6-2. Draw the shear and moment diagrams for the shaft. The bearings at A and D exert only vertical reaction on the shaft. The loading is applied to the pulleys at B and C and E.

Ans:

6-5. Draw the shear and moment diagrams for the beam.

$M(K N \cdot m)$

Ans:

6-18. Draw the shear and moment diagrams for the beam, and determine the shear and moment throughout the beam as functions of x.

Support Reactions: As shown on FBD.

Shear and Moment Function:

For $0 \leq x<6 \mathrm{ft}$:

$$
\begin{array}{cc}
+\uparrow \Sigma F_{y}=0 ; & 30.0-2 x-V=0 \\
V=\{30.0-2 x\} \text { kip } \\
\varsigma+\Sigma M_{N A}=0 ; & M+216+2 x\left(\frac{x}{2}\right)-30.0 x=0 \\
& M=\left\{-x^{2}+30.0 x-216\right\} \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

For $6 \mathrm{ft}<x \leq 10 \mathrm{ft}$:

$$
\begin{aligned}
& +\uparrow \Sigma F_{y}=0 ; \quad V-8=0 \quad V=8.00 \mathrm{kip} \\
& \varsigma+\Sigma M_{N A}=0 ; \quad-M-8(10-x)-40=0 \\
& \quad M=\{8.00 x-120\} \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans.

Ans.

Ans:

For $0 \leq x<6 \mathrm{ft}: V=\{30.0-2 x\}$ kip,
$M=\left\{-x^{2}+30.0 x-216\right\} \mathrm{kip} \cdot \mathrm{ft}$,
For $6 \mathrm{ft}<x \leq 10 \mathrm{ft}: V=8.00 \mathrm{kip}$,
$M=\{8.00 x-120\} \mathrm{kip} \cdot \mathrm{ft}$

6-25. Draw the shear and moment diagrams for the beam and determine the shear and moment in the beam as functions of x, where $4 \mathrm{ft}<x<10 \mathrm{ft}$.
$+\uparrow \Sigma F_{y}=0 ; \quad-150(x-4)-V+450=0$

$$
V=1050-150 x
$$

$\zeta+\Sigma M=0 ; \quad-200-150(x-4) \frac{(x-4)}{2}-M+450(x-4)=0$

$$
M=-75 x^{2}+1050 x-3200
$$

Ans.

Ans.

Ans:

$$
\begin{aligned}
& V=1050-150 x \\
& M=-75 x^{2}+1050 x-3200
\end{aligned}
$$

6-33. The shaft is supported by a smooth thrust bearing at A and smooth journal bearing at B. Draw the shear and moment diagrams for the shaft.

Equations of Equilibrium: Referring to the free-body diagram of the shaft shown
in Fig. a,

$$
\begin{array}{ll}
C+\Sigma M_{A}=0 ; & B_{y}(2)+400-900(1)=0 \\
& B_{y}=250 \mathrm{~N}
\end{array}
$$

$$
\begin{array}{ll}
+\uparrow \Sigma F_{y}=0 ; & A_{y}+250-900=0 \\
& A_{y}=650 \mathrm{~N}
\end{array}
$$

Shear and Moment Diagram: As shown in Figs. b and c.

Ans:

6-35. Draw the shear and moment diagrams for the beam and determine the shear and moment as functions of x.

Support Reactions: As shown on FBD.

Shear and Moment Functions:

For $0 \leq x<3 \mathrm{~m}$:

$$
\begin{array}{r}
+\uparrow \Sigma F_{y}=0 ; \quad 200-V=0 \quad V=200 \mathrm{~N} \\
\varsigma+\Sigma M_{N A}=0 ; \quad M-200 x=0 \\
M=\{200 x\} \mathrm{N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.
For $3 \mathrm{~m}<x \leq 6 \mathrm{~m}$:

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0 ; \quad 200-200(x-3)-\frac{1}{2}\left[\frac{200}{3}(x-3)\right](x-3)-V=0 \\
V=\left\{-\frac{100}{3} x^{2}+500\right\} \mathrm{N}
\end{gathered}
$$

Set $V=0, x=3.873 \mathrm{~m}$

$$
\begin{aligned}
C+\Sigma M_{N A}=0 ; & M
\end{aligned}+\frac{1}{2}\left[\frac{200}{3}(x-3)\right](x-3)\left(\frac{x-3}{3}\right), ~\left(200(x-3)\left(\frac{x-3}{2}\right)-200 x=0\right)
$$

Ans.

