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Abstract
Background  A challenge for experimental fracture mechanics studies using vision-based methods is the accuracy with which 
the crack tip can be located in the region of interest for extracting fracture parameters. When using full-field displacement 
measurement methods such as digital image correlation (DIC), positioning the crack tip coordinate system could greatly 
influence the accuracy of stress intensity factors for brittle materials.
Objective  The objective of the present work is to develop improved methods of tracking crack tip position for fracture 
parameter extraction for problems involving moving fracture fronts (e.g. dynamic crack growth).
Methods  An improved image processing-based automated method for identifying the location of a propagating crack tip is 
proposed here. The primary inputs to the method are two-dimensional displacement fields measured using DIC. An edge 
detection methodology using a series of partial derivative computations is used to locate the crack tip.
Results  The proposed method’s performance is verified using simulated displacement fields with a sequence of controlled 
crack tip positions for mode I and mixed-mode examples. The method is used to locate crack tip positions from mixed-mode 
dynamic fracture experiments and extract instantaneous stress intensity factor histories. Consistency is shown between 
baseline and automated methods and post-initiation stress intensity factor histories varied by approximately 5% with the 
maximum variation being under 10% for the mixed-mode experiments.
Conclusions  The automated fracture parameter extraction method produced consistent results with those extracted using 
traditionally accepted methods, indicating that the proposed automated approach is a marked improvement due to its sys-
tematic nature and processing efficiency.

Keywords  Mixed-mode fracture · Stress intensity factors · Epoxy adhesives · Automated technique · Digital image 
correlation

Introduction

Many engineering materials exhibit brittle behavior and 
fail at low strains. Understanding the failure mechanisms 
in such materials is of paramount importance for reliable 
assessment of structural performance. Over the past few 
decades, several full-field, non-contact, displacement meas-
urement techniques have been proposed for failure charac-
terization. Vision-based full-field methods such as digital 

image correlation (DIC) have become especially popular in 
recent years due to simple surface preparation and illumi-
nation requirements. While a wide range of experimental 
methods have been developed over the years for the study 
of crack propagation behavior, one persistent challenge for 
these techniques in general and vision-based methods in 
particular is identification of the crack tip for engineering 
parameter extraction. Evaluation of stress intensity factors, 
the J-integral, and other fracture mechanics parameters 
requires a reliable determination of the position of the crack 
tip and the direction in which the crack is propagating at that 
time instant or load-step. For stationary cracks, the position 
of the crack tip can usually be ascertained more easily using 
higher magnification of recorded images. In dynamic frac-
ture problems, however, once the crack begins to propagate, 
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identifying the location of the crack tip is considerably more 
challenging in general and for materials such as glass and 
fiber reinforced polymers in particular. Often, the geom-
etry of the crack tip is small relative to the resolution of the 
measurement technique and surface coatings tend to mask 
the crack tip. Working with brittle materials that undergo 
very small deformations at fracture, the displacement field 
discontinuities at the crack tip are generally not obvious 
to the operator. The sheer number of temporally distinct 
images to be analyzed in a dynamic experiment exacerbates 
the issue as well. Lee et al. [1] noted the challenges associ-
ated with crack tip location identification in the study of 
graphite epoxy composites. Their work estimated an error 
of at least 0.5 mm in crack tip position due to the relatively 
small magnitudes of displacements in this stiff, brittle com-
posite. Sundaram and Tippur [2] pointed out the same chal-
lenge in their experiments with glass where the choice of 
the contour increment in the visualization of the displace-
ment field could lead to drastically varying interpretations 
of the crack tip location. An objective comparison of various 
optical techniques in [3] revealed the difficulty of crack tip 
location identification associated with DIC measurements 
as compared to other methods such as photoelasticity and 
digital gradient sensing. In general, the post-processing 
step can quickly become untenable due to the tedious, time-
consuming issue of manual tracking of the crack tip that 
often introduces a significant amount of uncertainty into 
the results.

Several methods have been used in prior experimen-
tal works where there was a need to locate the crack tip 
position. Fracture parameter extraction from experimental 
data has been summarized by Redner in [4] and Etheridge 
and Dally in [5]. The general approach is to utilize a set 
of analytical equations where stress intensity factors are 
unknown, and the displacements are known. By choosing 
a set of points in the field, an over-determined set of equa-
tions is formed and can be solved for the unknowns. McNeil 
et al. [6] utilized such an error minimization technique to 
extract stress intensity factors from an over-determined set 
of displacement field equations. The actual crack tip loca-
tion was taken as the location with the lowest amount of 
error in the analytical solution. Yoneyama and Takashi [7] 
proposed an alternative to this where not only the stress 
intensity factors are unknown, but the crack tip coordinate 
is also unknown. An iterative procedure was used based on 
the Newton-Rhapson method where equations were derived 
to estimate the correction to the stress intensity factor esti-
mation based on the results of the previous guess, such that 
the procedure eventually converges to a result. This method 
was numerically similar to that developed by Sanford [8] 
for extracting stress-optic constants and fringe order from 
photoelasticity experiments. Pacey and colleagues [9] stud-
ied crack closure conditions using photoelasticity. In their 

work, the analytical stress field was calculated mathemati-
cally using Muskhelishvili’s stress potential function and 
the analytical model was fit to the experimental data using a 
genetic algorithm and the downhill simplex algorithm. Roux  
and Hill [10] developed a method to estimate the crack tip 
location using a similar optimization approach by using 
the digital image correlation data to match the amplitude 
of a reference displacement field and minimize the error 
between the measured and reference fields. A method pro-
posed by Hamam et al. [11] utilized the concept of an elas-
tic crack tip and its detection using the first super-singular 
term in the Williams’ expansion. This approach was shown 
to be relatively robust with an estimated uncertainty of 
20 micro-meters in the study of fatigue crack growth in 
steel. Zanganeh et al. [12] studied several methods based 
on this concept of minimizing the error between a meas-
ured displacement field and an analytical solution. They 
performed a comparison of multiple Newton-based opti-
mization methods, a direct search method (Nelder-Mead 
Simplex), a genetic algorithm, and a pattern search method. 
Their investigation had the best success with the pattern 
search method which was reported to locate the crack tip 
within an average of 0.22 mm and 0.04 mm in the x- and 
y-directions, respectively. More recently, Rethore [13] intro-
duced a method based on elastic regularization along with 
finite element kinematics on an adapted mesh and a trun-
cated Williams’ expansion to identify the crack path. This 
method was shown to be helpful in the analysis of experi-
ments where the crack is propagating along a curved path.

While the methods discussed thus far are largely focused 
on optimization-based techniques to fit full field experi-
mental data to an analytical stress or displacement field, the 
present work seeks to use an image processing-based edge 
detection technique as the basis for developing a method 
to improve the accuracy with which the crack tip can be 
identified. Several methods have been employed to detect 
crack paths using such image-based techniques. Work by 
Abdel-Qader et al. [14] explored edge-detection methods 
to identify cracks present in concrete structures. The work 
demonstrated the ability to use changes in intensity across an 
image to locate cracks and crack-like features from images. 
Lopez-Crespo et al. [15] utilized Sobel edge detection to 
locate the crack tip to extract mixed-mode stress intensity 
factors from a tension-shear test geometry. They evaluated 
the stress intensity factor uncertainty due to position errors 
and showed relatively low error in the measurement using 
the Sobel-based technique for fatigue cracks. Separately, 
a similar approach was used to study cracks propagating 
away from a fastener hole in [16]. More recently, several 
authors have made advances in the crack tip location iden-
tification problem. Building on recent progress in the field 
of machine learning, finite element simulations of displace-
ment fields around cracks were used to train convolutional 
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neural networks [17] and track crack tip position. The 
method was utilized to study fatigue crack growth in pla-
nar 2024 aluminum alloy specimens with a central crack 
subjected to uniform tension. Miao et al. [18] used Canny 
edge detection with manual thresholding to approximate the 
crack path and use the results as a basis for an improved 
subset-splitting technique. The technique was demonstrated 
to enable improved reconstruction of the displacement fields 
near the discontinuity.

