
Coherent gradient sensing: a Fourier optics
analysis and applications to fracture

Hareesh V. Tippur

A Fourier optics analysis for a recently developed lateral shearing interferometry-coherent gradient
sensing-is presented. The governing equations for the method are explicitly derived. The method of
coherent gradient sensing is particularly suitable for investigating the mechanics of fracture of
transparent and opaque solids. Several examples demonstrating the applicability of the method to
quasistatic and dynamic crack-growth problems is presented.

1. Introduction
In recent years several lateral shearing interferome-
ters have been proposed.1-13 The simplicity of imple-
mentation and the relative insensitivity to vibrations
make them suitable for several engineering applica-
tions. Optical component testing, 2' 3"1-3 range sens-
ing,6 nondestructive evaluation,' experimental stress,
and strain analysis4 5 '7-10 are a few examples that
indicate the wide variety of the engineering and
scientific applications of shearing interferometry.
These techniques essentially provide information per-
taining to the derivatives of the object wave-front
phase profile. The wave-front shearing is typically
accomplished by using prisms, gratings, glass plates,
or digital-image processing. Apart from the type of
the shearing device used, shearing interferometers
are also classified into single-exposure interferome-
ters in which the resulting fringe patterns are ob-
served in real time, and double-exposure interferome-
ters wherein a subsequent spatial filtering, either
optical or digital, is performed to recover the informa-
tion pertaining to the object wave front.

Recently a real-time lateral grating shearing inter-
ferometry, coherent gradient sensing (CGS), was
developed for investigating the fracture of engineer-
ing materials. CGS has been successfully applied to
quasistatic and dynamic crack-growth studies of both
transparent and opaque solids by the author and his
associates.14-17 One of the unique advantages of the
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method is that because it is a real-time technique, it
can be easily applied to transient crack-growth stud-
ies when used in conjunction with a high-speed
camera. The method has been successfully imple-
mented with high-speed photography (framing rates
of up to 150,000 frames/s) to freeze deformation
fields near rapidly propagating cracks (crack veloci-
ties 300-1000 ms). CGS provides an experimental
alternative to techniques such as photoelasticity and
caustics that are traditionally used for investigating
the dynamic fracture of materials. As a full-field
optical technique, CGS has definite advantages over
the method of caustics. At the same time, it can still
be used with optically isotropic materials, whereas
photoelasticity requires birefringent models. In this
paper a detailed Fourier optics analysis for the method
of CGS is presented. The analysis is relatively com-
prehensive when compared with the method pro-
posed earlier14"15 in deriving the governing equations
for the technique. Several examples to demonstrate
the experimental feasibility of the method to the
study of fracture mechanics of solids is also pre-
sented.

2. Experimental Method

A. Optical Setup

The schematic of the optical setup used for transmis-
sion CGS is shown in Fig. 1. A transparent, optically
isotropic specimen is illuminated by a collimated
bundle of laser light. The transmitted object wave is
then incident on a pair of identical high-density,
chromium-on-glass master gratings, G, and G2, sepa-
rated by a distance A. The light-field distribution on
the G2 plane is spatially filtered by the filtering lens L,
and its frequency content is displayed on its back focal
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Fig. 1. Schematic for the experimental setup for transmission CGS.

plane. By locating a filtering aperture around either
of the ± 1 diffraction orders, we obtain information
about stress gradients on the image plane of the lens
L.

Figure 2 shows the modification of the above setup
for measuring surface deflections of opaque solids
when studied in the reflection mode. In this case,
the specularly reflecting object surface is illuminated
by a collimated beam of laser light with a beam
splitter. As in the previous case, the reflected beam
gets processed through the optical arrangement that
is identical to the one shown in Fig. 1.

