9–7. Determine the normal stress and shear stress acting on the inclined plane \(AB \). Solve the problem using the stress transformation equations. Show the result on the sectioned element.

Stress Transformation Equations:

\[
\theta = +135^\circ \text{ (Fig. a)} \quad \sigma_x = 80 \, \text{MPa} \quad \sigma_y = 0 \quad \tau_{xy} = 45 \, \text{MPa}
\]

we obtain,

\[
\sigma_x' = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos \theta + \tau_{xy} \sin \theta
\]

\[
= \frac{80 + 0}{2} + \frac{80 - 0}{2} \cos 270^\circ + 45 \sin 270^\circ
\]

\[
= -5 \, \text{MPa} \quad \text{Ans.}
\]

\[
\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin \theta + \tau_{xy} \cos \theta
\]

\[
= -\frac{80 - 0}{2} \sin 270^\circ + 45 \cos 270^\circ
\]

\[
= 40 \, \text{MPa} \quad \text{Ans.}
\]

The negative sign indicates that \(\sigma_x' \) is a compressive stress. These results are indicated on the triangular element shown in Fig. \(b \).
9–15. The state of stress at a point is shown on the element. Determine (a) the principal stress and (b) the maximum in-plane shear stress and average normal stress at the point. Specify the orientation of the element in each case.

\[\sigma_x = 45 \text{ MPa} \quad \sigma_y = -60 \text{ MPa} \quad \tau_{xy} = 30 \text{ MPa} \]

(a) Principal Stress:

\[\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \]

\[= \frac{45 - 60}{2} \pm \sqrt{\left(\frac{45 - (-60)}{2}\right)^2 + (30)^2} \]

\[\sigma_1 = 53.0 \text{ MPa} \]

\[\sigma_2 = -68.0 \text{ MPa} \]

Orientation of principal stress:

\[\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2} = \frac{30}{(45 - (-60))/2} = 0.5714 \]

\[\theta_p = 14.87^\circ, \quad -75.13^\circ \]

Use Eq. 9–1 to determine the principal plane of \(\sigma_1 \) and \(\sigma_2 \):

\[\sigma_y = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta, \quad \text{where} \ \theta = 14.87^\circ \]

\[= \frac{45 + (-60)}{2} + \frac{45 - (-60)}{2} \cos 29.74^\circ + 30 \sin 29.74^\circ = 53.0 \text{ MPa} \]

Therefore \(\theta_{p1} = 14.9^\circ \) \quad Ans. and \quad \(\theta_{p2} = -75.1^\circ \) \quad Ans.

(b) Maximum In-plane Shear Stress:

\[\tau_{\text{max,in-plane}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \sqrt{\left(\frac{45 - (-60)}{2}\right)^2 + 30^2} = 60.5 \text{ MPa} \] \quad Ans.

\[\sigma_{\text{avg}} = \frac{\sigma_x + \sigma_y}{2} = \frac{45 + (-60)}{2} = -7.50 \text{ MPa} \] \quad Ans.

Orientation of maximum in-plane shear stress:

\[\tan 2\theta_y = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} = -\frac{45 - (-60)}{30} = -1.75 \]

\[\theta_y = -30.1^\circ \quad \text{Ans. and} \quad \theta_{y} = 59.9^\circ \quad \text{Ans.} \]

By observation, in order to preserve equilibrium along \(AB \), \(\tau_{\text{max}} \) has to act in the direction shown.
9–18. A point on a thin plate is subjected to the two successive states of stress shown. Determine the resultant state of stress represented on the element oriented as shown on the right.

For element a:
\[\sigma_x = \sigma_y = 85 \text{ MPa} \quad \tau_{xy} = 0 \quad \theta = -45^\circ \]
\[(\sigma_x)_a = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \]
\[= \frac{85 + 85}{2} + \frac{85 - 85}{2} \cos (-90^\circ) + 0 = 85 \text{ MPa} \]
\[(\sigma_y)_a = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta \]
\[= \frac{85 + 85}{2} - \frac{85 - 85}{2} \cos (-90^\circ) - 0 = 85 \text{ MPa} \]
\[(\tau_{xy})_a = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta \]
\[= \frac{85 - 85}{2} \sin (-90^\circ) + 0 = 0 \]

