastic fracture mechanics approach for predicting
Young’s moduli in elastic porous solids wherein cylin-
drical and spherical pores are assumed to possess radial
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and annular flaws, respectively. Using elasticity solu-
tions for cavities in finite size bodies and crack open-
ing displacement concept, models have been developed
and verified with experimental data. Effective elastic
moduli of metal-matrix composites with damaged par-
ticles are estimated by Tong and Ravichandran [13]
using modified micro-mechanics procedures in uniax-
ial and hydrostatic tensile fields which can also be ap-
plied to situations with voids as well as damaged parti-
cles. Nielsen [14] has established relationships between
Young’s modulus and strength of porous materials for
aiding non-destructive evaluation of porous materials.
In all these works, material properties have been shown
to monotonically decrease with volume fraction of the
pores in the matrix.

Development of materials having controlled poros-
ity (pore shape, size and volume fraction) for modeling
and simulation (with the exception of honeycomb and
foam materials) purposes is quite challenging. Poly-
mer burnout method has been utilized by Zimmerman
et al. [15] to produce spherical pores of mean diameter
100µm in alumina. Using these samples they have stud-
ied crack instability ensuing from pore stress concentra-
tion near a free edge. Mechanical response of aluminum
MMC with microballoon of 1–2 mm diameter and wall
thickness to diameter ratios of the order of 0.1 are stud-
ied under uniaxial compression by Kiser et al. [16].
High degree compressive energy absorption during fail-
ure has been observed. Parameswaran and Shukla [17]
have used relatively thick-walled cenospheres (mean
diameter 127 µm and wall thickness 10–15 µm) in a
polyester matrix to create functionally graded material.
They have measured effective Young’s moduli, failure
strengths and fracture toughness for different filler vol-
ume fractions. Although particulate composite density
decreases with volume fraction, increasing tensile mod-

Figure 1 SEM micrographs of microballoons.

ulus and fracture toughness suggest reinforcement of
the matrix by the filler particles in case of Ref. [17].

In the current work, mechanical properties of
microballoon-dispersed epoxy and urethane are mea-
sured. Apparent tensile modulus, tensile strength and
fracture toughness are measured for different volume
fractions in the range 0 to 0.45. Based on the measure-
ments feasibility of simulating controlled porosity in
these polymers is examined by evaluating the measure-
ments relative to micromechanics models reported in
the literature. Subsequently, simple analytical models
are proposed for predicting tensile strength and fracture
toughness of porous brittle materials and validated by
the measurements.

2. Material preparation
Two types of polymeric sheets infiltrated uni-
formly but randomly with microballoons were pre-
pared. The volume fraction, V f ( = Vmicroballoons/

(Vmatrix + Vmicroballoons)), of the microballoons in these
sheets ranged between 0 and 0.45. The microballoons
used in this investigation were commercially avail-
able hollow soda-lime glass spheres of mean diameter
∼60 µm and wall thickness of the order of 100 nm
(∼400 nm). A typical micrograph of these fillers is
shown in Fig. 1. As it will be demonstrated in the subse-
quent sections, extremely small wall thickness relative
to the diameter these fragile fillers make it suitable for
modeling the mixture as a porous material with a rel-
atively high degree of accuracy under tensile loading
conditions. Other physical and mechanical properties
of the constituents are listed in Table I.

Two different thermoset polymers namely, two-part
epoxy and urethane were used as matrix materials in
this investigation. Each of these resins have relatively
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T ABL E I Properties of the constituents

Properties Microballoonsa Epoxy Urethane

Mean size ∼60 µm – –
Wall thickness ∼400 nm – –
KIc (MPa

√
m) 0.7 1.1 ± 0.1b –

Tensile modulus (MPa) – 3016b –
Tensile strength (MPa) – 58c 37d

Density (g/cc) 0.13 1.18 1.08d

Viscosity (centipoises) – 213c 546.7d

a3M Corp., Minneapolis, MN.
bReported by R. Young and P. Beaumont [17].
cBuhler Inc., USA.
dCONAP Inc., USA.

low viscosity at room temperature and long duration
(72 hours for epoxy and 168 hours for urethane) cur-
ing profiles thereby minimizing residual stresses in the
cured material. Manufacturer recommended ratios of
resin and hardener were used for material preparation.
Sufficient care was exercised to prevent trapping air
pockets in the mixture. Once the mixture gelled par-
tially, it was poured into 100 mm × 76 mm × 6 mm size
mold and allowed to completely cure. Measurement of
longitudinal wave speeds (∝ �[

√
(E/ρ), ν)], E , ν and

ρ being Young’s modulus, Poisson’s ratio and density,
respectively) using ultrasonic pulse echo technique at
discrete locations of each cured sheet was used as a
means of ensuring homogeneity of the material. Sheets
with wave speed variation of ±2.5% over the length of
the sheet were considered homogeneous and utilized
for further investigation.