In this context, an automated technique based on the 
Canny edge detection algorithm is proposed here for crack 
tip identification and subsequent stress intensity factor 
extraction from measured displacement data. The method is 
used to locate crack tip position such that stress intensity fac-
tors can then be extracted using a hybrid DIC-FE analysis. 
The proposed method is critically examined using a series 
of numerical tests from analytical simulations and results 
are presented from a series of dynamic fracture experiments, 
demonstrating the ability of the method to allow systematic, 
controlled extraction of fracture parameters.

Experimental Methods

Displacement Measurement Using Two‑dimensional 
Digital Image Correlation

Two-dimensional digital image correlation (DIC) is a vision-
based technique for measuring full-field planar displace-
ments/deformations of an object experiencing load. The 
method was introduced in the early 1980’s [19–22] and has 
attained maturity and popularity in recent years. The general 
principle involves applying a random pattern to the surface 
of an object of interest. As mechanical loads are imposed on 
the object, the random pattern/speckles follow the deforma-
tion of the surface of the object being tested. A digital cam-
era is used to capture a series of speckle images as the object 
undergoes deformation during a loading event. Once the 
images are recorded, displacement fields can be computed 
by comparing subsequent images in the series with the refer-
ence image. Image processing techniques are subsequently 
used to track the surface motion and local deformation. The 
method and its applications are well documented in [23].

Crack Tip Location

The Canny edge detection algorithm [24] and [25] has been 
widely demonstrated with good success across a range of 
image processing problems. The algorithm is typically 
implemented with the following general steps: Image filter-
ing, gradient calculation, non-maximum suppression, and 
thresholding.

The first step in the algorithm involves filtering the 
image to remove noise in the image to aid in the sub-
sequent processing steps. While the smoothing process 
introduces blur into the image, it reduces the number of 
edges that will occur simply due to noise in the image. 
The typical implementation utilizes a Gaussian smooth-
ing function,

where σ is the parameter that determines how much smooth-
ing is applied. In practice, it is convenient to numerically 
approximate a value for the smoothing function. The matrix 
defined in equation (2), which is an integer approximation of 
the case where σ = 1, provides an adequate level of smooth-
ing for the present work for a 5 × 5 filtering kernel and can 
efficiently be applied through a convolution operation.

Once the smoothing has been applied to the intensity val-
ues (or displacement field magnitudes in the present work), 
the gradients within the field can be computed. The underly-
ing assumption with this step is that the edges occur due to 
sudden changes in intensity in the image and that areas away 
from the edges are more uniform. One way to measure the 
magnitude of the change is to calculate the partial deriva-
tives or the gradient magnitudes at each output point. For an 
image with an intensity I that varies spatially, the first order 
partial derivatives, Ex ≈

�I

�x
 and Ey ≈

�I

�y
 , can be approxi-

mated for the x- and y-direction. For the typical implementa-
tion of the Canny algorithm, the Sobel operator, which is 
based on two 3 × 3 filtering kernels, is used to approximate 
these first order derivatives. This is readily implemented 
numerically by convolving the filtered intensity field with 
the kernels:

This gradient computation was suggested by Sobel and 
Feldman [26] as an isotropic gradient operator and is widely 
used in edge detection problems. In practice, this produces a 
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rudimentary approximation of the partial derivatives, how-
ever, it is very efficient from a computational standpoint. 
The partial derivative magnitude is calculated from the indi-
vidual directional partial derivative values using:

Once the magnitude and individual partial derivatives in 
each direction are known, the directions of the gradient vec-
tor can be computed using:

These values can be used to further isolates the true 
edge locations by separating out the possible edge points 
and guaranteeing that each candidate edge, in the case of 
the displacement field in DIC, is only one subset point (or 
one facet) wide. This procedure is known as Non-Maximum 
Suppression (NMS). An example of implementing this part 
of the procedure is outlined in Appendix A.

The last step in the Canny edge detection algorithm is 
thresholding. In the traditional implementation, the points 
above a certain threshold are identified as edge points 
and the points below a separate, lower threshold value are 
excluded from the edge point group. The points in between 
the threshold values are identified as candidate edge points 
and are tested to determine if they are connected to points of 
an edge that were above the higher threshold value. If they 
are connected to the points that have magnitudes above the 
threshold, they are included in the group of points belong-
ing to the edge. These threshold values are determined 
through trial and error and tend to be problem specific. More 
recently, it has been suggested [27] that an adaptive thresh-
olding method may be more advantageous. In images where 
there may be a wide range of edge features, one set of upper 
and lower threshold values might be inadequate to prop-
erly categorize the gradient values across the entire image. 
With adaptive thresholding, not only are the gradient values 
considered but the overall distribution of gradient values is 
binned in a histogram. This can be done locally for each sub-
set point in the field of values to adjust the threshold values 
depending on the local characteristics of the gradient results.

Proposed Method for Identifying Crack Tip

As previously stated, the crack tip identification problem 
carries many similarities to the edge detection problems in 
image processing. The general concept is that regions within 
the displacement field with steep discontinuities must be 
identified as potential crack faces and within those poten-
tial crack faces, the most likely termination point must be 
identified. In the most basic implementation, the Canny edge 
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detection method described in the previous section can be 
implemented directly. However, several modifications to the 
algorithm are necessary to improve its performance to meet 
the goals of the present problem to include adaptations to 
the thresholding procedure and specific displacement field 
preprocessing steps. For the crack tip identification problem, 
the following methodology is proposed and will be detailed 
in the following sections. The image space is first decom-
posed into two domains, one on each side of crack path. DIC 
is performed on each domain separately, and a Gaussian 
smoothing operation is implemented on the resulting dis-
placement fields. The partial derivatives and their magni-
tudes and directions at each output point are calculated, and 
an algorithm (described in the previous section) is used to 
suppress non-maximum values. A histogram of the gradient 
values is calculated and used to determine the far-field com-
ponent of gradient to remove spurious edges. The general 
workflow of this process is outlined in Fig. 1.

Displacement Field Decomposition

The first step in the proposed procedure is to identify the 
edge of the fractured specimen (or the crack path) and use 
it to split the image space into two separate domains. The 
path is identified by first selecting an image that contains 
the fully propagated crack. The image is manually marked 
with a series of points along one of the two crack faces and 
then imported into MATLAB®. Once in MATLAB®, the 
points along the manually marked edge are located using 
an image of the specimen after full separation. The rigid 
body motion is calculated using two images, one from prior 
to loading state and the second after separation/fracture. 
Multiple points along the specimen edge or crack face are 
extracted from an image captured prior to loading and com-
pared with the same edge points extracted from an image 
captured after full separation. It is assumed that the speci-
men deformation is dominated by recoverable elastic defor-
mation. The calculated rigid body motion (displacement 
and rotation) is used to transform the crack edge from the 
deformed coordinate system back into the undeformed coor-
dinate system to remove the rigid body motion. The edge  
in the undeformed coordinate system is then used to create 

Image decomposition

Image correlation

Displacement field

composition

Smoothing

Gradient computation

Local maxima

identification

Hysteresis evaluation 

& thresholding

Crack tip identification

Preprocessing Location identification

Fig. 1   Workflow for the proposed crack tip detection/location proce-
dure
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the boundary between the upper domain and the lower 
domain for the image correlation procedure as illustrated 
in Fig. 2. This results in an upper domain mask (all pixels 
outside of the upper domain are removed from the image 
correlation procedure) and a lower domain mask (all pixels 
outside the lower domain are removed from the image cor-
relation procedure).

By splitting the image into two separate domains, one 
on each side of the fracture surface, the image correlation 
process can utilize subset truncation which allows corre-
lation to be performed on partial subsets as illustrated in 
Fig. 3. For points within the image that are close to the edge, 
truncating subsets enables displacement data to be acquired 
within a few pixels of the edge. As the crack propagates 
across the specimen, each individual domain remains con-
tinuous, and subsets are not allowed to cross the boundary 
between the two domains. In those situations, pixels from 
both domains are considered in the correlation and either 
correlation quality degrades, or the displacement becomes 
smeared or averaged across the boundary/edge (or the crack 
in the present case). The truncation avoids these two forms 
of data degradation.