For element b:
\[\sigma_x = \sigma_y = 0 \quad \tau_{xy} = 60 \text{ MPa} \quad \theta = -60^\circ \]
\[(\sigma_x)_b = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \]
\[= 0 + 0 + 60 \sin (-120^\circ) = -51.96 \text{ MPa} \]
\[(\sigma_y)_b = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta \]
\[= 0 - 0 - 60 \sin (-120^\circ) = 51.96 \text{ MPa} \]
\[(\tau_{xy})_b = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta - \tau_{xy} \cos 2\theta \]
\[= \frac{85 - 85}{2} \sin (-120^\circ) + 60 \cos (-120^\circ) = -30 \text{ MPa} \]
\[\sigma_x = (\sigma_x)_a + (\sigma_x)_b = 85 + (-51.96) = 33.0 \text{ MPa} \]
\[\sigma_y = (\sigma_y)_a + (\sigma_y)_b = 85 + 51.96 = 137 \text{ MPa} \]
\[\tau_{xy} = (\tau_{xy})_a + (\tau_{xy})_b = 0 + (-30) = -30 \text{ MPa} \]

Ans:
\[\sigma_x = 33.0 \text{ MPa}, \sigma_y = 137 \text{ MPa}, \tau_{xy} = -30 \text{ MPa} \]
9-25. The wooden block will fail if the shear stress acting along the grain is 550 psi. If the normal stress \(\sigma_x = 400 \text{ psi} \), determine the necessary compressive stress \(\sigma_y \) that will cause failure.

\[
\tau'_{x'y'} = -\left(\frac{\sigma_x - \sigma_y}{2} \right) \sin 2\theta + \tau_{xy} \cos 2\theta
\]

\[
550 = -\left(\frac{400 - \sigma_y}{2} \right) \sin 296^\circ + 0
\]

\(\sigma_y = -824 \text{ psi} \)

Ans:

\(\sigma_y = -824 \text{ psi} \)
9–27. The bracket is subjected to the force of 3 kip. Determine the principal stress and maximum in-plane shear stress at point B on the cross section at section a–a. Specify the orientation of this state of stress and show the results on elements.

Internal Loadings: Consider the equilibrium of the free-body diagram of the bracket’s left cut segment, Fig. a.

\[\Delta \sum F_x = 0; \quad N - 3 = 0 \quad N = 3 \text{kip} \]
\[\sum M_y = 0; \quad 3(4) - M = 0 \quad M = 12 \text{kip} \cdot \text{in} \]

Normal and Shear Stresses: The normal stress is the combination of axial and bending stress. Thus,

\[\sigma = \frac{N}{A} - \frac{M_y}{I} \]

The cross-sectional area and the moment of inertia about the z axis of the bracket’s cross section is

\[A = 1(2) - 0.75(1.5) = 0.875 \text{ in}^2 \]
\[I = \frac{1}{12} (1)(2^3) - \frac{1}{12} (0.75)(1.5^3) = 0.45573 \text{ in}^4 \]

For point B, \(y = -1 \text{ in.} \) Then

\[\sigma_B = \frac{3}{0.875} - \frac{(-12)(-1)}{0.45573} = -22.90 \text{ ksi} \]

Since no shear force is acting on the section,

\[\tau_B = 0 \]

The state of stress at point A can be represented on the element shown in Fig. b.

In - Plane Principal Stress: \(\sigma_x = -22.90 \text{ ksi}, \sigma_y = 0, \) and \(\tau_{xy} = 0. \) Since no shear stress acts on the element,

\[\sigma_1 = \sigma_y = 0 \quad \sigma_2 = \sigma_x = -22.90 \text{ ksi} \quad \text{Ans.} \]

The state of principal stresses can also be represented by the elements shown in Fig. b.

Maximum In - Plane Shear Stress:

\[\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \sqrt{\left(\frac{-22.90 - 0}{2}\right)^2 + 0^2} = 11.5 \text{ ksi} \quad \text{Ans.} \]

Orientation of the Plane of Maximum In - Plane Shear Stress:

\[\tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}} = -\frac{(-22.90 - 0)/2}{0} = -\infty \]

\[\theta_s = 45^\circ \text{ and } 135^\circ \quad \text{Ans.} \]
9–27. Continued

Substituting \(\theta = 45^\circ \) into

\[
\tau_{x'y'} = \frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta
\]

\[
= \frac{-22.9 - 0}{2} \sin 90^\circ + 0
\]

\[
= 11.5 \text{ ksi} = \tau_{\text{max in-plane}}
\]

This indicates that \(\tau_{\text{max in-plane}} \) is directed in the positive sense of the \(y' \) axes on the element defined by \(\theta_x = 45^\circ \).