3. Material characterization
3.1. Tensile tests
The stress-strain responses of materials with different
volume fractions were measured from uniaxial tensile
tests (Fig. 2) performed accordingly to ASTM standard
D-638 for rigid plastics. Standard dog-bone samples
were machined according to the dimensions shown in
Fig. 3. The tests were carried out at room temperature
using Instron Testing Machine (Model 4465) fitted with
a 5 kN load cell operating in the displacement control
mode. The cross-head speed was 0.25 mm/min. The
tests were repeated with three samples for each vol-
ume fraction. The stress-strain responses for un-filled
epoxy and urethane are shown in Fig. 4. Urethane is
significantly compliant compared to epoxy and has a
relatively nonlinear elastic response. For selected mix-

Figure 2 Tension test specimens.

Figure 3 Uniaxial stress-strain response for unfilled epoxy, urethane.

tures of epoxy and urethane with microballoon volume
fraction, stress-strain responses are shown in Fig. 4a
and b. The plots are essentially linear for epoxy mix-
tures while modest nonlinearity prior to failure is evi-
dent in urethane compositions.

As the volume fraction of the microballoons in
the matrix increase, the failure stresses and strains
decrease. Further, this leads to the reduction of the
Young’s modulus and an increase of the elastic strain
at a given stress. This has been explained by Krstic
and Erickson [12] as a consequence of crack opening
displacement caused by the presence of radial and/or
annular cracks associated with pores. The failure strains
are noticeably higher in urethane mixtures compared to
epoxy samples. The opposite is true when the tensile
strengths of these two materials are considered.

3.2. Elastic modulus—quasi-static
measurements

Young’s moduli were determined from uniaxial stress-
strain responses and are plotted as solid symbols in
Fig. 5a and b for epoxy and urethane samples. The
values of the Young’s moduli for unfilled polymers in
both cases agree well with the values reported in the lit-
erature [18]. The values decrease monotonically with
microballoon volume fraction over the entire range. Ap-
proximately 60% reduction in the Young’s modulus be-
tween infiltrated (V f ∼ 0.45) and unfilled polymers are
evident.

To investigate the feasibility of using microballoon
dispersion as a means of introducing controlled poros-
ity in these polymers, comparison of the measure-
ments with micro-mechanics predictions based Hashin-
Shtrikman lower bound estimation [19–21] was carried
out. It should be noted that, for spherical filler particles
in two-phase compositions, lower bounds are known to
offer accurate prediction of apparent Young’s modulus
[20] and hence recommended. For a two-phase mixture
comprising of matrix and spherical fillers, the apparent
bulk (B) and shear (µ) moduli are expressed in terms
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Figure 4 Stress-strain curves for microballoon-dispersed (a) epoxy compositions, (b) urethane compositions.

of the corresponding properties of the matrix (subscript
‘m’) and filler (subscript ‘ f ’) as,

Bc = B f + V f

1

Bm − B f
+ 3(1 − V f )

3Bm + 4B f

, (1)

µc = µ f + V f

1

µm − µ f
+ 3(1 − V f )(Bm − 2 µm)

5 µm(3Bm + 4 µm)

,

(2)

where V f is the filler volume fraction and subscript ‘c’
denotes the properties of the mixture. Now, bulk and
shear modulus estimates of the porous material in terms
of pore volume fraction and properties of the matrix
were determined by setting values of B f and µ f equal
zero in Equations 1 and 2. Subsequently, the Young’s

Figure 5 Comparison between predicted and measured quasi-static Young’s moduli for microballoon-dispersed (a) epoxy, (b) urethane compositions.

modulus was determined from the apparent bulk and
shear moduli using,

Ec = 9Bcµc

3Bc + µc
. (3)

The comparison between micro-mechanics predic-
tions (solid line) and experimental measurements (solid
symbols) are shown in Fig. 5. Excellent agreement be-
tween the two sets of data is evident over the entire
range of volume fractions studied. The maximum dif-
ference between the predictions and measurements in
each case is less than 10%. The agreement also suggests
negligible reinforcement of both epoxy and urethane
compositions by the microballoons and hence allows
further investigation of these compositions as porous
materials.