After the images are processed, the two domains of 
displacement data are stitched back together. Since the 
masks for the decomposed domains were created in the 
same original image space and the same images are used 
for the correlation process, the resulting two displacement 
field sets also exist in the same image reference space. That 
is to say that each data array has numeric values for each 
subset within its own domain and is zero padded in areas 
outside of its domain. These data arrays can thus be stitched 
together via a simple matrix addition operation. The two 
displacement fields are imported as 2-dimensional data 
arrays into MATLAB® and added together resulting in a 
single 2-dimensional array consisting of a continuous field 
of data ahead of the crack tip and a discontinuous field of 
data behind the crack tip for any given point in the crack 
tip propagation history. It should be noted that a minimal 
amount of noise is present ahead of the crack tip that will be 
addressed in later sections.

Displacement Field Gradient Estimation

The resulting displacement field is then normalized to create 
a normalized displacement field, I(x, y) , associated with each 
component of displacement such that the maximum value is 
1 and the minimum value is 0. This is calculated as,

where � can be the taken as the global x-direction displace-
ment (u), the global y-direction displacement (v), or the 
magnitude of the displacement ( 

√
u2 + v2 ). The displace-

ment components can be given equal weight in subsequent 
analysis steps or could potentially be weighted towards the 
more dominant displacement component.

The normalized displacement field is then convolved 
with the Gaussian filtering kernel defined in equations (1) 
and (2), resulting in a smoothed version of the normalized 
displacement field. The intensity gradients are then com-
puted from the filtered intensity field using 2-dimensional 
convolution of the filtered intensity values with the kernels, 
Kx and Ky, to calculate the desired partial derivatives in the 
x- and y-directions, respectively.

Crack Edge Estimation

The magnitude of the partial derivative results and the direc-
tions are computed using equations (5) and (6), respectively. 
The non-maximum suppression (NMS) technique is then 
used to thin the edge down to obtain an edge that is a single 
data point wide. In the present work, an additional step is 
taken at this point to filter out points that are known to lie 
away from the actual crack path. Since the edge is known 

(7)I(x, y) =
�(x, y) − min{�(x, y)}

max{�(x, y)} − min{�(x, y)}

Upper domain

Lower domain

Crack propagation path

Initial crack tip
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x

r

Fig. 2   Upper and lower image correlation domains as they relate to the 
position of the crack tip and crack propagation path

Subset truncated

from lower domain

Subset truncated

from upper domain

Crack path

Fig. 3   Subset truncation illustration showing lower domain subset trun-
cated at boundary (left) and upper domain subset truncated at boundary 
(right)
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and the crack tip must lie on that edge, the points away from 
the edge can be removed from the group of candidate points 
(for instance the specimen edges). This step is handled auto-
matically by calculating the Euclidean distance of each can-
didate point to the known crack path.

Thresholding

The final step is to identify the most likely position of the 
crack tip within this subset of candidate points of the edge. 
The typical method in image processing problems is to use 
an approach referred to as adaptive thresholding, similar to 
what has been proposed by Rong et al. [27]. This approach 
takes a histogram of the field of partial derivative values and 
selects a threshold value that results in a certain percentage 
of output data points occurring above the threshold and a 
certain percentage of points falling below the threshold. This 
has been shown to work well on certain image processing 
problems, however, it is still subjective, and does not appear 
to be sufficiently robust for the crack tip identification prob-
lem at hand, and thus, a more robust approach is desirable. 
For the present implementation, a histogram of the partial 
derivative is first taken, and used to compute the distribu-
tion of the partial derivative values. An example histogram 
is shown in Fig. 4 from a mixed-mode crack problem to be 
discussed later.

One interesting feature of the histogram is that it has a 
distinctive peak at a magnitude of 0 and a secondary distinc-
tive peak at another non-zero value. The first peak occurs 
near 0 and accounts for the majority of the data in the partial 
derivative field where the strain in the material is relatively 
low (as compared to the discontinuous crack faces). This has 
been truncated in the figure to see the secondary peak more 

clearly. This secondary peak is attributed to noise in the par-
tial derivative field ahead of the crack tip and also away from 
the gradients associated with the crack faces which are much 
higher in magnitude. The second peak, centered at a mag-
nitude of approx. 0.04 for the example, is relatively subtle, 
but can be used for filtering out additional unwanted edge 
candidates. For the present implementation, this secondary 
peak was used to separate spurious far-field data from the 
location of the crack tip. There is relatively high confidence 
that partial derivative values that are higher than this sec-
ondary peak occur on the crack faces behind the crack tip. A 
series of values were selected that were known to be slightly 
higher than this secondary peak and used for tracking the 
crack tip position. The thresholding procedure is adaptive 
in the sense that the value of the far field noise can fluctuate 
as the displacements evolve and can ensure that the points 
that are being tracked are above this noise threshold. The 
crack tip is then taken as where the partial derivative values 
regress towards a value slightly higher than this secondary 
value that is above the far-field noise. Since there is still 
uncertainty as to whether the crack tip is precisely located 
at this location, the positional error can be estimated based 
on the initial data sets where the crack tip is stationary and 
the physical crack tip is known. Locations of the propagat-
ing crack tip can be corrected for this error since it is known 
with relatively good confidence.

Stress Intensity Factor Extraction

Once the crack tip positions for the propagating crack are 
known, the stress intensity factors can be extracted. Two 
methods are utilized in the present work for evaluating stress 
intensity factors. The first method utilizes the measured dis-
placements to estimate the stress intensity factors by fitting 
a set of over-determined equations to the displacement field 
around the crack tip. This procedure has been widely used in 
the fracture mechanics community. The details are given in 
Appendix B for completeness. The second method utilizes 
a domain integral approach to extract the stress intensity 
factors as described in the following section.

Domain Integral Approach

The stress intensity factors can also be extracted using a 
domain integral approach. The J-integral, as presented in 
Shih et al. [28], is defined as:

where A is the area of the domain or the area that includes 
the crack tip being evaluated, q1 is a weighting function that 
equals 1 on the outer boundary of the domain and 0 on the 
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ondary peak due to noise in the gradient field ahead of the crack tip
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inner boundary of the domain. In the case of the plane stress 
condition, this domain integral can be decomposed into the 
two stress intensity factors KI and KII for modes I and II, 
respectively, using the relationship:

The Abaqus finite element software employs an inter-
action integral technique to partition J and extract the two 
stress intensity factors based on the technique described in 
[29].

To implement this approach, the experimentally meas-
ured displacement data is filtered to minimally remove noise 
and a post-processing script is used to calculate the coor-
dinates of each of the subset points based on the known 
pixel size, subset size, and subset spacing. The grid of DIC 
output points is structured with uniform spacing in the x- 
and y-directions. Once the nodal coordinates are known, the 
script utilizes the array indices of the nodal position data to 
establish the element connectivity using the Abaqus element 
connectivity convention where the first node is in the lower 
right quadrant. Other nodes of the element are ordered in a 
counterclockwise direction. Once the nodal positions and 
element connectivity have been determined, the script then 
writes the node and element data into a text file in the proper 
Abaqus input file format. Lastly, the script writes the mate-
rial property definitions for the model, and the appropriate 
output requests to extract the fracture parameters of interest 
using the previously described domain integral approach 
using the Abaqus structural solver. This approach has been 
documented by the present authors in [30] in the study of 
rubber-toughened epoxy specimens with inclined cracks as 
well as in [31] in the study of the effects of print architecture 
on fracture of additively printed ABS. Both aforementioned 
works have critically examined this approach and for brevity 
the details are avoided here.

Verification

Two separate finite element models were utilized to study 
the performance of the proposed edge detection algorithm 
for the crack tip problem and establish confidence in its per-
formance. The intent of the verification was to ensure that 
the methodology correctly meets the objectives of positively 
identifying the crack tip where the crack tip is known a pri-
ori. Verifying the performance of the methodology provides 
an opportunity to investigate the confidence with which the 
crack tip can be located. Additionally, it establishes the sen-
sitivity to certain parameters and assumptions inherent to 
the procedure, namely the resolution of the experimental 
displacement data. The verification procedure also enables 
the investigation of the ability of the algorithm to perform on 

(9)J =
1

E

(
K2

I
+ K2

II

)

more challenging fracture problems such as those involving 
higher elastic modulus materials of low fracture toughness 
where experimentally measured displacements are substan-
tially lower in magnitude at failure.