Average Normal Stress:

\[
\sigma_{\text{avg}} = \frac{\sigma_x + \sigma_y}{2} = \frac{-22.9 + 0}{2} = -11.5 \text{ ksi}
\]

The state of maximum in-plane shear stress is represented by the element shown in Fig. c.

Ans:

\(\sigma_1 = 0, \sigma_2 = -22.90 \text{ ksi}, \tau_{\text{max in-plane}} = 11.5 \text{ ksi}, \theta_x = 45^\circ \text{ and } 135^\circ \)
9–33. The clamp bears down on the smooth surface at \(E \) by tightening the bolt. If the tensile force in the bolt is 40 kN, determine the principal stress at points \(A \) and \(B \) and show the results on elements located at each of these points. The cross-sectional area at \(A \) and \(B \) is shown in the adjacent figure.

Support Reactions: As shown on FBD(a).

Internal Forces and Moment: As shown on FBD(b).

Section Properties:

\[
I = \frac{1}{12} (0.03) (0.05^3) = 0.3125 \left(10^{-6}\right) \text{m}^4
\]

\[
Q_A = 0
\]

\[
Q_B = \bar{y}'A' = 0.0125(0.025)(0.03) = 9.375\left(10^{-6}\right) \text{m}^3
\]

Normal Stress: Applying the flexure formula \(\sigma = \frac{My}{I} \).

\[
\sigma_A = \frac{2.40(10^3)(0.025)}{0.3125(10^{-6})} = -192 \text{ MPa}
\]

\[
\sigma_B = \frac{2.40(10^3)(0)}{0.3125(10^{-6})} = 0
\]

Shear Stress: Applying the shear formula \(\tau = \frac{VQ}{It} \).

\[
\tau_A = \frac{24.0(10^3)(0)}{0.3125(10^{-6})(0.03)} = 0
\]

\[
\tau_B = \frac{24.0(10^3)[9.375(10^{-6})]}{0.3125(10^{-6})(0.03)} = 24.0 \text{ MPa}
\]

In-Plane Principal Stresses: \(\sigma_x = 0, \sigma_y = -192 \text{ MPa} \), and \(\tau_{xy} = 0 \) for point \(A \). Since no shear stress acts on the element.

\[
\sigma_1 = \sigma_x = 0 \quad \text{ Ans.}
\]

\[
\sigma_2 = \sigma_y = -192 \text{ MPa} \quad \text{ Ans.}
\]

\(\sigma_x = \sigma_y = 0 \) and \(\tau_{xy} = -24.0 \text{ MPa} \) for point \(B \). Applying Eq. 9.5

\[
\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}
\]

\[
= 0 \pm \sqrt{0 + (-24.0)^2}
\]

\[
= 0 \pm 24.0
\]

\[
\sigma_1 = 24.0 \text{ MPa} \quad \sigma_2 = -24.0 \text{ MPa} \quad \text{ Ans.}
\]
9–33. Continued

Orientation of Principal Plane: Applying Eq. 9-4 for point B.

\[
\tan 2\theta_p = \frac{\tau_{xy}}{\left(\sigma_x - \sigma_y\right)/2} = \frac{-24.0}{0} = -\infty
\]

\[\theta_p = -45.0^\circ \quad \text{and} \quad 45.0^\circ\]

Substituting the results into Eq. 9-1 yields

\[
\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta
\]

\[= 0 + 0 + [-24.0 \sin (-90.0^\circ)]\]

\[= 24.0 \text{ MPa} = \sigma_1\]

Hence,

\[\theta_{p1} = -45.0^\circ \quad \theta_{p2} = 45.0^\circ\]

\[\text{Ans.}\]

\[\text{Ans:}\]

Point A: \(\sigma_1 = 0, \sigma_2 = -192 \text{ MPa},\)

\[\theta_{p1} = 0, \theta_{p2} = 90^\circ\]

Point B: \(\sigma_1 = 24.0 \text{ MPa}, \sigma_2 = -24.0 \text{ MPa},\)

\[\theta_{p1} = -45.0^\circ, \theta_{p2} = 45.0^\circ\]
9–42. The drill pipe has an outer diameter of 3 in., a wall thickness of 0.25 in., and a weight of 50 lb/ft. If it is subjected to a torque and axial load as shown, determine (a) the principal stresses and (b) the maximum in-plane shear stress at a point on its surface at section \(a \).