Ans.

Substitute $x=3.87 \mathrm{~m}, M=691 \mathrm{~N} \cdot \mathrm{~m}$

Ans:
For $0 \leq x<3 \mathrm{~m}: V=200 \mathrm{~N}, M=(200 x) \mathrm{N} \cdot \mathrm{m}$, For $3 \mathrm{~m}<x \leq 6 \mathrm{~m}: V=\left\{-\frac{100}{3} x^{2}+500\right\} \mathrm{N}$,
$M=\left\{-\frac{100}{9} x^{3}+500 x-600\right\} \mathrm{N} \cdot \mathrm{m}$

6-39. Draw the shear and moment diagrams for the double overhanging beam.

Equations of Equilibrium: Referring to the free-body diagram of the beam shown in Fig. a,
$\begin{array}{ll}\mathrm{C}+\Sigma M_{A}=0 ; & B_{y}(6)+400(3)-200(6)(3)-400(9)=0 \\ & B_{y}=1000 \mathrm{lb}\end{array}$
$+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+1000-400-200(6)-400=0$
$A_{y}=1000 \mathrm{lb}$
Shear and Moment Diagram: As shown in Figs. b and c.

(C)

6-49. Determine the maximum tensile and compressive bending stress in the beam if it is subjected to a moment of $M=4 \mathrm{kip} \cdot \mathrm{ft}$.

Section Properties:

$$
\begin{aligned}
& \bar{y}= \frac{\sum \tilde{y} A}{\sum A} \\
&= \frac{0.25(4)(0.5)+2[2(3)(0.5)]+5.5(10)(0.5)}{4(0.5)+2[(3)(0.5)]+10(0.5)}=3.40 \mathrm{in.} \\
& I_{N A}=\frac{1}{12}(4)\left(0.5^{3}\right)+4(0.5)(3.40-0.25)^{2} \\
&+2\left[\frac{1}{12}(0.5)\left(3^{3}\right)+0.5(3)(3.40-2)^{2}\right] \\
& \quad+\frac{1}{12}(0.5)\left(10^{3}\right)+0.5(10)(5.5-3.40)^{2}
\end{aligned}
$$

$$
=91.73 \mathrm{in}^{4}
$$

Maximum Bending Stress: Applying the flexure formula $\sigma_{\max }=\frac{M c}{I}$

$$
\begin{aligned}
& \left(\sigma_{t}\right)_{\max }=\frac{4\left(10^{3}\right)(12)(10.5-3.40)}{91.73}=3715.12 \mathrm{psi}=3.72 \mathrm{ksi} \\
& \left(\sigma_{c}\right)_{\max }=\frac{4\left(10^{3}\right)(12)(3.40)}{91.73}=1779.07 \mathrm{psi}=1.78 \mathrm{ksi}
\end{aligned}
$$

Ans.

Ans.

Ans:

$\left(\sigma_{t}\right)_{\max }=3.72 \mathrm{ksi},\left(\sigma_{c}\right)_{\max }=1.78 \mathrm{ksi}$

6-59. The aluminum machine part is subjected to a moment of $M=75 \mathrm{kN} \cdot \mathrm{m}$. Determine the maximum tensile and compressive bending stresses in the part.

$$
\begin{aligned}
& \bar{y}=\frac{0.005(0.08)(0.01)+2[0.03(0.04)(0.01)]}{0.08(0.01)+2(0.04)(0.01)}=0.0175 \mathrm{~m} \\
& I=\frac{1}{12}(0.08)\left(0.01^{3}\right)+0.08(0.01)\left(0.0125^{2}\right) \\
& \\
& \quad+2\left[\frac{1}{12}(0.01)\left(0.04^{3}\right)+0.01(0.04)\left(0.0125^{2}\right)\right]=0.3633\left(10^{-5}\right) \mathrm{m}^{4}
\end{aligned}
$$

$\left(\sigma_{\max }\right)_{t}=\frac{M c}{I}=\frac{75(0.050-0.0175)}{0.3633\left(10^{-6}\right)}=6.71 \mathrm{MPa}$
$\left(\sigma_{\max }\right)_{c}=\frac{M y}{I}=\frac{75(0.0175)}{0.3633\left(10^{-6}\right)}=3.61 \mathrm{MPa}$

Ans.