Figure 3 explains the working principle of the
method of CGS. Let the line gratings have a square-

wave transmittance. For the sake of simplicity, only
zeroth-, first-, and negative first-order wave fronts
are shown. Let the gratings G, and G2 have their
rulings parallel to, say, the x0 axis. A plane wave
transmitted through or reflected from an undeformed
specimen and propagating along the optical axis is
diffracted into three plane-wave fronts, E0, E1 , and
E-,, by the first grating Gl. The magnitude of the
angle between the propagation directions of E0 and
E., is given by the diffraction equation 0 = sin-'
(Xip), where A is the wavelength andp is the grating
pitch. Upon incidence on the second grating G2, the
wave fronts are further diffracted into E(o,o), E(0,1)
E(,-) E(lo), E(1,), and so on. These wave fronts,
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Fig. 2. Schematic for the experimental setup for reflection CGS.
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Fig. 3. Schematic describing the working principle of CGS.

which are propagating in distinctly different direc-
tions, are then brought to focus at spatially separated
diffraction spots on the back focal plane of the
filtering lens.

Now consider a plane wave normally incident on a
deformed specimen surface. The resulting transmit-
ted or reflected wave front will be distorted either
because of changes of the refractive index or because
of surface deformations. This object wave front
incident on G now carries information regarding the
specimen deformation and consists of light rays trav-
eling with small perturbations to their initial direc-
tion parallel to the optical axis. Thus, each of the
diffraction spots on the focal plane of L will be locally
surrounded by a halo of light because of the deflected
light rays. The extent of the spread of the halo
depends on the magnitude of the deformations. By
using a filtering aperture at the focal plane of the
lens, we image information existing around one of the
spots on the image plane.

In subsection 2B, we present a Fourier analysis to
demonstrate that the information contained in the
interference patterns on the image plane corresponds
to gradients of in-plane stress or to gradients of
out-of-plane displacements.

B. Fourier Analysis
Figure 4 shows a two-dimensional schematic for CGS.
The distance between the different planes of interest

object G. G2
I I

lens Spectrum Plane image plane

along the optical axis is d1, A, d2, f, and d3. Here f is
the focal length of lens L, and the object (d + A + d2)
and image (f + d3) distances satisfy the lens equation.
The Cartesian coordinates (Xq, Yq) represent the in-
plane coordinates of the object plane (q = o), the
grating planes (q = 1 and q = 2), the lens plane
(q = L), the focal plane (q = f ), and the image plane
(q = i). Let h0(x0, y0 ) represent the complex ampli-
tude distribution corresponding to the object plane.
The amplitude distribution of light in front of the
grating Gi is h,(x,, y,). Using the Fresnel approxima-
tion for the wave propagation from the object plane to
the front of the grating plane G1, we find that

hl(xl,yl) = h.(xlyl) gd,(X1,Y1)

= h.(xiyl) exp ik d1 + d ||) (1)

where gd, is the point-source transfer function and ®
represents the convolution operation. Here k (= 2/
K) is the wave number and i = - 1. Let the grating
G, have a relatively large aperture when compared
with the size of the beam. For a square-wave grat-
ing, the transmittance function can then be approxi-
mated by I Am exp(ikmy10), where m = -oo, . . ., -3,
-1, 0, 1, 3, .. , oo, Am are constants and 0 (/p) for
a small 0. Then the complex amplitude distribution
immediately behind the grating G is

hl'(x, y) = h(x,, y ® i)d, expIik dl + 2d |]

X I Am exp(ikmyO). (2)

The diffracted wave front h' propagates to the
second grating plane G2, and the amplitude distribu-
tion immediately in front of G2 is

(Xz

Fig. 4. Schematic describing the nomenclature used in the Fou-
rier analysis.

1 X+2 [I Y22± )|-
h2(X2,Y2) = h '(X2, Y2) ® - exp ik A+ 2
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If YAn exp(ikny2 0),n = -oo,..., -3, -1,0,1,3,...,
- represents the transmittance of the second grating
G2, the diffracted wave immediately behind the grat-
ing plane G2 is

h2'(x2, Y2) = h2(x2, Y2) x E An exp(ikny 20). (4)

Substituting for h2(X2, Y2) in Eq. (4) from Eqs. (1)-(3),
we find

h2'(x 2,y 2)= [({o(X2,Y2)7iid1 expik( d, + 2 d)]}

x z Am exp(ikmy 20))

® - exp[ik(A + 2A )11
x I An exp(iknY20)- (5)

Now, using the Fourier transforming property of thin
lenses, we can obtain frequency spectrum of the
above complex amplitude distribution on the focal
plane of the lens L as follows18"19:

hf(xf,yf) = 1 exp[ik(f + d2)] expik(X? +zik) (1 - d2)

x H2' (x, Wy). (6)

In Eq. (6) H 2' represents the
9[h2 '(x2 , Y2)], and (w, = xfIAf, wy
coordinates of the spectral plane.