Internal Forces and Torque: As shown on FBD(a).

Section Properties:

\[
A = \frac{\pi}{4} \left(3^2 - 2.5^2 \right) = 0.6875 \pi \text{ in}^2
\]

\[
J = \frac{\pi}{2} \left(1.5^4 - 1.25^4 \right) = 4.1172 \text{ in}^4
\]

Normal Stress:

\[
\sigma = \frac{N}{A} = \frac{-2500}{0.6875 \pi} = -1157.5 \text{ psi}
\]

Shear Stress: Applying the torsion formula.

\[
\tau = \frac{T c}{J} = \frac{800(12)(1.5)}{4.1172} = 3497.5 \text{ psi}
\]

a) **In-Plane Principal Stresses:** \(\sigma_x = 0, \sigma_y = -1157.5 \text{ psi} \) and \(\tau_{xy} = 3497.5 \text{ psi} \) for any point on the shaft’s surface. Applying Eq. 9-5,

\[
\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}
\]

\[
= \frac{0 + (-1157.5)}{2} \pm \sqrt{\left(0 - (-1157.5) \right)^2 + (3497.5)^2}
\]

\[
= -578.75 \pm 3545.08
\]

\(\sigma_1 = 2966 \text{ psi} = 2.97 \text{ ksi} \)

\(\sigma_2 = -4124 \text{ psi} = -4.12 \text{ ksi} \)

Ans.

b) **Maximum In-Plane Shear Stress:** Applying Eq. 9–7,

\[
\tau_{\text{max in-plane}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}
\]

\[
= \sqrt{\left(0 - (-1157.5) \right)^2 + (3497.5)^2}
\]

\[
= 3545 \text{ psi} = 3.55 \text{ ksi}
\]

Ans.
9–58. Determine the equivalent state of stress if an element is oriented 25° counterclockwise from the element shown.

\[R = CA = CB = 550 \]

\[\sigma_x = -550 \sin 50^\circ = -421 \text{ MPa} \]

\[\tau_{x'y'} = -550 \cos 50^\circ = -354 \text{ MPa} \]

\[\sigma_y = 550 \sin 50^\circ = 421 \text{ MPa} \]

Ans:
\[\sigma_x = -421 \text{ MPa}, \tau_{x'y'} = -354 \text{ MPa}, \sigma_y = 421 \text{ MPa} \]
9-61. Draw Mohr’s circle that describes each of the following states of stress.

(a) 5 MPa and 5 MPa

(b) 20 ksi and 20 ksi

(c) 18 MPa

A (5,0) B (5,0) C (5,0)

A (-20,0) B (20,0) C (0,0)

A (0, 18) B (0, 18) C (0, 0)
9–65. The thin-walled pipe has an inner diameter of 0.5 in. and a thickness of 0.025 in. If it is subjected to an internal pressure of 500 psi and the axial tension and torsional loadings shown, determine the principal stress at a point on the surface of the pipe.

Section Properties:

\[A = \pi \left(0.275^2 - 0.25^2 \right) = 0.013125 \pi \text{ in}^2 \]

\[J = \frac{\pi}{2} \left(0.275^4 - 0.25^4 \right) = 2.84768 \left(10^{-3} \right) \text{ in}^4 \]

Normal Stress: Since \(\frac{r}{t} = \frac{0.25}{0.025} = 10 \), thin wall analysis is valid.

\[\sigma_{\text{long}} = \frac{N}{A} + \frac{pr}{2t} = \frac{200}{0.013125 \pi} + \frac{500(0.25)}{2(0.025)} = 7.350 \text{ ksi} \]

\[\sigma_{\text{hoop}} = \frac{pr}{t} = \frac{500(0.25)}{0.025} = 5.00 \text{ ksi} \]

Shear Stress: Applying the torsion formula,

\[\tau = \frac{Tc}{J} = \frac{20(12)(0.275)}{2.84768 \left(10^{-3} \right)} = 23.18 \text{ ksi} \]

Construction of the Circle: In accordance with the sign convention \(\sigma_x = 7.350 \text{ ksi} \), \(\sigma_y = 5.00 \text{ ksi} \), and \(\tau_{xy} = -23.18 \text{ ksi} \). Hence,

\[\sigma_{\text{avg}} = \frac{\sigma_x + \sigma_y}{2} = \frac{7.350 + 5.00}{2} = 6.175 \text{ ksi} \]

