
TECHNICAL NOTE 

Interpretation of fringes obtained 
with coherent gradient sensing 

Hareesh V. Tippur 

An interference analysis for double-grating shearing interferometry called coherent gradient sensing is 
presented, and the results are compared with an earlier geometrical optics analysis and a Fourier optics 
analysis based on the Fresnel approximation. The influence of the order of approximation in these 
analyses and the equivalence of fringe interpretation in each case are discussed. 

Lateral shearing interferometers that use a pair of 
Ronchi rulings for wave-front shearing have been 
widely used for many years for real-time testing of 
optical components.1 However, experimental me
chanics investigations using this interferometer, par
ticularly experimental fracture mechanics studies, 
are a relatively recent development. A real-time 
lateral shearing interferometry with an on-line spa
tial filtering configuration called coherent gradient 
sensing (CGS) has been developed for quasi-static and 
dynamic fracture mechanics studies.2-6 CGS is 
shown to measure in-plane gradients of hydrostatic 
stress when used in the transmission mode with 
optically isotropic transparent objects and in-plane 
gradients of out-of-plane displacement when used in 
the reflection mode with specularly reflective objects. 
A first-order analysis using geometrical optics2 and a 
Fourier optics analysis using Fresnel diffraction4 

have indicated that full-field interference patterns 
obtained with CGS represent contours of the direc
tion cosines of the local propagation vector, which can 
be further related to stress or a deformation field 
through a plane stress approximation. The objec
tives behind this Note are (1) to present a simple 
interference analysis and (2), more important, to 
demonstrate the equivalence of the analyses pre
sented in Refs. 2 and 4, although a small difference in 
the two results is apparent owing to the order of 
approximation used in each case. 
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The optical arrangement for transmission CGS is 
shown in Fig. 1. It consists of a collimated beam of 
light propagating parallel to the optical axis. The 
beam is transmitted through a transparent specimen 
in the region of interest. The object wave front is 
diffracted as it propagates through Ronchi rulings 
(pitch p, grating lines parallel to, say, the x axis) G1 
and G2. Note that the two grating planes are sepa
rated by a distance Δ along the optical axis. It is 
reasonable to assume a square-wave transmission 
profile for the gratings, and hence the resulting 
diffracted wave fronts consist of a zeroth-order diffrac
tion and several odd diffraction orders. [Chromium 
on glass master gratings with antireflection coatings 
with p = 25 μm and Δ = 30-100 mm (Refs. 2-6) have 
produced satisfactory results.] For simplicity of 
representation, consider diffraction orders E0, E+1, 
and E-1 only. Here θ is the diffraction angle 
[θ = sin-1(λ/p) ≈ (λ/p)]. The discrete wave fronts 
emerging from the grating G2 are collected by the 
filtering lens, and the spectral contents are displayed 
on the back focal plane of the lens. A filtering 
aperture blocks all but - 1 (or +1) diffraction orders 
as shown. The filtered information produces later
ally sheared object wave fronts on the image plane. 
Note that the optical arrangement is such that the 
camera consisting of the filtering lens and the camera 
back is focused on the object plane. 

Now consider the interference produced in the 
overlapping region of the two laterally sheared wave 
fronts on the image plane when the specimen (say, a 
uniform planar phase object) is undeformed [Fig. 
2(a)]. Then interference is due to the path difference 
between E0 and E-1 as shown. The total complex 
amplitude on the image plane is (E0 + E-1). The 
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Fig. 1. (a) Optical arrangement and working principle for transmission CGS, (b) laterally sheared wave fronts on the camera back, (c) 
typical transmission CGS fringes for a line load acting on the edge of a half-space. 

corresponding intensity distribution becomes 

where A and B are constants associated with E0 and 
E-1, respectively, k is the wave number, (•)* indicates 
a complex conjugate, and l1 and l2 are the optical 
paths of E0 and E-1, respectively, between the two 
gratings. The intensity represented by the above 
equation is maximum when [k(l1 — l2 )] = 2Nπ, where 
N = 0, ±1, ±2,. . . Consider (l1 - l2 ): 

wherein k = 2π/λ and θλ/p are used. Thus in ideal 
conditions for a uniform planar phase object the 
experimental parameters can be chosen to produce a 
uniformly bright fringe corresponding to the initial 
planarity of the object wave front. 