Ans.

Ans:
$\left(\sigma_{\max }\right)_{t}=6.71 \mathrm{MPa},\left(\sigma_{\max }\right)_{c}=3.61 \mathrm{MPa}$

6-61. The beam is subjected to a moment of $15 \mathrm{kip} \cdot \mathrm{ft}$. Determine the percentage of this moment that is resisted by the web D of the beam.
$\bar{y}=\frac{\sum \tilde{y} A}{\sum A}=\frac{0.5(1)(5)+5(8)(1)+9.5(3)(1)}{1(5)+8(1)+3(1)}=4.4375 \mathrm{in}$.
$I=\frac{1}{12}(5)\left(1^{3}\right)+5(1)(4.4375-0.5)^{2}+\frac{1}{12}(1)\left(8^{3}\right)+8(1)(5-4.4375)^{2}$
$+\frac{1}{12}(3)\left(1^{3}\right)+3(1)(9.5-4.4375)^{2}$
$=200.27 \mathrm{in}^{4}$

Using flexure formula $\sigma=\frac{M y}{I}$
$\sigma_{A}=\frac{15(12)(4.4375-1)}{200.27}=3.0896 \mathrm{ksi}$
$\sigma_{B}=\frac{15(12)(9-4.4375)}{200.27}=4.1007 \mathrm{ksi}$
$F_{C}=\frac{1}{2}(3.0896)(3.4375)(1)=5.3102 \mathrm{kip}$
$F_{T}=\frac{1}{2}(4.1007)(4.5625)(1)=9.3547 \mathrm{kip}$
$M=5.3102(2.2917)+9.3547(3.0417)$
$=40.623 \mathrm{kip} \cdot \mathrm{in} .=3.3852 \mathrm{kip} \cdot \mathrm{ft}$
$\%$ of moment carried by web $=\frac{3.3852}{15} \times 100=22.6 \%$

3.0896 ksi

Ans:

$\%$ of moment carried by web $=22.6 \%$

6-69. Two designs for a beam are to be considered. Determine which one will support a moment of $M=150 \mathrm{kN} \cdot \mathrm{m}$ with the least amount of bending stress. What is that stress?

Section Property:

(a)

(b)

For section (a)

$$
I=\frac{1}{12}(0.2)\left(0.33^{3}\right)-\frac{1}{12}(0.17)(0.3)^{3}=0.21645\left(10^{-3}\right) \mathrm{m}^{4}
$$

For section (b)

$$
I=\frac{1}{12}(0.2)\left(0.36^{3}\right)-\frac{1}{12}(0.185)\left(0.3^{3}\right)=0.36135\left(10^{-3}\right) \mathrm{m}^{4}
$$

Maximum Bending Stress: Applying the flexure formula $\sigma_{\max }=\frac{M c}{I}$
For section (a)

$$
\sigma_{\max }=\frac{150\left(10^{3}\right)(0.165)}{0.21645\left(10^{-3}\right)}=114.3 \mathrm{MPa}
$$

For section (b)

$$
\sigma_{\min }=\frac{150\left(10^{3}\right)(0.18)}{0.36135\left(10^{-3}\right)}=74.72 \mathrm{MPa}=74.7 \mathrm{MPa}
$$

Ans.

Ans:

$\sigma_{\text {min }}=74.7 \mathrm{MPa}$

6-71. The boat has a weight of 2300 lb and a center of gravity at G. If it rests on the trailer at the smooth contact A and can be considered pinned at B, determine the absolute maximum bending stress developed in the main strut of the trailer. Consider the strut to be a box-beam having the dimensions shown and pinned at C.