The proposed verification process for the automated method 
is to create a set of displacement fields using numerically- 
simulated crack problems to test the methodology. The algo-
rithm implemented in the present work is primarily developed 
and scripted to work with data structures analogous to those 
found in image processing problems. More specifically, for the 
present problem, displacement data at uniformly spaced points 
in an orthogonal coordinate system. Thus, the numerically- 
simulated data was mapped onto such a uniform grid of 
points.

Mode I Verification

A simple three-point bending model with an edge crack, 
loaded in mode I was used for the first test. This is a rela-
tively straightforward model for test purposes due to the 
known self-similar crack path, and the fact that one of the 
displacement field components accounts for a majority of 
the crack face motion. The beam had a height of 38 mm, 
length of 203 mm, and support span of 152 mm. The length 
of the edge crack was varied from 12.7 mm to 25.4 mm in 
2.5 mm increments. The boundary conditions and displace-
ment field from the finite element model are illustrated in 
Fig. 5. The first case used an elastic modulus of 2.2 GPa, 
similar to the modulus of the material in the present work 
and the applied load in the model was scaled to a target 
stress intensity factor of 1.1 MPa-√m.

x

y

Load

Support

Support Excluded output points

Fig. 5   Finite element model and crack tip mesh detail used for edge 
detection verification
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For this first test problem, the mesh around the crack 
tip was structured to artificially mimic the positioning of 
the output points from the experimentally measured digital 
image correlation data such that the methodology could be 
tested directly using the nodal output calculations. As shown 
in the figure, the nodal output points along the crack faces 
and directly ahead of the crack tip (highlighted in red) are 
ignored in the edge detection algorithm since those points 
would not physically be reported in the digital image cor-
relation output data. The remaining output points are uni-
formly spaced as would be the case for a typical output set 
from digital image correlation.

Crack Tip Location Comparisons

For each analysis run, the crack edge was manually extended, 
thus repositioning the crack tip to a new, known position. 
The displacement field from the finite element model was 
then extracted using a python script and subsequently read 
into MATLAB® into the same data format as the typical 
digital image correlation results.

For the purposes of gaining insight into this method, for 
this simple initial test case, the maximum gradient value 
was extracted at each horizontal position in the displacement 
field (e.g., specific distance from the edge). As expected, 
behind the crack tip, the gradient is significant due to the 
discontinuity, whereas ahead of the crack tip, the gradient 

approaches some constant value. These values are plotted 
for each successive crack tip position in Fig. 6. The contour 
plot is uniform away from the crack primarily because the 
magnitudes of the gradient values away from the crack fall 
into a very small range compared to the large gradients pre-
sent across the crack faces.

The colored vertical dashed lines in Fig. 6 are plotted 
for reference to show the horizontal position of the actual 
crack tip. The black horizontal dashed line is approximately 
aligned to the point on the gradient plot where the actual 
crack tip resides. As shown in the figure, it is evident that the 
crack tip position occurs generally in the same location rela-
tive to the far field gradient ahead of the crack tip. For this 
simple test case, it was relatively straightforward to manually 
identify an appropriate threshold value and track that value 
as the crack tip propagates in space thus using the simplest 
implementation of the Canny edge detector. For this test 
problem, the estimated crack lengths from the edge detector 
are tabulated in Table 1. The estimated values agree well 
with the actual crack tip positions with the amount of error 
decreasing with crack length, implying that the error is a 
constant value irrespective of crack length.

Mixed‑mode Fracture Verification

The three-point bending geometry demonstrates the fea-
sibility of the general procedure and workflow of the 
edge detection algorithm. However, the mode I behavior 
produces a relatively simple displacement field around 
the crack tip, namely, the dominant direction of the dis-
placement field is well understood. Additionally, the 
algorithm performs well even by simply thresholding the 
gradient results (partial derivatives of displacement in 
each direction) manually. To demonstrate the full utility 
of the methodology, it is necessary to investigate its use 
on more complex geometries and more complex displace-
ment fields. For this next level of verification, a semi-
circular beam geometry was selected. First, this geometry 
can be configured for a full range of mode mixities [30], 

Distance from edge

Crack

Contour plot of gradient values

Fig. 6   Contour plot of gradient (equation (5)) values (upper) and line 
plots of maximum intensity gradient values (lower) at different crack 
lengths

Table 1   Edge detection algorithm accuracy study on simple mode I 
crack problem

Position Actual Crack 
Length
(mm)

Estimated Crack 
Length
(mm)

Difference

1 12.70 13.24 4.3%
2 15.20 15.73 3.5%
3 17.80 18.20 2.2%
4 20.30 20.64 1.7%
5 22.90 23.05 0.7%
6 25.40 25.45 0.2%
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and second, the geometry creates a crack propagation 
path that is not self-similar. This part of the verification 
was divided into two key sections. First, a finite element 
model was setup to provide simulated displacement fields. 
From a failed specimen from a mixed-mode fracture test, 
a representative crack path was extracted so that dif-
ferent crack tip locations along that crack path can be 
simulated using the numerical model. Second, an inverse 
finite element mapping tool was developed and utilized 
to transform the simulated displacement fields into an 
array of vertical displacements and an array of horizon-
tal displacements, both output onto an uniformly spaced 
grid of output points. This mapper was necessary because 
the geometry of the propagating crack path does not lend 
itself to creating a structured mesh as in the mode-I case 
(details follow).

Test Specimen Geometry

The semi-circular beam (SCB) test specimen geometry 
was first introduced to study mechanics problems involv-
ing cored concrete and rock [32–34] cylinders. The general 
specimen geometry and loading configuration are illus-
trated in Fig. 7 where R is the radius of the specimen, a is 
the crack length, β is the crack angle with respect to the 
horizontal axis of the specimen, and S is the half span. 
The Cartesian crack tip coordinates are denoted by the x- 
and y-axes parallel and perpendicular to the crack, respec-
tively. The corresponding crack tip polar coordinates r and 
θ are as shown.

As investigated in [34], the stress intensity factors at the 
crack tip, and therefore the mode mixity, are controlled by 
the geometric parameters of the test setup namely, R, a, β, 

and S. For the purposes of this study, a single initial crack 
orientation was selected with several subsequent analyses 
of crack tip points located along a projected hypothetical 
crack path.

SCB Finite Element Model

The specimen section of the finite element model is shown 
in Fig. 8. The coordinates for the crack path from a failed 
test specimen were extracted and imported into the finite 
element software to partition the domains along the physical 
path. A series of analyses were then performed by manually 
advancing the crack tip incrementally along the path. This 
provided a series of displacement field results representing 
a range of mode mixities and a range of orientations to test 
out the edge detection algorithm.

The FE model does not create output on a uniformly 
spaced grid of points; however, the proposed crack tip loca-
tion identification technique is formulated to operate on uni-
formly spaced output data. Because of specimen geometries, 
crack orientations, crack propagation paths, etc., the ele-
ments found within the FE mesh for each crack propagation 
step can have a variety of shapes and thus the nodal displace-
ment data is not able to be output on a uniformly spaced 
grid. To that end, an inverse FE mapping technique was 
implemented in MATLAB® to map the output data from the 
FE model (nodal displacements in the x- and y-directions). 
This concept has been shown to be a viable method for 
mapping between two coordinate spaces by several authors 
including [35] and [36]. The details of the mapping process 
are documented in Appendix C.

Fig. 7   Semi-circular beam bending test configuration for quasi-static 
case, shown with typical crack tip mesh

Load Supports

Crack Edge

Selected Crack Tip Positions

Fig. 8   Specimen section of finite element model
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Mapping Checks

The mapping scripts were tested to ensure that the simu-
lated data from the FEA is being properly represented in the 
evenly spaced grid output data used for testing the robust-
ness of the edge detection algorithm. A comparison is shown 
in Fig. 9. The two displacement fields match in terms of 
magnitude and distribution. The crack faces appear to be 
properly represented in the mapped displacement field.