Fourier transform
= yfIf) denotes the
Hence,

1
4[h 2 '(x2 , Y2)] = ({ho(x 2, Y2) 0) i~d

ikd X22 + Y2 2x exp ik d, + 2d

X Amexp(ikmY 2 0))

1 L( ~~X22 + Y2 2 f

o A eX~LklA + 2A /J]

J Bn8(Wxx y-y ) (7)

where Bn's are the new constants after the Fourier
transform operation and 8 is the Dirac function. By
successively carrying out the Fourier transform of
the function in the square brackets (see Ref. 20), we
can write Eq. (7) as

( I [HH(w, wy) x exp(ikdl - i\d

x {Wx2 + wy2
1)] 0 BmS( WX, WY - )

x exp(ikA - iXA1w' 2 + wy21))

09 Bn,,B Wx, wy- )' (E

----

K.

\ d' = aeX + e, + yez

object wave front object wave front
after deformation before deformation

Fig. 5. Undeformed and deformed object wave fronts.

= exp[ik(d, + A)][(BmHo(wxX, Wy -

X exp{- iTr,\dwx2 + (wy - A )2]J)

x exp(-i'rXAIw 2 + wY21)1

$9 Ad Bnb Wx Wy_- flO (9)

Further simplification of Eq. (9) is possible if
certain features of the input function h. are known a
priori. One of the simplest forms of ho corresponds
to a plane wave originating from a specimen that is
specularly reflective or transparent. Then the object
wave front is (1) planar, and its propagation vector is
parallel to the optical axis (zo axis) when the specimen
is undeformed, and (2) perturbed locally, say near a
crack tip, when subjected to external loads as shown
in Fig. 5. These perturbations are caused by nonuni-
form surface slopes in the case of reflective speci-
mens, whereas they are caused by a combination of
nonuniform specimen-thickness changes and refrac-
tive-index changes in the case of transparent speci-
mens. In both cases the propagating object wave
front can be viewed to be made of locally collimated
bundles of rays with direction cosines a, 13, and y (Fig.
5).

To understand the formation of interference fringe
further, consider, for simplicity and without losing
generality, a plane wave whose complex amplitude
distribution on (xo, yo, zo = 0) is

h.(xo, yo, z0 = 0) = C exp[ikd' (xog. + yoey)]

= C exp[ik(ax 0 + iy 0)], (10)

where C is a constant, e,, 6y, and e, are unit vectors in
the x, y, and z directions, respectively, and the
propagation vector for the wave front d' is

d' = a,, + hey + yez.

Hence,

m O \ mO + 
B) H B- K = /WX-A'wy A

(11)

(12)
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Using the multiplicative property of a Dirac function,
namely <(x)8(x - xa) = D(xa)6(x - xa), we can sim-
plify Eq. (9) to

_9-[h 2'(x 2,y2)] = exp[ik(d, + A)]

/ ( IBm5(WxjWymO + 3X w,, B8W- o WY A 
>( exp{-ir\dl[~ +

a! 2 m + MO+ 2x exp-AI A + X

(13)

When carried out, the above convolution results in a
series of discrete delta functions as detailed in Appen-
dix A. If a = 0, = 0, and y = 1 (the undeformed
object wave front), the spatial-frequency spectrum
essentially consists of a linear array of equally spaced
delta functions. Thus, for small values of a and ,
the deformed object wave front can be viewed as a
perturbation of an undeformed wave front (Appendix
A). By locating a filtering aperture centered around,
say, (wx, wy - 0/K) [but large enough to permit
small perturbations (or a) surrounding it], we allow
complex wave fronts corresponding to the third and
seventh terms in Eq. (33) to propagate to the image
plane of the optical system (Fig. 4). Hence the
filtered information just behind the frequency plane
is

H2"(wx, wy) = B}3, exp[ik(d, + A)]

X exp{-i,d1[() +

x (exp-irKA(X) + ( )2]}

+ exp{-iTrAX[(A) + (A)2])

(14)

Also note that if the object wave were to have
originated from a diffusely reflecting or transmitting
specimen, such discrete spots would not be generally
visible. Instead, they would be replaced by over-
lapped halos corresponding to each diffracted wave
front without clear demarkation on the filtering plane
necessary for successful real-time spatial filtering.
The degree of overlap and the size of the halo are
strong functions of the surface characteristics and
the optical roughness of such a specimen.