Boat:

$\xrightarrow{+} \Sigma F_{x}=0 ; \quad B_{x}=0$
$\zeta+\Sigma M_{B}=0 ;$

$$
\begin{gathered}
-N_{A}(9)+2300(5)=0 \\
N_{A}=1277.78 \mathrm{lb}
\end{gathered}
$$

$+\uparrow \Sigma F_{y}=0 ;$

$$
\begin{gathered}
1277.78-2300+B_{y}=0 \\
B_{y}=1022.22 \mathrm{lb}
\end{gathered}
$$

Assembly:

$\zeta+\Sigma M_{C}=0 ;$

$$
-N_{D}(10)+2300(9)=0
$$

$$
N_{D}=2070 \mathrm{lb}
$$

$+\uparrow \Sigma F_{y}=0 ;$

$$
C_{y}+2070-2300=0
$$

$$
C_{y}=230 \mathrm{lb}
$$

$I=\frac{1}{12}(1.75)(3)^{3}-\frac{1}{12}(1.5)(1.75)^{3}=3.2676 \mathrm{in}^{4}$

$$
\sigma_{\max }=\frac{M c}{I}=\frac{3833.3(12)(1.5)}{3.2676}=21.1 \mathrm{ksi}
$$

Ans.

Ans:
$\sigma_{\text {max }}=21.1 \mathrm{ksi}$

6-81. If the beam is made of material having an allowable tensile and compressive stress of $\left(\sigma_{\text {allow }}\right)_{t}=125 \mathrm{MPa}$ and $\left(\sigma_{\text {allow }}\right)_{c}=150 \mathrm{MPa}$, respectively, determine the maximum allowable internal moment \mathbf{M} that can be applied to the beam.

Section Properties: The neutral axis passes through centroid C of the cross section as shown in Fig. a. The location of C is

$$
\bar{y}=\frac{\sum \tilde{y} A}{\sum A}=\frac{0.015(0.03)(0.3)+0.18(0.3)(0.03)}{0.03(0.3)+0.3(0.03)}=0.0975 \mathrm{~m}
$$

Thus, the moment of inertia of the cross section about the neutral axis is

$$
\begin{aligned}
I= & \frac{1}{12}(0.3)\left(0.03^{3}\right)+0.3(0.03)(0.0975-0.015)^{2}+\frac{1}{12}(0.03)\left(0.3^{3}\right) \\
& +0.03(0.3)(0.18-0.0975)^{2} \\
= & 0.1907\left(10^{-3}\right) \mathrm{m}^{4}
\end{aligned}
$$

Allowable Bending Stress: The maximum compressive and tensile stress occurs at the top and bottom-most fibers of the cross section. For the top-most fiber,

$$
\begin{array}{ll}
\left(\sigma_{\text {allow }}\right)_{c}=\frac{M c}{I} & 150\left(10^{6}\right)=\frac{M(0.33-0.0975)}{0.1907\left(10^{-3}\right)} \\
& M=123024.19 \mathrm{~N} \cdot \mathrm{~m}=123 \mathrm{kN} \cdot \mathrm{~m}(\text { controls })
\end{array}
$$

Ans.

For the bottom-most fiber,

$$
\begin{array}{ll}
\left(\sigma_{\text {allow }}\right)_{t}=\frac{M y}{I} & 125\left(10^{6}\right)=\frac{M(0.0975)}{0.1907\left(10^{-3}\right)} \\
& M=244471.15 \mathrm{~N} \cdot \mathrm{~m}=244 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

(a)

Ans:
$M=123 \mathrm{kN} \cdot \mathrm{m}$

6-97. A \log that is 2 ft in diameter is to be cut into a rectangular section for use as a simply supported beam. If the allowable bending stress for the wood is $\sigma_{\text {allow }}=8 \mathrm{ksi}$, determine the largest load P that can be supported if the width of the beam is $b=8 \mathrm{in}$.
$24^{2}=h^{2}+8^{2}$
$h=22.63 \mathrm{in}$.
$M_{\text {max }}=\frac{P}{2}(96)=48 P$
$\sigma_{\text {allow }}=\frac{M_{\max } c}{I}$
$8\left(10^{3}\right)=\frac{48 P\left(\frac{22.63}{2}\right)}{\frac{1}{12}(8)(22.63)^{3}}$
$P=114$ kip

Ans.

Ans:
$P=114$ kip