Also shown in Fig. 5 are the Young’s modulus pre-
dictions by Gibson and Ashby [8] for cellular solids
and modified Mori-Tanaka approach [22] for two-phase
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mixtures with filler phase properties set equal to zero.
Substantial under prediction of Young’s moduli by the
latter is evident for both epoxy and urethane mixtures.
On the contrary the cellular material model [8] over
predicts the measurements consistently but fairly ac-
curately. As discussed in the Introduction, a pore-flaw
model that accounts for stress concentration effects near
a pore along with crack opening displacements has
been proposed by Krstic and coworkers [12, 23, 24]
to explain the Young’s modulus reduction. In these, the
Young’s modulus of the porous material is given by,

Ec = Em

[
1 + 16Np R3

(
1 − ν2

m

)
3

φ

]−1

, (4)

where φ is a function that depends on the flaw size s
and the pore radius R as follows:

φ =
(

1 + s

R

)3

+ 9

2(7 − 5ν)

(
1 + s

R

)2 + 4 − 5ν

2(7 − 5ν)
,

and

Np = 3V f

4π R3
. (5)

In Equations 4 and 5, the flaw of size s is assumed to
be a hemispherical annular crack subjected to the stress
field in the vicinity of a spherical pore in an elastic
body. The Young’s modulus values calculated using
this model were found to agree well with the measured
ones when s/R ∼ 0.26 and s/R ∼ 0.22 for epoxy and
urethane compositions, respectively. The comparison is
shown as broken line in Fig. 5. It should be pointed out,
however, that in the absence of systematic guidelines on
the choice of s/R values and the experimental difficulty

Figure 6 Comparison between predicted and measured dynamic Young’s moduli for microballoon-dispersed (a) epoxy, (b) urethane compositions.

in determining such as value, the values selected were
based on trial and error.

3.3. Elastic modulus—dynamic
measurements

The values of apparent dynamic Young’s moduli (Ed )
for epoxy and urethane compositions were also deter-
mined for completeness. These values were determined
by measuring longitudinal (Cl) and shear (Cs) wave
speeds,

C2
l = Ed

ρ

(1 − ν)

(1 + ν)(1 − 2ν)
, C2

s = Ed

ρ

1

2(1 + ν)
,

(6)

in these materials using ultrasonic pulse-echo tech-
nique. In the above, ρ and ν denote apparent density and
Poisson’s ratio, respectively. The ultrasonic transducers
of crystal diameter 3 mm and 5 mm, operating at fre-
quencies of 10 MHz and 2.25 MHz, respectively, were
used for epoxy and urethane. The measurements were
used in conjunction with measured densities of differ-
ent mixtures and equations (6) to determine dynamic
Young’s modulus and Poisson’s ratio. Incidentally, the
variation in the value of Poisson’s ratio was found to be
small in the range 0.35 ± 0.01.

The variation of apparent dynamic Young’s moduli
with volume fraction is shown in Fig. 6 and is similar to
the ones seen for quasi-static counterparts. Due to the
rate dependency of the matrix materials, the values of
Young’s modulus are consistently higher for both types
of mixtures when compared to their quasi-static coun-
terparts shown in Fig. 5. The reduction in the values
of Ed between unfilled and the mixture with V f = 0.45
for both epoxy and urethane is again ∼60%. Shown in
Fig. 6, are the Hashin-Shtrikman predictions [20] for
two-phase mixtures with the elastic properties of the
filler set equal to zero, thereby representing predictions
for porous materials. Excellent agreement between the
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Figure 7 The variation of tensile strength of microballoon-dispersed (a) epoxy, (b) urethane compositions with volume fraction.

measurements and predictions are seen and reinforce-
ment of the matrix by the filler, if any, is therefore neg-
ligible. Also, shown in Fig. 6 are the predictions based
on the pore-flaw model (Equation 4) for the same s/R
values used in quasi-static counterparts. Evidently, the
agreement between the two is good.

4. Tensile strength
From the stress-strain responses shown in Fig. 4, ap-
parent tensile strengths, (σc)cr, of epoxy and urethane
compositions were also measured. The variation of ten-
sile strengths with volume fraction of microballoons is
shown in Fig. 7 by solid symbols. Nonlinear mono-
tonic reduction in the apparent tensile strength with
filler volume fraction over the entire range is observed.
Maximum strength reduction of approximately 60% in
both epoxy and urethane relative to unfilled matrix are
evident. Notably, the trends are similar to the variation
of Young’s modulus shown in Fig. 5. This phenomeno-
logical observation forms the basis for a simplified pre-
dictive model for tensile strength described next.