Prediction Comparisons

The simulated displacement fields from the SCB model 
were used to further test the edge detection algorithm 
performance for several specific scenarios to demonstrate 
its utility. This test case was a mixed-mode fracture case 
where the crack initiates under shear-dominated condi-
tions and then transitions to tension-dominated growth. 
This is an excellent verification case because the crack 
face motion is initially dominated by sliding between the 
two crack flanks at the initial crack tip location, but as 
the crack propagates, it transitions to being dominated by 
opening between the two. The Sobel gradient operator is 

generalized to compute partial derivatives in both direc-
tions, so this case exercises the full range of possible par-
tial derivatives and directions. This part of the process is 
illustrated in Fig. 10. The x- and y- positions are the pla-
nar coordinates in the displacement field space, and the 
z-position is the magnitude of the gradient with the origin 
of the coordinate system located at the original crack tip. 
A projection of the specimen boundaries is also plotted 
for reference. This figure shows how the partial deriva-
tives are much higher at the furthest locations from the 
crack tip location and they progressively approach zero 
at the crack tip. However, due to noise, the thresholding 
procedure is used to track a point at a small, but known, 
distance away from the crack tip. The gradient values are 
separately plotted in three-dimensional space for a series 
of crack tip locations to illustrate the evolution of the 
partial derivative computations as the crack propagates. 
The simulations were performed with the same material 
properties as the mode I test case (elastic modulus of 2.2 
GPa, with load applied to a target stress intensity factor 
of 1.1 MPa-√m).

Using the results from this set of simulations, a series of 
test cases were run to examine the behavior of the algorithm 
and determine relationships between algorithm parameters 

Fig. 9   Source normalized displacements from simulation (left) com-
pared with mapped normalized displacements (right) for two different 
crack tip positions

Fig. 10   Field of partial derivative values illustrated in 3D space for 
single crack tip location originating from an inclined crack (top) and 
evolution of partial derivative values as crack propagates in the x–y 
plane (bottom)
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and their ability to locate the crack tip. This work was split 
into four separate studies: first to study the thresholding 
value, second to determine the effect of subset/grid spac-
ing, third to determine the effect of the Gaussian blur kernel 
size, and forth to study the effect of the Gaussian smooth-
ing parameter. The operator has flexibility in choosing 
these parameters. The study parameters are summarized in 
Table 2.

The range of threshold values was based on an investiga-
tion of the distribution of gradient magnitudes in the image 
(see Fig. 4 for reference). The range of sub-image/facet spac-
ing values were chosen based on the desired subset spacing 
for the DIC data extraction. With respect to the Gaussian 
filter parameters, three plausible values were chosen based 
on several open source example problems.

The comparison of crack coordinate position is shown in 
Fig. 11. Figure 11(a) and (b) show the effects of threshold 
value and subset/grid spacing whereas Fig. 11(c) and (d) 
show the effects of kernel size and sigma values. (Note that 
the values are plotted in terms of the static X–Y coordinate 
system centered at the initial crack tip and as illustrated in 
the inset in Fig. 11 which is different from the instantaneous 
crack tip coordinate system (x, y) reported elsewhere).

These plots in the X–Y coordinate system illustrate that 
generally the prescribed crack path is the shortest distance and 
the fact that the estimated crack tip points oscillate between 
one side and the other of the actual path, the edge detec-
tion algorithm tends to overpredict total crack length. With 
regard to investigation of the threshold parameter, a value of 
0.1 (accompanied by the subset spacing of 0.25 mm) worked 
particularly well for this test problem. The most significant 
effect with respect to thresholding occurred in case #1 where 
a low threshold value (0.05) was greatly influenced by noise 
in the gradient estimation near the crack tip and hence had a 
poor outcome on the crack tip position identification. With 

respect to the grid spacing, case #5 which had the largest grid 
spacing (0.5 mm), had a few results with noticeably large posi-
tion errors approaching 1 mm; however, on average, it per-
formed similar to the other cases analyzed across many of the 
test points. The effect of Gaussian kernel size was minimal. 
Almost no difference was found between the 5 × 5 kernel 
size and the 7 × 7 kernel size. With respect to the choice of σ, 
a value of 1.0 was found to produce acceptable results, with 
the higher and lower values potentially introducing too little 
or too much smoothing. In general, the automated procedure 
was able to locate the crack tip with a high degree of accu-
racy. For most of the test cases, the average location error 
across each of the 10 test locations ranged from 0.2 mm to 
0.4 mm. Only select cases exceeded this range with case #1 
having the highest average error (1.33 mm), followed by case 
#3 (0.46 mm) and case #9 (0.48 mm). Considering that the 
algorithm is operating on a grid of uniformly spaced data, the 
algorithm should be able to detect the crack tip position to 
within 1 increment of the spacing of the gridded data which 
seems to be reflected in this study. For the present work, it 
was determined that the thresholding procedure documented 
in earlier sections would maintain threshold values that were 
within a favorable range based on this study. A spacing value 
of 0.36 mm was chosen. It performed well in the correlation 
procedure while fitting within the range of values that worked 
well on the test problem. A Gaussian filter kernel size of 5 × 
5 was chosen and implemented with σ ≈ 1.

Experiments

Next, the Canny edge detection concepts along with numeri-
cally driven demonstrations of the algorithm to precisely iden-
tify the crack tip via simulations was put to test by performing 

Table 2   Edge detection 
algorithm parameters

Variable Case
Number

Gaussian Filter
Kernel Size

Gaussian 
Filter
Sigma Value

Threshold
Value

Grid
Spacing (mm)

1 5 × 5 1.0 0.05 0.250
Threshold 2 5 × 5 1.0 0.10 0.250

3 5 × 5 1.0 0.20 0.250
4 5 × 5 1.0 0.10 0.125

Grid Spacing 2 5 × 5 1.0 0.10 0.250
5 5 × 5 1.0 0.10 0.500
2 5 × 5 1.0 0.10 0.250

Kernel Size 6 3 × 3 1.0 0.10 0.250
7 7 × 7 1.0 0.10 0.250
8 5 × 5 0.5 0.10 0.125

Sigma Value 2 5 × 5 1.0 0.10 0.250
9 5 × 5 2.0 0.10 0.500
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an actual dynamic fracture experiment. The details are as 
follows.

Test Setup

In order to evaluate the fracture quantities of interest, a long 
bar apparatus was utilized for subjecting an SCB test speci-
men with an inclined crack to a dynamic loading event. The 
test setup is shown schematically in Fig. 12. In this setup, 
a gas gun was used to accelerate a 305 mm long, 25.4 mm 
diameter 7075-T6 aluminum striker bar up to the desired 

velocity. The striker bar was propelled to impact a 1.83 m 
long, 25.4 mm diameter 7075-T6 aluminum long bar. The 
striker bar creates an elastic longitudinal stress wave that 
propagates the length of the long bar into the test speci-
men. A strain gage located on the long bar enables meas-
urement of the load history that is being transmitted to the 
test specimen.

A trigger and a delay generator are used to control the 
image acquisition through a Kirana-05 M ultrahigh speed 
camera. The camera is equipped with a 924 × 768 sensor 
with 10-bit gray scale resolution. A Nikkor 80–400 mm 

(a) Threshold Value (b) Grid Spacing

(c) Gaussian Kernel Size (d) Gaussian Blur Parameter

X

Y

Fig. 11   Effect of edge detection algorithm parameters on crack tip location. (Note that X and Y represent spatial coordinates, different from the 
crack tip coordinates, x and y)



Experimental Mechanics	

focal length macro zoom lens with a focal length doubler 
was utilized. The camera can acquire up to 180 images of 
the dynamic event at up to 5 million frames per second. A 
frame rate of 500,000 frames per second was used for the 
current work. The Ncorr [37] software was used to perform 
the speckle image correlations to quantify displacements in 
the two orthogonal in-plane directions. Based on the subset 
spacing (5 pixels), and the pixel scale factor (~0.06 mm), the 

resulting distance between neighboring output points was 
0.36 mm. The parameters for the digital image correlation 
setup are summarized in Table 3.