The coordinates for reference points \(A \) and \(C \) are

\[A(7.350, -23.18) \quad C(6.175, 0) \]

The radius of the circle is

\[R = \sqrt{(7.350 - 6.175)^2 + 23.18^2} = 23.2065 \text{ ksi} \]

In-Plane Principal Stress: The coordinates of point \(B \) and \(D \) represent \(\sigma_1 \) and \(\sigma_2 \), respectively.

\[\sigma_1 = 6.175 + 23.2065 = 29.4 \text{ ksi} \quad \text{Ans.} \]

\[\sigma_2 = 6.175 - 23.2065 = -17.0 \text{ ksi} \quad \text{Ans.} \]

Ans:

\(\sigma_1 = 29.4 \text{ ksi}, \sigma_2 = -17.0 \text{ ksi} \)
9–75. If the box wrench is subjected to the 50 lb force, determine the principal stress and maximum in-plane shear stress at point B on the cross section of the wrench at section a–a. Specify the orientation of these states of stress and indicate the results on elements at the point.

Internal Loadings: Considering the equilibrium of the free-body diagram of the wrench’s cut segment, Fig. a,

\[\Sigma F_y = 0; \quad V_y + 50 = 0 \quad V_y = -50 \text{ lb} \]

\[\Sigma M_x = 0; \quad T + 50(12) = 0 \quad T = -600 \text{ lb} \cdot \text{in} \]

\[\Sigma M_z = 0; \quad M_z - 50(2) = 0 \quad M_z = 100 \text{ lb} \cdot \text{in} \]

Section Properties: The moment of inertia about the \(z \) axis and the polar moment of inertia of the wrench’s cross section are

\[I_z = \frac{\pi}{4}(0.5^4) = 0.015625 \pi \text{ in}^4 \]

\[J = \frac{\pi}{2}(0.5^4) = 0.03125 \pi \text{ in}^4 \]

Referring to Fig. b,

\[(Q_y)_B = 0 \]

Normal and Shear Stress: The normal stress is caused by the bending stress due to \(M_z \).

\[(\sigma_x)_B = -\frac{M_z y_B}{I_z} = \frac{-100(0.5)}{0.015625 \pi} = -1.019 \text{ ksi} \]

The shear stress at point B along the \(y \) axis is \((\tau_{xy})_B = 0 \) since \((Q_y)_B \). However, the shear stress along the \(z \) axis is caused by torsion.

\[(\tau_{xz})_B = \frac{T \cdot z}{J} = \frac{600(0.5)}{0.03125 \pi} = 3.056 \text{ ksi} \]

The state of stress at point B is represented by the two-dimensional element shown in Fig. c.
Construction of the Circle: \(\sigma_x = -1.019 \) ksi, \(\sigma_z = 0 \), and \(\tau_{xz} = -3.056 \) ksi. Thus,

\[
\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2} = \frac{-1.019 + 0}{2} = -0.5093 \text{ ksi}
\]

The coordinates of reference point \(A \) and the center \(C \) of the circle are

\[
A(-1.019, -3.056) \quad \quad C(-0.5093, 0)
\]

Thus, the radius of the circle is

\[
R = CA = \sqrt{(-1.019 - (-0.5093))^2 + (-3.056)^2} = 3.0979 \text{ ksi}
\]

Using these results, the circle is shown in Fig. \(d \).

In-Plane Principal Stress: The coordinates of reference points \(B \) and \(D \) represent \(\sigma_1 \) and \(\sigma_2 \), respectively.

\[
\sigma_1 = -0.5093 + 3.0979 = 2.59 \text{ ksi} \quad \quad \text{Ans.}
\]

\[
\sigma_2 = -0.5093 - 3.0979 = -3.61 \text{ ksi} \quad \quad \text{Ans.}
\]

Maximum In-Plane Shear Stress: The coordinates of point \(E \) represent the maximum in-plane stress, Fig. \(a \).

\[
\tau_{max}^{in-plane} = R = 3.10 \text{ ksi} \quad \quad \text{Ans.}
\]

\[\sigma_1 = 2.59 \text{ ksi}, \sigma_2 = -3.61 \text{ ksi}, \theta_{p1} = -40.3^\circ, \theta_{p2} = 49.7^\circ, \tau_{max}^{in-plane} = 3.10 \text{ ksi}, \theta_r = 4.73^\circ\]
9-90. The solid propeller shaft on a ship extends outward from the hull. During operation it turns at $\omega = 15 \text{ rad/s}$ when the engine develops 900 kW of power. This causes a thrust of $F = 1.23 \text{ MN}$ on the shaft. If the shaft has a diameter of 250 mm, determine the maximum in-plane shear stress at any point located on the surface of the shaft.