Predictive models for the apparent tensile strength of
particle reinforced composites are very limited (Nielsen
[14], Gibson and Ashby [9]). In the present work, a
strain energy based model is proposed for predicting
the strength of brittle porous bodies. Consider a porous
linear elastic sheet, shown schematically in Fig. 8. Let
the material have a random distribution of spherical
cavities throughout the matrix. Now, consider a tensile
stress σc acting on this sheet normal to the nominal
cross-section area A(=b × t , width and thickness, re-
spectively). The corresponding apparent tensile strain
be εc. Within the control volume (L × b × t), the aver-
age reduced cross-section area normal to the far-field
stress be 〈A′〉( =〈b′〉 × 〈t ′〉) due to the presence of cav-
ities in the material with 〈•〉 denoting ensembled av-
erage. Then, recognizing that the overall strain energy
stored in the porous composition is equal to that in the
matrix material, for linear elastic material behavior and

plane strain conditions,

AL

(
1

2
σcεc

)
= 〈A′〉L

〈
1

2
σxεx + 1

2
σyεy + 1

2
σxyγxy

〉
m

(7)

where x , y denote in-plane Cartesian coordinates of the
porous sheet as shown. By recognizing that strain en-
ergy in the matrix can be approximated by the dominant
first term to a high degree of accuracy (see, Appendix),
the right hand side of Equation 7 can be simplified as,

AL

(
1

2
σcεc

)
≈ 〈A′〉L

〈
1

2
σxεx

〉
m

≡ 〈A′〉L

(
1

2
〈σm〉〈εm〉

)
.

(8)

In the above, for simplicity the subscript ‘x’ has been
dropped and 〈σm〉 and 〈εm〉 denote the average values
of matrix stress and matrix strain components, respec-
tively. The above simplification implicitly takes into
account the reduction in stress concentration effects
with decreasing separation distance between pores [25].
Now, recognizing that σc A = 〈σm〉〈A′〉, Equation 7 be-
comes,

εc ≈ 〈εm〉. (9)

Equation 9 implies that the apparent strain in the porous
medium is approximately equal to the average ma-
trix strain component in the x-direction. Accordingly,
Equation 7 can be expressed as,

σc = Ec

Em
〈σm〉 ⇒ (σc)cr = Ec

Em
(〈σm〉)cr, (10)

where (σc)cr denotes the apparent tensile strength of the
mixture and (〈σm〉)cr is the tensile strength of the matrix.
Thus, the tensile strength of the porous composition is
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Figure 8 Uniaxial tension model to predict tensile strength.

described in terms of the Young’s modulus ratio of the
porous and matrix materials and, tensile strength of
the matrix. It should be noted that in Equation 10, the
matrix strength of the matrix material being constant,
the strength of the mixture is dependent on the volume
fraction of the cavities in the mixture through Young’s
modulus of the mixture (Ec ≡ Ec(V f )). This is similar
to the observations made by Nielsen [14] that Young’s
modulus and strength of porous materials are directly
related.

4.1. Experimental validation
The validity of the proposed model is demonstrated in
Fig. 7 for both the polymers. Evidently, good agreement
of generally better than 10% deviation between the
measurements and Equation 10 (solid line) is seen for
the entire range of volume fractions studied. Accord-
ingly, one could conclude, that despite its simplicity,
the proposed model is indeed able to capture the essen-
tial features of tensile strength behavior effectively for
these two material systems modeled as porous solids.

Krstic [24] has also proposed an expression for pre-
dicting the tensile strength of porous materials with
spherical cavities of diameter D as,

(σc)cr = 1

φ


 π Ecγ

D

(
1 + s

R

)(
1 − ν2

c

)




1/2

(11)

where φ is geometric function given by Equation 5,
and γ is the fracture energy of the matrix. Again, lin-
ear elastic fracture mechanics approach was used in
deriving Equation 11 where the existence of annu-
lar flaw (of size s) around the spherical pore was as-
sumed. The predicted values of the tensile strength us-
ing s/R ∼ 0.26 and s/R ∼ 0.22 for epoxy and urethane
compositions, respectively, however, deviate substan-
tially from the measurements and therefore not shown.