Dynamic fracture specimens were fabricated for dem-
onstrating the proposed experimental procedure. A rubber-
toughened epoxy formulation representative of a broad range 
of epoxy-based adhesive materials was chosen for the pre-
sent work. It was a basic mix of EPON™ 828 epoxy resin 

Incident bar

(1830 mm long)

Top view

Trigger

Delay generator

Kirana-05M

Ultra high speed

camera

Strain gage

Striker

(300 mm long) Test specimen
Gas gun

Side view

Flash lamps

Fig. 12   Experimental setup (side view and top view) of stress wave loading apparatus for dynamic mixed-mode fracture

Table 3   Summary of digital 
image correlation parameters

Hardware Parameters Analysis Parameters

Camera Manufacturer Kirana Software NCORR
Camera Model 05 M Manufacturer Open source
Image Resolution 924 × 768 Image Filtering Guided filter
Lens Manufacturer Nikkor Sub-image Radius 45 pixel
Focal Length 80–400 mm Step Size 5 pixels
Field of View 50 mm × 50 mm
Image Scale 16.7 pixels/mm
Stereo Angle N/A
Image Acquisition Rate 500,000 fps
Patterning Technique Ink stamp
Approximate Feature Size 5–7 pixels
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and EPIKURE™ 3234 curing agent. Based on manufacturer 
recommendations, the two components were mixed at a ratio 
of 100:13 by weight. Prior to mixing, the resin was heated 
to 66 °C. Core–shell rubber particles were then mixed in at 
a ratio of 10% by weight using a Flaktek speedmixer. The 
speedmixer is a dual asymmetric centrifuge planetary mixer 
that reduces the opportunity for air entrapment in the mixer. 
After mixing, the mixture was allowed to cool to room 
temperature prior to adding the amine-based hardener and 
mixing it further. The epoxy mixture was then poured into 
the mold cavity. A sharp razor was inserted into the mold 
with the help of a template to align the razor blade to the 
desired inclination angle. A clip was attached to the razor 
blade to hold it in place while the epoxy cured. The samples 
were cured for approximately 18–24 h at room temperature 
followed by a post cure step for 2 h at 93 °C. The face of 
each test sample was then milled flat to the desired nominal 
thickness of 6.4 mm. Flat white paint was applied to the 
face of the test sample followed by a random speckle pattern 
created by a textured ink stamp. The material properties of 
this epoxy formulation are summarized in Table 4. Further 
details regarding the static and dynamic characterization of 
this material are available in [38].

The specimen geometry (illustrated in Fig. 7) is a semicir-
cular beam of 50 mm radius and edge crack of length 19 mm. 
The specimen is loaded by the long bar as illustrated in 
Fig. 12. It should be noted that this dynamic load case is a 
single point, inertially driven loading event different from the 
3-point supported quasi-static geometry in Fig. 7. The speci-
men is lightly held in alignment at the end of the bar with a 
short strip of soft putty along its edges. The proposed test 
setup and specimen geometry has separately been critically 
evaluated in [38]. By changing the crack inclination angle 
and/or the impact velocity, the specimen mode mixity at 
crack initiation can be controlled by assuming a known crack 
initiation toughness. This is illustrated in Fig. 13 where mode 
mixity is plotted as a function of crack inclination angle for 
three different striker velocities. The mode mixity is calcu-
lated as � = tan−1

KI

KII

 at the instant when the stress intensity 

factor reaches a critical value, 
√

K2

I
+ K2

II
> KCR.

For the present work, tests were performed with an 
impact velocity of 8 m/s and crack inclination angles rang-
ing from 90° (pure mode I) to 65° (pure mode II) to test 
the edge detection against a range of dynamic displacement 
field histories and resulting mode mixity conditions. Three 
separate experiments were examined critically to evaluate 

the performance of the proposed crack tip detection method. 
The crack tip positions and velocities were extracted using 
the edge-detection technique detailed earlier followed by the 
stress intensity factors at different instants of time.

Results and Discussion

Displacement Field Considerations

Displacement contours from one of the mixed-mode experi-
ments (80° from the specimen edge) are plotted in Fig. 14. 
The contours presented in the left-hand column are taken 
just prior to crack initiation and the contours presented in 
the right-hand column are at 30 µs after crack initiation. The 
top row contains sliding displacements (x-direction displace-
ments in the local crack tip coordinate system) and the lower 
row contains opening displacements (y-direction displace-
ments in the local crack tip coordinate system).

As seen in the figure, the post-initiation displacement fields 
are dominated by the crack opening. With the exception of the 
90° case (not shown), some sliding motion occurred in each 
test sample prior to crack initiation. In general, for each of the 
specimens tested, the opening mode displacements became 
more dominant in the post-initiation phase which is consistent 
with the extracted stress intensity factor histories (presented in 
later sections). The gray area in Fig. 14 is artificially widened 
for clarity. Due to the use of subset truncation, displacement 
data is available much closer to the physical crack.

Crack Tip Position from Automated Edge Detection Method

The crack tip positions were first extracted using the image 
processing-based edge detection method discussed earlier. 
From the crack tip position data, a quadratic Bezier function 

Table 4   Test specimen material properties

Elastic modulus 2.2 GPa (± 0.2 MPa)
Poisson’s ratio 0.33
Density 1107 kg/m3

Fig. 13   Mode mixity values for different crack angles for different 
striker velocities
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was used to evaluate crack tip velocity from the crack tip 
position estimations similar to what was used in [1]. For a 
given point, i, the smoothing function is evaluated as:

where s is the smoothing parameter, â is the crack coordi-
nate derived from the optical images, and a is the locally 
smoothed crack tip coordinate. A value of s = 0.5 was cho-
sen for the present work which results in the middle point of 
the interval carrying the most weight in the smoothing func-
tion. The velocity is then evaluated using backward finite 
difference approximation as,

The crack tip positions and velocities for the 90°, 80°, and 
65° experiments are plotted in Fig. 15.

The velocity histories for the three experiments generally 
reach a steady state crack propagation velocity between 250–300 
m/s after a brief ramp up period. The experiments with 90° and 
80° crack angles appear to have an initial period where the crack 
is accelerating whereas the 60° experiment appears to almost 
instantaneously reach the stable velocity. The velocities were 
all relatively consistent over the time window of 15 µs to 35 µs.

Crack Tip Position from Manual Identification

The crack tip positions were also extracted manually. The 
manual location of the crack tip was performed by selecting 

(10)ai(s) = (1 − s)2âi + 2s(1 − s)âi+1 + s2âi+2, 0 ≤ s ≤ 1

(11)Vi =
ai − ai−1

ti − ti−1

the approximate location from a visual inspection of each 
speckle image. The selected location was separately viewed 
in the field of the displacement contours and the digital 
image correlation coefficients to determine its likelihood 
of being correct. This part of the process was particularly 
tedious and subjective to optical effects such as motion blur 
which make it difficult to follow the crack tip. The crack 
length and velocity histories are plotted in Fig. 16 for the 
90°, 80°, and 65° cases. The displacement histories follow 
very similar monotonic trends in all cases.

A sharp rise in crack velocity was again evident in each 
case soon after crack initiation and the values attain a rela-
tively constant value soon after the crack initiation transients 
have died out. Furthermore, the velocities seem rather con-
sistent in the 250–350 m/s range for the three different crack 
inclination angles.

The automated and the manual crack tip detection meth-
ods resulted in similar crack velocity estimates. For instance, 
considering a temporal window between 15 and 40 µs the 
manual crack detection estimated a velocity of 312 m/s with 

Fig. 15   Crack tip position histories (upper) extracted using automated 
Canny edge detection method and the corresponding velocity histo-
ries (lower)

Fig. 14   Pre-initiation (left) and post-initiation (right) displacement 
contours from mixed mode experiment (80° initial crack inclination 
angle): Sliding mode (upper) and opening mode (lower); the width of 
the crack is artificially widened to better show the location of the tip
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a standard deviation of 56 m/s whereas the edge detection 
algorithm estimated a propagation velocity of 265 m/s with 
a standard deviation of 34 m/s. This confirms that the two 
measurements are within 15% of each other across the major-
ity of the propagation history. With the actual experimental 
displacement data, a set of crack tip location estimations 
were produced to determine the sensitivity of the method 
to variations in the thresholding criteria. The thresholding 
criteria is used to ensure that the point that is being tracked 
is above any noise level that may exist in locations within the 
field far away from the expected crack tip location. Recall 
that the current thresholding method first uses a histogram 
to estimate the noise in the field of partial derivative data 
far away from the crack faces. Using the noise estimate, a 
threshold value is calculated that is slightly above this noise 
estimate (e.g. 1.05X, 1.10X, etc.). Several threshold values 
were chosen to test the consistency of the output relative 
to the calculated threshold values. The crack tip position 
was very consistent regardless of threshold value provided 
that the threshold value was sufficiently above this lower 
noise estimate. This was reflected in the parametric study 

documented in earlier section and confirmed here. When 
implemented on the actual experimental data, across the 5 
runs and the multiple crack tip position estimates obtained, 
the standard deviation was approximately 0.15 mm. This fur-
ther illustrates that the edge detection algorithm is relatively 
insensitive to selection of this thresholding value. However, 
the value must be properly chosen based on the range of 
gradients present in the image and the amount of noise in 
the gradient field values away from the crack tip.