Power Transmission: Using the formula developed in Chapter 5,

\[P = 900 \text{ kW} = 0.900 \left(10^6\right) \text{ N} \cdot \text{m/s} \]

\[T_0 = \frac{P}{\omega} = \frac{0.900(10^6)}{15} = 60.0 \left(10^3\right) \text{ N} \cdot \text{m} \]

Internal Torque and Force: As shown on FBD.

Section Properties:

\[A = \frac{\pi}{4} \left(0.25^2\right) = 0.015625\pi \text{ m}^2 \]

\[J = \frac{\pi}{2} \left(0.125^4\right) = 0.3835 \left(10^{-3}\right) \text{ m}^4 \]

Normal Stress:

\[\sigma = \frac{N}{A} = -\frac{1.23 \left(10^6\right)}{0.015625\pi} = -25.06 \text{ MPa} \]

Shear Stress: Applying the torsion formula.

\[\tau = \frac{T_c}{J} = \frac{60.0 \left(10^3\right) \left(0.125\right)}{0.3835 \left(10^{-3}\right)} = 19.56 \text{ MPa} \]

Maximum In-Plane Principal Shear Stress: $\sigma_x = -25.06 \text{ MPa}$, $\sigma_y = 0$, and $\tau_{xy} = 19.56 \text{ MPa}$ for any point on the shaft’s surface. Applying Eq. 9-7,

\[\tau_{\text{in-plane}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \]

\[= \sqrt{\left(\frac{-25.06 - 0}{2}\right)^2 + (19.56)^2} \]

\[= 23.2 \text{ MPa} \quad \text{Ans.} \]
9–93. Determine the equivalent state of stress if an element is oriented 40° clockwise from the element shown. Use Mohr’s circle.

\[A(6, 0) \quad B(-10, 0) \quad C(-2, 0) \]

\[R = CA = CB = 8 \]

\[\sigma_x = -2 + 8 \cos 80° = -0.611 \text{ ksi} \]

\[\tau_{xy} = 8 \sin 80° = 7.88 \text{ ksi} \]

\[\sigma_y = -2 - 8 \cos 80° = -3.39 \text{ ksi} \]

Ans:

\[\sigma_x = -0.611 \text{ ksi}, \quad \tau_{xy} = 7.88 \text{ ksi}, \quad \sigma_y = -3.39 \text{ ksi} \]
9-94. The crane is used to support the 350-lb load. Determine the principal stresses acting in the boom at points A and B. The cross section is rectangular and has a width of 6 in. and a thickness of 3 in. Use Mohr’s circle.

\[A = 6(3) = 18 \text{ in}^2 \quad I = \frac{(3)(6^3)}{12} = 54 \text{ in}^4 \]

\[Q_B = (1.5)(3)(3) = 13.5 \text{ in}^3 \]

\[Q_A = 0 \]

For point A:

\[\sigma_A = -\frac{P}{A} - \frac{M_y}{I} = -\frac{597.49}{18} - \frac{1750(12)(3)}{54} = -1200 \text{ psi} \]

\[\tau_A = 0 \]

\[\sigma_1 = 0 \]

\[\sigma_2 = -1200 \text{ psi} = -1.20 \text{ ksi} \]

For point B:

\[\sigma_B = -\frac{P}{A} = -\frac{597.49}{18} = -33.19 \text{ psi} \]

\[\tau_B = \frac{VQ_B}{It} = \frac{247.49(13.5)}{54(3)} = 20.62 \text{ psi} \]

A(−33.19, −20.62) \quad B(0, 20.62) \quad C(−16.60, 0)

\[R = \sqrt{16.60^2 + 20.62^2} = 26.47 \]

\[\sigma_1 = -16.60 + 26.47 = 9.88 \text{ psi} \]

\[\sigma_2 = -16.60 - 26.47 = -43.1 \text{ psi} \]

Ans:

Point A: \(\sigma_1 = 0, \sigma_2 = -1.20 \text{ ksi} \),
Point B: \(\sigma_1 = 9.88 \text{ psi}, \sigma_2 = -43.1 \text{ psi} \)