Further, predictions based on Equation 11 for the s/R
values mentioned in the previous section over estimate
the strength. In order for the model to agree with the
measurements, one has to select a significantly differ-
ent value of s/R(∼0.7) from the one used for predicting
Young’s modulus in Figs 5 and 6. One could, however,
see the applicability of pore-flaw model (Equation 4)
for predicting strength in from a different perspective.
Since the predicted values of Ec of the porous mate-
rial based on Equation 4 agree well with the measure-
ments, one could utilize Young’s modulus predictions
in Equation 10 for successfully predicting the measured
strength (and Equation 15 for predicting critical stress
intensity factors, to be discussed in the next section).
This in turn would incorporate the pore-flaw concept in
the strength prediction process.

5. Critical stress intensity factors
Another important aspect of the mechanical behavior
of porous materials is the fracture response. The crack
initiation toughness or critical stress intensity factors
(KI)cr in microballoon filled epoxy and urethane with
respect to the pore volume fraction were determined
using three-point bending tests. Edge notched beams,
shown schematically in Fig. 9, were prepared for se-
lected volume fractions up to 0.45. In each specimen, an

Figure 9 Loading configuration and geometry of single edge notched
specimen.
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initial notch of root radius 75 µm and length 5 mm was
introduced using a high-speed diamond-impregnated
circular saw. The notch was subsequently extended into
a sharp crack by gently tapping-in a wedge into the
mouth of the notch forcing the crack tip to ‘pop’ by a
few millimeters and arrest. Care was exercised to en-
sure the tip of the wedge from contacting the tip of the
notch during crack extension, thereby preventing un-
due residual deformations at the crack tip. The cracked
samples were loaded in an Instron Testing machine with
displacement controlled loading and quasi-static load-
ing history was recorded using a PC-based DAQ sys-
tem. Typically five samples were tested for each volume
fraction and the failure load (Pcr) in each case was used
to determine crack initiation toughness using [26],

(KI)cr = f

(
a

W

)
PcrS

BW 3/2
, (12)

with the geometric factor f (a/W ) given by,

f

(
a

W

)
=

3

√
a

W

(
1.99 − a

W

(
1 − a

W

)
− 2.15 − 3.93

a

W
+ 2.7

(
a

W

)2

2

(
1 + a

W

)(
1 − a

W

)3/2 .

In the above, a, S, B and W are crack length, span,
thickness and height of the beam samples (see Fig. 9),
respectively. The apparent critical stress intensity fac-
tors, [(KI)cr]c, determined from the above are plotted
as a function of volume fraction of the microballoons
in Fig. 10a and b for epoxy and urethane mixtures,
respectively. The measurements monotonically de-
crease with increasing volume fraction of the mi-
croballoons. This trend is similar to the observation of
other investigators for brittle ceramics having different

Figure 10 Predicted and measured effective crack initiation toughness of microballoon-dispersed (a) epoxy, (b) urethane.

degrees of porosity [27, 28]. The values of [(KI)m]cr
for unfilled epoxy and urethane are approximately 1.2
MPa

√
m and 1.45 MPa

√
m, respectively. The measured

value for the epoxy is also in good agreement with those
reported in the literature for quasi-static loading con-
ditions [18]. For epoxy, the reduction [(KI)cr]c for V f

ranging 0–0.45, is nearly 40% while for urethane it is
about 58%. These percentage reductions, particularly
in case of epoxy, are somewhat lower than the ones seen
for tensile strength over the same V f range. Crack ini-
tiation toughness being a local material characteristic,
fracture surface micrographs were studied in order to
reconcile this observation and will be discussed later.

As done with tensile strength, a simple model to pre-
dict critical stress intensity factors for brittle porous
materials based on linear elastic fracture mechanics
is proposed. The phenomenological observation that
[(KI)cr]c values decrease monotonically with microbal-
loon population similar to Young’s modulus and tensile
strength values is utilized in proposing this model. The

apparent stress intensity factor for a generic mode-I
crack in a microballoon-dispersed mixture is,

(KI)c = σc
√

πa, (13)

where a is the flaw size. Now, from Equation 10 σc can
be expressed in terms of σm to get,

(KI)c = Ec

Em
〈σm〉√πa. (14)
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The critical value of apparent stress intensity factor for
the porous composition [(KI)cr]c can then be expressed
as,

[
(KI)cr

]
c = Ec

Em
(〈σm〉√πa)cr = Ec

Em

[
(KI)cr

]
m, (15)

where [(KI)cr]m is the crack initiation toughness of
the matrix material. Thus, Equation 15 suggests that
[(KI)cr]c variation would be similar to that of the
Young’s modulus of the porous solid since Young’s
modulus and crack initiation toughness for the matrix
are constant. This is consistent with the earlier observa-
tion that experimentally measured values for the mix-
tures show monotonic reduction in [(KI)cr]c similar to
the trends for Ec in both epoxy and urethane.