Hence, using Eq. (6), we find that the amplitude
distribution immediately behind the frequency plane

after filtering is

hf'(xf,yf) = jBfB exp[ik(d, + A + d2 + f)]

x exp irf 1- d )(wx2 + Wy2)

x exp[-i(r(d, + A) (A)2]}

x [ + exp-iFAO( }]

X WX-13Y- 0)

i Efl exp[ik(d + A + d2 + f)]

X exp iTrf(1 - d)(A)2 + (1 

x exp{-(TrK(di + A) (A)2]}

x + exp{-isrA0( )1

(15)

This filtered information propagates to the image
plane on which the amplitude distribution can be
expressed as18

hi(x, yi) = exp ik 2d )

X9{hf(xfyf) X 1Žd exp ik d3 + Xf2 7 ?f)1

BoBl T.Xi 2 +Yi2l

= X2fd3 expt I 2d3|

x exp[ik(d, + A + d2 + f + d3)]

x explTf1 )+(A2 + (1 )J

X exp -iTK(dl + A)[(A) + (A)21

x [1 + exp irrA0( A )J]

(16)

= C' explikT] x [I + exp -iTAO( A )}]

x exp{-ik(xioa + yip)),
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h= 9.0
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Fig. 6. Interference patterns obtained using transmission CGS:
Inset is specimen geometry.

where T represents the combined phase of all the
constant terms in the above equation and C' is a
constant. Hence, the light-intensity distribution on
the image plane is

i(xi, yi) = hihi* = 2C'[1 + cos( rT0 X3 ) (18)

where the asterisk denotes the complex conjugate.
Equation (18) is maximum when

7rAO (2 - 0/K) = 2N'rr,

or
N'pO0

= + _ (20)

In the above equation, note that 0 is an experimental
constant that depends on the density of the gratings
and is independent of the quantities of interest,

10 111111

(1,)

contours representing (a) (ur + o-_)1ax, and (b) (cu. + ur)Iay0.

namely o and 3. Hence, when 13 is a function of the
in-plane coordinates of the object plane, the fringe
under N' varies from point to point over a constant
dc-like term, 0/2. Thus, we could interpret the

/ theoretical
+ experimental

T crack tip

r/h = 0.5

Fig. 7. Comparison between experimental data and analytical
predictions for fringe patterns shown in Fig. 6(a).
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fringe patterns simply as

Np
P= , N= 0, 1, + 2,....

Now, by rotating the gratings G, and G2 by 900, we
can shear the object wave front parallel to the x0 axis
and a can be measured as follows:

thickness of the specimen and &xx and &yy represent
the thickness averages of in-plane stress components.

(21) Comparing relation (23) and Eq. (11), we can deduce
(21) the governing equations for transmission CGS as

follows:

(25)______+ __yy Mpch a Xkx M
ax, A

M= 0, + 1, 2,.... (22) ch(x + ) Np
ay. A

N=0, +1,+2,....

C. Relation Between Direction Cosines and Deformation

In this subsection, the direction cosines of the object
wave front are related to the mechanical deforma-
tions of the specimen for both transmission and
reflection cases.

For optically isotropic transparent solids, nonuni-
form thickness changes and refractive-index changes
caused by mechanical loads introduce perturbations
to the incident planar wave front. Under two-
dimensional, linear elastic, plane-stress conditions, it
can be shown that (see Ref. 15 for details) the
propagation vector of the deformed object wave front
is

a(BS)
ax.