Stress Intensity Factor Histories

One of the key objectives of the edge detection technique 
is to show its fitness for automating the stress intensity 
factor extraction process. More specifically, the objective 
is to couple this technique to the hybrid DIC-FE method 
which has already been shown to be robust with respect to 
errors in crack tip position [30]. The stress intensity factors 
were extracted using four separate approaches tabulated in 
Table 5.

The processes for the second and fourth approaches are 
almost entirely automated with a minimal amount of inter-
vention from the operator. The only noteworthy user inter-
vention required is to initially trace out the crack path after 
the completion of the experiment. The various phases of 
the post-processing (as outlined in Fig. 1) occur in a series 
of MATLAB® scripts. Aside from the manual crack edge 
tracing, additional intervention is required to define addi-
tional necessary parameters (e.g. subset spacing, image 
scale factors, etc.) and start the execution of the various seg-
ments of the code. On the other hand, the first and fourth 
approaches require a significant amount of user intervention 
that requires, in many cases, a certain level of subjective 
interpretation of images for locating the crack tip.

Stress intensity factor histories are plotted in Fig. 17 for 
the three different mixed-mode dynamic experiments.

The first column of images shows the entire pre- and post-
initiation mode I and mode II stress intensity factor histories 
for the three different experiments, with the post-initiation 
data being extracted using the automated crack tip identi-
fication method coupled with the hybrid DIC-FE results. 
Pre-initiation, the results of an elasto-dynamic finite element 
simulation are included for reference. Post-initiation crack 
growth is locally dominated by mode I conditions. During 

Fig. 16   Crack tip position histories (upper) extracted manually and 
the corresponding velocity histories (lower)

Table 5   Stress intensity factor extraction methods

Group Tracking Method Extraction Method

1 Manual Over-deterministic least-squares
2 Automated Over-deterministic least-squares
3 Manual DIC-FE
4 Automated DIC-FE
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post processing, the crack tip coordinate system is aligned to 
the instantaneous local crack propagation direction, thus the 
mode II stress intensity factors in mixed-mode or mode II 

dominant cases drop to small values once the crack initiates 
(Note: t = 0 corresponds to crack initiation). The second col-
umn of plots show the post-initiation mode I stress intensity 

Fig. 17   Stress intensity factor histories for 90° (top), 80° (center), and 65° (bottom) dynamic experiments using different crack tip location methods. 
(t = 0 corresponds to crack initiation, right column is KI only)
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factor histories for each of the four methods listed in Table 5. 
The post-initiation mode II data are intentionally avoided for 
clarity since the values quickly trend toward 0.

It should be noted that the measurements were quite 
consistent across the four methods. The DIC-FE method 
(domain integral based) was particularly consistent 
between the manual and automated approaches. This is to 
be expected since it has been shown in prior works from the 
present authors [30] to be less sensitive to crack tip position. 
Conversely, the over-deterministic least-squares method had 
more variability as it is sensitive to several factors including 
crack tip position, crack orientation as well as the number of 
terms considered in the asymptotic expansion during analy-
sis. To assess the variability across the four methods, the 
stress intensity values from each of the four methods was 
averaged and the standard deviation was evaluated. The cal-
culations are summarized in Table 6. The summary shows 
that the typical standard deviation values were rather low 
relative to the average. This further illustrates the consist-
ency as well as the utility of the automated method.

Conclusions

An automated, edge detection-based method has been 
introduced and critically evaluated for identifying crack 
tip positions for a dynamically propagating crack using 

optically measured displacement field data. The method 
utilizes a series a partial derivative computations from the 
displacement fields coupled with an adaptive thresholding 
approach to extract the locations of the crack faces and 
identify the crack tip. A series of verification tests were 
performed by generating displacement fields using numer-
ical simulations on an edge-cracked geometry. The numer-
ical simulations were used to investigate the selection of 
various parameters associated with the Canny-based edge 
detector. The parametric study helped identify the appro-
priate Gaussian filter parameters (5 × 5 kernel size with 
σ ≈ 1), determine acceptable ranges of the thresholding 
parameter, and determine the relationship between subset 
spacing and error. The numerical simulations showed that 
the edge detection method could track the position of the 
crack tip accurately. Multiple dynamic fracture experi-
ments were then performed to evaluate the instantaneous 
crack tip location and stress intensity factor histories for a 
propagating crack under mixed mode conditions.

Several key advancements relative to prior works are 
worth noting. First, the usage of subset truncation by 
decomposing the region of interest into multiple domains 
enables a more precise representation of displacement 
fields along each crack face and is a contributor to the 
success of the proposed approach. Also worthy of note is 
the usage of non-maximum suppression which is used in 
edge detection but has not necessarily been investigated 

Table 6   Average and standard 
deviation of post-initiation 
mode I stress intensity factors 
across the four methods

KI (MPa-√m)

Average Standard Deviation

Time (μs) 90° 80° 65° 90° 80° 65°

2 0.79 0.79 0.89 0.04 0.07 0.07
4 0.83 0.85 0.93 0.03 0.05 0.10
6 0.88 0.91 0.94 0.03 0.09 0.11
8 0.91 0.97 0.95 0.07 0.13 0.08
10 1.02 1.02 1.00 0.04 0.12 0.08
12 1.07 1.10 1.04 0.01 0.12 0.08
14 1.09 1.13 1.09 0.04 0.08 0.06
16 1.13 1.18 1.10 0.06 0.11 0.07
18 1.14 1.20 1.11 0.09 0.08 0.09
20 1.17 1.22 1.16 0.09 0.07 0.06
22 1.22 1.27 1.21 0.08 0.07 0.08
24 1.23 1.31 1.24 0.09 0.10 0.06
26 1.23 1.35 1.27 0.10 0.11 0.09
28 1.26 1.36 1.29 0.04 0.11 0.02
30 1.29 1.36 1.28 0.05 0.07 0.05
32 1.27 1.35 1.36 0.07 0.13 0.03
34 1.25 1.37 1.37 0.05 0.20 0.04
36 1.27 1.40 1.41 0.08 0.26 0.09
38 1.28 1.46 1.41 0.12 0.32 0.10
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extensively for applying edge detection algorithms to frac-
ture problems.

The results presented here are highly encouraging and 
suggest that the method is relatively robust for identifying 
the crack tip. Possibly the most important thing to note 
regarding the procedure is that it is repeatable and is able to 
estimate the crack tip positions in a matter of seconds due 
to its computational efficiency. For this analysis, a study 
of 10 images required approximately 9 s to pre-process and 
then approximately 0.5 s per image to locate the crack tip.

Appendix A

Non‑maximum Suppression Procedure

A simple example with an edge running in the horizontal 
or vertical direction can be used to illustrate the concept 
of non-maximum suppression. A 5 × 5 excerpt from a ran-
dom magnitude intensity field with an edge oriented in the 
vertical direction is shown in Fig. 18 with resulting simple 
gradient computations.

The gradient magnitude is calculated from the individual 
directional gradient values using equation (5) and the directions 
of the gradient vector can be computed using equation (6).