5.1. Experimental validation—quasi-static
loading

Solid lines in plots in Fig. 10a and b were obtained from
Equation 15 and are superimposed on the experimen-
tal measurements. In each case Equation 15 provides
a conservative estimate of the apparent crack initiation
toughness value for all volume fractions considered.
Evidently, the agreement between the measurements
and the predictions is only modest for epoxy with bet-
ter agreement seen at lower volume fractions and in-
creasing deviation with V f . In case of urethane, on the
other hand, the agreement is rather good over the entire
range.

As alluded to earlier, fracture behavior being a local
crack tip response, micrographs of the fracture sur-
faces were examined to further ascertain the observa-
tions. The fractured surfaces of microballoon-dispersed
epoxy and urethane with a volume fraction of 0.25
were studied using SEM. Typical micrographs for the
same are shown in Fig 11a and b. The fracture sur-
face morphology reveals that the microballoons have
completely fractured in both types of matrix. Further,
cleavage fracture in epoxy matrix is readily evident

Figure 11 SEM micrographs for (a) epoxy, (b) urethane, infiltrated with microballoons at 0.25 volume fraction (quasi-statically fractured surfaces).

while in case of urethane it is relatively fibrous due
to higher degree of material nonlinearity. Interestingly,
in case of epoxy mixture, in addition to hemispher-
ical microballoon fracture, some also appear to have
separated from the surrounding matrix material. This
suggests additional dissipation of energy (in addition
to matrix and microballoon fracture) during crack ini-
tiation and growth. On the contrary, microballoon in-
terfacial separation is minimal in case of urethane mix-
ture. Since all other parameters such as microballoon
size, material processing and experimental methods are
identical, interfacial energy dissipation is potentially at
the root of somewhat larger deviation between exper-
iments and predictions in Fig. 10a. In this context, it
should be noted that since nominal fracture toughness
value of soda-lime glass (∼0.7 MPa

√
m [29]) is signif-

icantly lower than that for both the matrix materials and
the wall thickness of microballoons being of the order
of 100 nanometers, the energy dissipated through mi-
croballoon fracture would be a negligible fraction of the
total energy for fracture. Accordingly, interfacial sepa-
ration is a likely source of deviation between measured
and predicted values of [(KI)cr]c. An empirical way of
accounting for the deviation is to modify Equation 15
as,

[
(KI)c

]
cr − Kcor ≡ [

(KI)c
]′

cr = Ec

Em

[
(KI)m

]
cr, (16)

where Kcor denotes a stress intensity factor correction
that takes into account interfacial separation seen in
some microballoons. Thus, [(KI)c]′cr in Equation16 de-
note approximate values of apparent stress intensity
factors at crack initiation in the absence of any micro-
interfacial separations. Now, assuming Kcor to be of
the form, Kcor

∼= αV f |Kint|, where α denotes a known
fraction of microballoons (0 ≤ α ≤ 1) which show in-
terfacial separation along a typical crack front and
|Kint| represents an ‘average’ value of interfacial crack
initiation toughness. Here α can be determined from
the micrographs by the percentage of total number of
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particles showing evidence of separation from the ma-
trix. To proceed further, a value of |Kint| is necessary.
It is widely recognized that interfacial fracture process
is inherently mixed-mode in nature [30] and interfa-
cial crack initiation toughness generally depends on the
local mode-mixity [31]. However, for simplicity, |Kint|
was approximated to be constant and equal to the frac-
ture toughness of glass. From the micrographs it was
determined that α is ∼0.4 in case of epoxy and ∼0.2 in
case of urethane. Taking these factors into account, val-
ues of Kcor(V f ) and corresponding values of [(KI)c]′cr
were evaluated. The values of the critical stress inten-
sity factor based on Equation 16 are shown in Fig. 10 as
open symbols. The agreement between the open sym-

Figure 12 Apparent dynamic crack initiation toughness of
microballoon-dispersed epoxy.