M(5S)
ay Y + e0 , (23)

where the optical path change &S caused by combined
refractive-index and thickness changes is

BS(x 0,y 0) ch(&x. + yy) (24)

Here, c is the elasto-optical constant, h is the nominal

When the specimen is opaque, the surface is
made initially flat and specularly reflective. After
deformation, because of nonuniform surface-thick-
ness changes, the incident wave front becomes nonpla-
nar. Under linear elastic, plane-stress conditions,
the propagation vector d' can be expressed in terms of
specimen surface slopes as follows (see Ref. 15 for
details):

aw aw
d' 2 - e + 2 - ey + e,

ax~x ay.~ (27)

where w denotes the out-of-plane displacement of the
specimen surface. By comparing Eq. (11) and rela-
tion (27), we can write the following governing equa-
tions for reflection CGS as follows:

aw Mp
ax, 2A

aw Np
= ,

OyO, 2A

M= 0, 1, ± 2,....

N= 0, 1, + 2,....

(28)

(29)

(a) | | (b)
10 111111

Fig. 8. Interforenco patterns obtained using reflection CGS: contours representing (a) aw/ax and (b) awlay0.
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3. Applications to Fracture Mechanics

In this section we present examples demonstrating
the applicability of CGS to the quasistatic and dy-
namic fracture of materials. The typical experimen-
tal parameters used are a grating separation distance
A of 30 mm and a pitch p of the gratings equal to
0.025 mm. These parameters provide a sensitivity
of measurement of 4.2 x 10-4 rad/fringe for transmis-
sion CGS and 2.1 x 10-4 rad/fringe for reflection
CGS. Figure 6 shows optical interference patterns
obtained using the transmission CGS technique from
an edge-notched beam specimen undergoing symmet-
ric three-point bending. The model is made from a
polymethyl methacrylate (PMMA) sheet whose nomi-

2h 

L

nal thickness is 9 mm. The symmetric loading of the
specimen results in opening-mode or mode-I deforma-
tions near the crack tip. The fringes represent contours
of the crack-tip deformation fields, ch (&x + yy)laxo
and ch (&, + &yy)/ay0 . For a two-dimensional, lin-
ear elastic, K-dominant, mode-I crack- tip field, the
following relationship exists between the experimen-
tal measurements and the theoretical predictions 5 21 :

a (&XX + 69Y
ch =ch

ax"
-m r-3/2 cos(34/2)

+ O(r-1/2 ) =MP, (30)

*1

Fig. 9. Interference fringes obtained using transmission CGS with a modified fracture specimen; mixed-mode fringes representing
contours of constant a(u, + uyy)ltax.
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Fig. 10. Time sequence of a(orx + cr,)/ax0, fringes near a dynamically growing crack in PMMA (transmission CGS).

a(&X + 69 _ K1 3/
ch - ch r 31 2 sin(3+/2)

+ O(r-1/2 ) = Hi, (31)

where K is the mode-I stress-intensity factor and
(r, 4) denote the crack-tip polar coordinates. The
fringe patterns are digitized to measure [M (or N), r, A]
and extract K using least-squares data analysis.

In Fig. 7, experimental data (crosses) are shown along
with the theoretical prediction based on the boundary
load measurement.2 2 The agreement between the
two is good in regions 0.5 < rh 1.25. The
disagreement in the region 0 < r/h < 0.5, particu-
larly ahead of the crack tip, is caused by the break
down of the two-dimensional assumptions close to
the crack tip where three-dimensional deformations23

are dominant. The interference patterns from simi-
lar tests performed with a PMMA specimen using

Fig. 11. Time sequence of aw/ax0 near a dynamically growing crack in PMMA (reflection CGS); interframe time = 7 ps.
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reflection CGS is shown in Fig. 8. Commercially
available PMMA sheets have approximately 5-7%
reflectance per surface. This feature is used in
obtaining the crack-tip interference patterns repre-
senting contours of the deformation fields, aw/ax0,
aw/ay0 . The rear-surface reflections are simply cutoff
by coating the back surface of the specimen with a
spray of flat white paint.