Next consider a deformed specimen. The collima-
tion of the incident light beam is perturbed by 
nonuniform changes in thickness and/or the refrac
tive index of the specimen. Let the perturbed object 
wave front propagate in a direction so that it makes 
an angle φ with the optical axis [Fig. 2(b)]. Then the 
intensity distribution on the image plane is given by 

where 

where cos θ is expanded in the neighborhood of zero 
and O(θ3) is neglected when compared with O(θ2) 
terms. Note, however, that a first-order approxima
tion (cos θ = 1) would result in a zero optical path 
difference between E0 and E-1. From Eqs. (1) and 
(2) constructive interference occurs on the image 
plane when Again terms smaller than φ2, θ2, and φθ are neglected 

and l1',12' are the optical path lengths of E0 and E-1 
for the deformed specimen. The two quantities θφ 
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Fig. 2. Wave-front shearing: (a) undeformed object wave front, (b) deformed object wave front. 

and θ2/2 are of the same order, and the need for a 
second-order approximation for consistency through
out is obvious, from Eqs. (2) and (4). Thus, for 
constructive interference, 

Note that in this case one could express the propaga
tion vector d of the object wave front as d = aêx + 
ßêy + -yêz, where α, ß, and γ are the direction cosines 
and êi are the unit normals in the x, y, and z 
directions, respectively. For deflection of light rays 
shown in Fig. 2(b), α = 0, ß = sin φ, and γ = cos φ. 
For small angles, ß ≈ φ. Hence, using Eq. (3), we 
can rewrite Eq. (5) as 

Thus CGS provides interference patterns that repre
sent contours of constant ß. Also, fringe order N is 
independent of deformation and dependent only on 
the parameters λ, Δ, and p of the optical setup. Thus 
one can interpret Eq. (6) as simply 

where n = N' — N'. In practice the optics are 
arranged so that initially a uniform bright field or a 
bright fringe is observed on the image plane when the 
object is undeformed. On deformation, ß changes 
locally from point to point resulting in interference 
patterns that represent deviations from the initial 
planarity of the wave front. 

Note that the results [Eqs. (5)] obtained above are 
the same as those obtained through a Fourier optics 
analysis with the Fresnel approximation [see Eq. (18) 
in Ref. 4]. However, the result based on geometrical 
optics (Ref. 2) is slightly different; it suggests that 
N = 0 instead of N = constant. An examination of 
Eq. (7) in Ref. 2 reveals the reason behind this minor 
difference between the two analyses; it is simply the 
order of approximation used in each case. A first-
order analysis provides absolute fringe orders while 
the present analysis suggests that the fringe orders 
are relative with respect to the initial planarity of the 
object wave front. This analysis, however, would 

not affect the fringe interpretation when the test 
object is a homogeneous transparent planar object of 
constant thickness or a flat specularly reflective sur
face studied with a collimated beam of light. Further
more, for completeness, the derivation in Ref. 2 can 
be easily recast in the form presented above. Con
sider the total amplitude distribution on the image 
plane obtained as given by Eq. (7) of Ref. 2: 

where ß and γ are the direction cosines of the 
propagation vector d of the object wave front as 
discussed above. For the beam of light shown in Fig. 
2, α = 0, ß = sin φ, and 7 = cos φ. By expressing 

ß and 7 in terms of φ in Eq. (8), we get 

Hence the intensity distribution becomes 

which provides the same result as Eq. (4). 
Thus the resulting interference patterns observed 

in the CGS method are essentially contours of small 
angular deflections of light rays. They represent 
deviations from the initial planarity of the wave front. 
They can be further related to mechanical deforma
tions as demonstrated in Refs. 2 and 4: 

where c is the elasto-optic constant for the phase 
object and B is the nominal thickness of the specimen. 
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