Figure 13 SEM micrographs for epoxy infiltrated with microballoons at 0.25 volume fraction. (dynamically fractured surface).

bols and the predictions (solid line) are substantially
improved when compared to the solid symbols. A more
sophisticated analysis could potentially mitigate the de-
viation to a greater extent. Alternatively, improving the
interfacial strength between the microballoon and the
epoxy matrix could eliminate the problem as well.

5.2. Experimental validation—dynamic
loading

Dynamic values of critical stress intensity factors
([(K d

I )c]cr) for microballoon-dispersed epoxy were also
evaluated. Homogeneous beam (150 mm × 20 mm ×
6 mm) samples (four specimens for each volume frac-
tion) with single edge notches were prepared. The
notches were extended into sharp cracks as described
earlier. The samples were subsequently impact loaded
(impact velocity of 1.5 m/s) in three-point bending con-
figuration in Instron-Dynatup - 8210 instrumented drop
tower. This was achieved by releasing a 90 N (20 lb)
deadweight along guide rails from a designated height.
Integral to the deadweight is a cylindrical tup, with a
hemispherical end of radius 12.7 mm, that impacts the
specimen directly on the edge opposite to the crack. Af-
fixed to the tup are sensors that feed information such
as time, load and displacement history experienced by
the tup to a PC-DAQ system. The maximum load reg-
istered at the tup was used to assess the dynamic crack
initiation toughness using Equation 12. (The rate of
increase in stress intensity factor prior to initiation in
all specimens tested was 19 ± 1.8 MPa-

√
m/ms). The

measured values of [(K d
I )c]cr for different volume frac-

tions of microballoons are plotted as solid symbols in
Fig. 12. Evidently [(K d

I )c]cr-V f variations are quali-
tatively similar to the ones obtained for quasi-static
loading (Fig. 10). That is, values of [(K d

I )c]cr monotoni-
cally decrease with V f and an overall reduction of about

1658



60% between unfilled and the mixture with V f = 0.45
is seen. The percentage reduction for dynamic fracture
tests, however, is comparable to the ones for Young’s
modulus (Fig. 5a) and tensile strength (Fig. 6a). This,
however, is unlike the quasi-static results shown in
Fig. 10a. It should be noted that values of [(K d

I )c]cr
for each V f is significantly higher than the correspond-
ing value [(KI)c]cr obtained under quasi-static loading
conditions, due to the loading rate dependent behavior
of epoxy.

Also shown in Fig. 12 are the predicted values (solid
line) of [(K d

I )c]cr from Equation 12 for different vol-
ume fraction of microballoons. In these calculations,
the dynamic Young’s modulus values from Fig. 6a
were utilized. Evidently, the agreement between the
measurements and the predictions is very good over
the entire range of volume fractions studied. This is
unlike the values for quasi-statically fractured beams
(Fig. 10a). To further reconcile this observation, a dy-
namically fractured sample surface with a microballoon
V f = 0.25 was examined microscopically. The corre-
sponding micrograph is shown in Fig. 13. Interestingly,
unlike in Fig. 11a, the interfacial separation of the mi-
croballoons seen under quasi-static loading conditions
is non-existent in the dynamic case and hence the bet-
ter agreement between the model and the measurements
under dynamic conditions. Otherwise, the fracture sur-
face is relatively more rugged when compared to quasi-
statically fractured surface accounting for higher ex-
penditure of energy during fracture.

6. Concluding remarks
Possibility of dispersing microballoons in epoxy and
urethane to simulate controlled porosity in polymers in
a simple and cost-effective way is examined. To this
end, homogenous samples with different microballoon
volume fractions, ranging from 0 to 0.45, were prepared
and tested. Uniaxial tension tests on dog-bone samples
and three-point bending on SEN samples were carried
out to arrive at the following conclusions:

• The Young’s modulus was found to decrease
monotonically over the entire range of microbal-
loon volume fractions. The measurements, quasi-
static as well as dynamic, are in very good
agreement with Hashin-Shtrikman lower-bound
predictions for two-phase mixtures comprising
of matrix and randomly distributed spherical
voids/pores. The pore-flaw model proposed by
Krstic and Erickson show good agreement with
the measurements as well for flaw size to pore size
ratio of 0.26 and 0.22 for epoxy and urethane re-
spectively.

• The tensile strength was found to decreases mono-
tonically with increasing microballoon volume
fraction and the trends are akin to the ones ob-
served for Young’s modulus. Guided by the exper-
imental observation, a linear elastic model based on
strain energy balance has been proposed for pre-
dicting tensile strength of brittle porous materials.
The model generally predicts the measurements to

within 10% for both epoxy and urethane composi-
tions, over the entire range of volume fractions.