The application of CGS can be easily extended to
the study of the mixed-mode fracture of materials.
The contours of the crack-tip field ch a(&xx + ryy)/ax
when the crack is subjected to a combination of
symmetric and antisymmetric loading or mixed-mode
(mode-I plus mode-II) loading is shown in Fig. 9.
A modified fracture specimen with a horizontal edge
notch (see Fig. 9) is subjected to three-point bending.
The crack tip undergoes a combination of opening
and shear deformations, which is manifested in the
rotation of the fringes about the crack tip as seen.
When the crack-tip fields are under K-dominant,
two-dimensional linear elastic conditions,2 ' the fringe
patterns can be analyzed using

a (&' + &69 1 3/ch = ch r-312
ax,,0 _~

x [KI cos(3&/2) - K sin(3&/2)]

+ O(r- 2 ) = Mp' (32)

where KII is the mode-II stress-intensity factor.
As we mentioned in section 1, being a real-time

experimental method, CGS can be readily applied to
the study of the dynamic fracture of solids. In the
examples presented here, CGS is used in conjunction
with a continuous-access high-speed streak camera
and a cavity-dumped argon-ion pulsed-laser light
source. The typical repetition rate of the light pulse
is 7-10iis (100,000-150,000 frames/s) with a pulse
width of 50 ns used to freeze the unloading stress
waves in materials caused by rapidly growing cracks.
Dynamic crack growth is achieved by impact loading
three-point bend specimens in a drop-weight tower
with impact velocities in the range of 2-5 m/s. The
stress-wave loading of a precut notch results in a
dynamic crack initiation and a subsequent dynamic
crack growth. The loading and the specimen config-
urations provide mode-I conditions for crack growth.
In Fig. 10 a time sequence of a crack-tip fringe
pattern corresponding to the propagation of a crack in
PMMA obtained using transmission CGS is shown.
The crack velocity is constant in the region of observa-
tion and is approximately 300 m/s. In Fig. 11 the
time sequence of the fringe patterns obtained using
reflection CGS from a reflective PMMA specimen is
shown. Here the specimen is made reflective by
depositing a thin layer of aluminum on the test
surface by using the vacuum deposition process.
Using dynamic, linear elastic, crack-tip field equa-
tions, similar to the quasistatic relations discussed

earlier, we could extract dynamic stress-intensity
factors from these transient deformation fields (see
Ref. 16 for details).

4. Conclusions
A detailed Fourier optic analysis for a lateral shearing
interferometric technique, coherent gradient sensing,
is presented. The governing equations for the
method in both transmission and reflection modes
are explicitely derived. The propagation of the com-
plex amplitudes through the various optical elements
leading to the formation of interference fringes,
which are related to the object wave-front perturba-
tions, are analyzed. The analysis suggests that the
object wave front should indeed originate from a
specularly reflective or a transparent solid in order to
obtain interference patterns in real time using conven-
tional spatial filtering. Several examples to demon-
strate the suitability of CGS to fracture mechanics of
solids are presented. It is evident from the dynamic
crack-growth examples that the real-time capability
of CGS, when coupled with high-speed photography,
provides an effective experimental tool for the study
of crack propagation in general and dynamic fracture
of solids in particular.

Appendix A

Equation (13) can be expanded through m, n = 0,
+ 1, + 3, + 5 .. ., oo. Here, for the sake of simplic-

ity and brevity, expansion up to 1 is shown. The
results remain unaffected even when expanded to
higher values of m and n:

7h 2 '(x2 , Y2)] = exp [ik(d + A)]

X exp- idl[(- + (A)2]}

x (Bo exp-iqrrA[(~)2 + (g)2]}X 13

+ B, exp-i-ArrK-l + («: 0)2

W- w - X 

+ B exp-i1rKA[(-) + )2j}X 8 WX -- W )+ ..

03 tB0 (wX, wy) + B15(wx, wy - A

+ Bl 31, No 2 AP + 4

1 August1992 / Vl. 31, o 2/APID PIS 43



= exp[ik(d, + A)]

x exp(-ir)dl + (A|)2]

x (Bo2 exP{-isTrA[(|-) + (-xl2]}

+ BB, exp{-i-TrA|) + ( )

(c8 x 13+0) 

+~~ B0 ,eP-~K[(x)l (13;1 0)j

XBW - 13; 0)

+ B,,B, exp{irArrKA) + (A!21

(c8txA 13+0

+ Bl2 exp{-ilrA[(2! + (13 + 0)211
xs,:(x 3 + 20

+ B 2 exp-i1rrAo(t) + 02

-WY-

+ BB, exp -irrXA[() (13 : 0)

-8 WY-

+ B,2 exp{-iTKA(A) + (1 0)211

oX "Y - X0

x B1 eXpA _ iMyA X * (33
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