With the magnitude and direction of the partial deriva-
tives known, the edge points can next be separated from 
the non-edge points. This information is used to adjudicate 
points within the field of gradient values that may be an 
actual edge, with the objective being to arrive at an edge that 
is exactly 1 data point wide. The first step here is to organ-
ize the partial derivative values according to direction, such 
that they are grouped into bins, [0°, 45°, 90°, 135°]. For the 
example problem illustrated here, the angles are tabulated 
in Fig. 19. For this example, since the values are primarily 

dominated by the vertically oriented edge, all of the direc-
tions round to 0°.

With the directions known, each value can then be com-
pared to the eight data points that surround it. More specifi-
cally, each point is compared to its neighboring points only 
in the direction of the angle of the gradient. For instance, if 
the direction is determined to be closest to the 45° direction, 
the data point is compared to the point to its upper right and 
lower left. The value at the given data point is then taken as the 
maximum of the 3 points along that direction. In the current 
example, the direction values are all 0°, thus each gradient 
value is only compared to its left or right neighbor as illus-
trated in Fig. 20.

Appendix B

Stress Intensity Factor Extraction Using 
Over‑deterministic Least‑squares Approach

For the displacement field around the crack tip prior to crack 
initiation, the over-deterministic least-squares results can be 
computed using the equations reported in [39] for the crack 
sliding (ux) and crack opening displacements (uy):

(12)

ux =
N∑
n=1

(KI)n
2�

r
n
2√
2�

�
κ cos

n

2
� −

n

2
cos

�
n

2
− 2

�
�

+
�

n

2
− (−1)n

�
cos

n

2
�
�
+

N∑
n=1

(KII)n
2�

r
n
2√
2��

κ sin
n

2
� −

n

2
sin

�
n

2
− 2

�
� +

�
n

2
− (−1)n

�
sin

n

2
�
�

Fig. 19   Gradient direction calculations (left) and direction values 
binned to the nearest 45° increment (right)

Fig. 18   Example intensity gradient a with edge running in vertical 
direction, and b example resulting gradient computation

Fig. 20   Original gradient values (left) with arrows showing the gen-
eral direction along which maximum values are determined, resulting 
in the thinned matrix (right)
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In the preceding equations, µ is the material shear modulus, 
and r and θ are the polar coordinates with crack tip as the 
origin and � =

3−�

1+�
 for plane stress. The coefficients KI and KII, 

when n = 1, are the mode I and mode II stress intensity factors. 
For digital image correlation experiments, the ux and uy fields 
are known for a set of points in the polar coordinates r and θ.

By selecting a group of points in the vicinity of the crack, 
a set of equations can be formed to determine coefficients (
KI

)
n
 and 

(
KII

)
n
 . Using an over-deterministic approach, the 

experimental crack opening displacement can be used for 
extracting mode I fracture components whereas the crack 
sliding displacements can be used for mode II fracture com-
ponents. However, it has been shown that by transforming 
experimentally measured in-plane Cartesian displacements 
into radial (ur) and angular (uθ) components, more accurate 
SIFs can be found in mixed mode problems [7]. That is, the 
Cartesian displacement components can be transformed into 
polar components as shown in equation (14).

For the analyses presented in the present work, the radial 
(ur) components are utilized for computing the SIFs. Using 
this technique, these equations can be expanded out to any 
number of higher order terms. For the present work, the equa-
tions were expanded for up to 10 terms and stress intensity 
factors were taken once KI and KII were determined to have 
converged. Measured displacement data was extracted for 
0.5 ≤ r∕

B
≤ 1.5 and −120◦ ≤ � ≤ 120◦ . The over-determined 

equation set was formed and solved for minimizing the least-
squares error to compute values of KI, KII for the crack up to 
the point of initiation at a range of values of n.

Once the crack begins to propagate, the opening and slid-
ing displacements can instead be written as:

(13)
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In the above equations, µ is the material shear modulus, 
and r and θ are the polar coordinates with crack tip as the 
origin as before and � =

3−�

1+�
 for plane stress. The longitudi-

nal and shear wave speeds are defined as CL =
√

(�+1)�

(�−1)�
 and 

CS =
√

�

�
 , respectively. The non-dimensional quantities, 

�1 =

√
1 −

(
c

CL

)2

 and �2 =
√

1 −
(

c

CS

)2

 are used to com-

pute the spatial variations of rm =
√

X2 + �2
m
Y2  and 

�m = tan−1
(

�mY

X

)
 based on the crack speed, c. Also, BI, BII, 

D, and h are defined in equation (17).

Appendix C

Mapping from FE‑space to Uniformly Gridded Space

As previously stated, the FE model is comprised of a variety 
of element shapes due to geometry around the crack, and 
therefore, does not create output on a uniformly spaced grid 
of points. A mapping procedure is thus necessary to create 
a uniformly spaced grid of displacement data for testing the 
algorithm. To that end, an inverse FE mapping technique 
was created to generate displacement fields. In the mapper 
developed for the current effort, the input file for the source 
finite element model contains all of the node numbers, 
nodal coordinates, and element connectivity. For each of the 
4-noded elements in the finite element model, the mapper 
locates the grid points that reside within its boundaries using 
a polygon search algorithm coded in MATLAB®. Since the 
element shape could be in the form of any four-sided poly-
gon, potentially distorted, a numerical routine was then used 
to determine the parametric coordinates of each of the des-
tination grid points within the space of their parent source 
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element in the original model. An example of the dissimilar-
ity between the two data point locations is shown in Fig. 21. 
A set of x- and y-coordinates on a uniform grid was created 
at the desired “output” point locations, as shown in red. The 
source model elements and nodes are shown in black. The 
relationship between the global space and the parametric 
space is also illustrated in Fig. 21 with an example map-to 
point shown by the dark-shaded point, xp.

The global coordinate of any point within the boundary of 
the element is a function of the parametric equation, N, and 
the global coordinates of the nodes that define the bound-
ary of the polygon. For a 4-noded quadrilateral element, 
the global coordinate of a point, xp and yp,, is defined in 
equation (18).

where i is the node number, xi and yi are the global coor-
dinates of the i-th node and ξ and η are the parametric 
coordinates.

The parametric equations, N, for a quadrilateral element 
are [40]:

(18)(xp;yp) =

4∑
i=1

Ni(�, �)(xi;yi)
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The parametric coordinates, ξ and η, for the target output 
point can be located using an iterative procedure. For a given 
iteration, the parametric space is split up into a 5 × 5 grid 
of points. The values of ξ and η, are used to calculate the 
resulting global coordinates at each of these points on the 5 
× 5 grid. The point within the grid that results in coordinates 
that have the shortest Euclidean distance to the actual point 
of interest is used as the initial guess of the next iteration. 
That initial guess becomes the center point of a smaller 5 × 
5 grid that is part of a subdivision of the grid in the previous 
iteration. This iterative process continues to subdivide the 
parametric space into smaller and smaller 5 × 5 grids until 
a result is found that matches the coordinates of the desired 
point within an acceptable tolerance. For the present work, 
the algorithm was required to determine the values of ξ and 
η that resulted in an error between the calculated coordinates 
and the actual coordinates of less than 1e-6. While there 
are more efficient numerical techniques for this part of the 
process, this approach converges reasonably quickly, usually 
within 6–8 iterations and is relatively inexpensive compu-
tationally. The approach can suffer some difficulty when 
the elements are significantly distorted. However, for the 
present work, the mesh was controlled sufficiently upfront 
and significant element distortions were avoided.

For a given point of interest in the grid that is being mapped 
to, once the parametric coordinates are known with an accept-
able accuracy, any desirable field quantities can then be cal-
culated. For this work, the field quantities of interest namely, 
displacements in the vertical and horizontal directions, the fol-
lowing relationships are used to compute those values:

This method is particularly advantageous because it 
avoids issues with averaging or smoothing around the crack 
tip or across the crack faces in the source data. This is 
because the target grid points are associated with elements 
from the output data. The nodal connectivity for the source 
elements is inherited from the source finite element model. 
Since the original mesh is created without elements span-
ning the crack tip or bridging across the crack faces, no aver-
aging occurs due to target nodes on one side of the crack face 
being influenced by displacements of nodes on the opposing 
side of the crack. It should be noted that in the case of a set 
of points that are arranged in a rectangular fashion, this gen-
eral method simplifies to bilinear interpolation.
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