• The critical stress intensity factor values measured
under quasi-static loading conditions were found
to continuously decrease with microballoon vol-
ume fraction as in case of tensile modulus and
strength. Again, based on experimental evidence,
a predictive model using linear elastic fracture me-
chanics has been introduced. A somewhat large de-
viation between the measurements and predictions
in case of epoxy is explained by micrographs that
reveal additional expenditure of energy by interfa-
cial separation between microballoons and the ma-
trix. Otherwise, the microballoons generally show
hemispherical fracture in both matrix materials. An
empirical correction factor based on this observa-
tion has been introduced to reduce the difference
between the predictions and measurements.

• The critical stress intensity factor values measured
under impact loading conditions also monotoni-
cally decrease with microballoon volume fraction.
Unlike quasi-static results, microscopic examina-
tion of dynamically fractured surfaces generally
showed hemispherical fracture of microballoons
and interfacial separation was non-existent. Ac-
cordingly, the proposed predictive model for brittle
porous materials for critical values of apparent
stress intensity factors agrees well with the dy-
namic measurements.

• The proposed models for tensile strength and frac-
ture toughness of mixtures suggest the variation to
be directly proportional to their Young’s moduli
with volume fraction of the pores. The measure-
ments using in microballoon-dispersed epoxy and
urethane support the model.

Appendix
The approximation that under uniaxial remote loading,
the energy density U (= 1

2 (σxεx + σyεy + σxyγxy)) is
given by the dominant term U ′(= 1

2σxεx ) was validated
through elasto-static finite element modeling of a
porous sheet with an array of distributed cylindrical

Figure A1 The dimensionless finite element model, where the element
size is 40 µm.
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Figure A2 The ratio U ′/U with respect to volume fraction.

cavities. The finite element model used for this ver-
ification is shown in Fig. A-1. Due to symmetry, a
fourth of the model was used in the computations. Two-
dimensional plane strain simulations with cylindrical
cavities were carried out instead of 3-D simulations in-
volving spherical cavities for (a) simplicity and (b) a
more conservative estimate of the error involved in the
approximation. (Here it should be noted that analytical
solutions for the limiting case of single cavity in an infi-
nite sheet subjected to uniaxial tension indeed suggest a
relatively benign stress concentration effect for spher-
ical cavity (Kt = 2) compared to a cylindrical cavity
(Kt = 3).) Accordingly, total strain energy density in the
matrix U and its approximated value U ′ were evaluated
for different volume fractions of porosity in the control
volume (shown by the broken line). Fig. A-2 shows
that, the ratio U ′/U is in the range of 0.9–0.92 for the
volume fractions studied and hence the assumption is
reasonable.
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ibid. 81 (1998) 2449.

16. M. K I S E R , M. H E and Z O K , Acta Mater. 48(10) (1999).
17. V . P A R A M E S W A R A N and A. S H U K L A , J. Mater. Sci. 35(1)

(2000).
18. R . Y O U N G and P . B E A U M O N T , ibid. 12 (1977) 684.
19. Z . H A S H I N and S . S H T R I K M A N , J. Mech. Phys. Solids 10

(1962) 343.
20. Idem., ibid. 11 (1963) 127.
21. Z . H A S H I N , J. Applied Mech. 58 (1991).
22. G . W E N G , Int. J. Engng. Sci. 22(7) (1984) 845.
23. V . K R S T I C , U . E R B and G. P A L U M B O , Scripta Metallurgica

et Materialia 29 (1993) 1501.
24. V . K R S T I C , Acta Metall. 33(3) (1985) 521.
25. R . R I C E , J. Mater. Sci. 32 (1997) 4731.
26. H . T A D A , P . P A R I S and G. I R W I N , “The Stress Analysis of

Cracks Handbook” (Paris Productions, St. Louis, MO, 1985).
27. C . W U and R. R I C E , Ceram. Eng. Sci. Proc. 6 (1985) 997.
28. G . H O L L E N B U R G and G. W A L T H E R , J. Amer. Ceram. Soc.

63 (1980) 610.
29. N . D O W L I N G , “Mechanical Behavior of Materials” (New Jersey,

1993).
30. N . O ’D O W D , C. S H I H and M. S T O U T , Int. J. Solid Structures

29(5) (1992) 571.
31. L . X U and H. V. T I P P U R , Int. J. Fract. 71 (1995) 345.

Received 20 December 2000
and accepted 22 October 2001

1660


