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An Integrated Vehicle Navigation System Utilizing
Lane-Detection and Lateral Position Estimation

Systems in Difficult Environments for GPS
Christopher Rose, Jordan Britt, John Allen, and David Bevly

Abstract—A navigation filter combines measurements from
sensors currently available on vehicles—Global Positioning Sys-
tem (GPS), inertial measurement unit, inertial measurement unit
(IMU), camera, and light detection and ranging (lidar)—for
achieving lane-level positioning in environments where stand-
alone GPS can suffer or fail. Measurements from the camera and
lidar are used in two lane-detection systems, and the calculated
lateral distance (to the lane markings) estimates of both lane-
detection systems are compared with centimeter-level truth to
show decimeter-level accuracy. The navigation filter uses the lat-
eral distance measurements from the lidar- and camera-based
systems with a known waypoint-based map to provide global
measurements for use in a GPS/Inertial Navigation System (INS)
system. Experimental results show that the inclusion of lateral dis-
tance measurements and a height constraint from the map creates
a fully observable system even with only two satellite observations
and, as such, greatly enhances the robustness of the integrated sys-
tem over GPS/INS alone. Various scenarios are presented, which
affect the navigation filter, including satellite geometry, number
of satellites, and loss of lateral distance measurements from the
camera and lidar systems.

Index Terms—Camera, Global Navigation Satellite System,
Global Positioning System (GPS), inertial measurement unit
(IMU), Kalman filter, lane detection, light detection and ranging
(lidar), outages, sensor fusion.

I. INTRODUCTION

OVER 19 000 people died on U.S. highways due to
road departures in 2008 [1]. Safety systems on vehicles,

such as lane departure warning (LDW) systems, can reduce
the number of these deaths by warning the driver of a lane
departure. These safety systems determine the lateral distance
to the lane markings and warn the driver when the vehicle has
left or is about to leave the lane using a single sensor such
as a camera. However, current LDW systems can fail due to
varying conditions and environments. A multifaceted approach
using multiple sensors provides a more robust solution when
solutions are not available from a single sensor.
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A navigation filter was developed to provide a more robust
solution for lane-level localization even when one or more sen-
sors fail. This positioning system uses the following four sen-
sors: Global Positioning System (GPS), inertial measurement
unit (IMU), light detection and ranging (lidar), and low-cost
camera. Commercial automotive systems typically have these
sensors already on the vehicle and employ them for applications
of navigation and safety, such as LDW with cameras, map-aided
navigation with GPS, stability control with an IMU, and active
cruise control with a lidar. In addition, the use of precision
survey maps of lane markings is increasingly available from
companies such as Nokia and Google. A combination of all
of these available sensors in a positioning system can result
in a more robust solution for applications such as vehicle
safety.

Many lidar systems used for LDW systems employ a host of
different techniques for detecting and tracking lane markings.
In [2], a histogram and a histogram gradient feature extraction
algorithm are used to detect lane markings with a modified lidar
in which two mirrors were added on either of its sides, which
reflects the lidar pulses that would normally be reserved for
scanning behind the lidar. Solid lane markings were detected
about 95% of the time, and dashed lane markings were detected
about 35% of the time, but lateral distance in the lane was not
reported. The histogram feature detection approach is again
explored in [3], where a region of interest is defined at a
distance of 0–30 m in front of the vehicle and 12 m in the
lateral direction. Like [2], lateral position was not reported, but
a measurement of the lane width was determined with a high
degree of accuracy [3]. In [4], a lidar lane-tracking algorithm
is presented for lane detection in urban environments where
two six-layer laser scanners were each used to detect a lane
marking. The algorithm’s performance was compared with a
camera system, and the vehicle position in the lane differed
between the two systems in the range of 0.02–0.01 m [4].

Camera systems for lane detection are already present in
most commercial vehicles as an optional safety system. One
such system, by Jung and Kelber [5], used a linear-parabolic
model to create an LDW system using lateral offset based on
the near and far ranges. Feng et al. [6] used an improved Hough
transform to obtain the road edge in the binary image, followed
by establishment of an area of interest based on the prediction
result of a Kalman filter. Hsiao and Yeh [7] avoided the use
of the Hough transform and instead relied on peak and edge
finding, edge connection, line-segment combination, and lane
boundary selection. In [8], an extended Kalman filter was used
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to estimate the parameters of the model of the lane markings
to search within a specified area in the image so that far lane
boundaries are searched with a smaller area than closer lane
boundaries, which reduced the impact of noise. Dickmanns
and Mysliwetz [9] used clothoid model parameters to recog-
nize horizontal and vertical road parameters in a recursive
manner. Khosla [10] used two contiguous clothoid segments
with different geometries but with continuous curvature across
each clothoid. However, Schwartz [11] argued that the clothoid
model is unsuitable for sensor fusion due to the “sloshing”
effect of the estimated values between the clothoid parameters.

The navigation filter herein uses both the lidar and camera
measurements as well as GPS to correct the drift of the IMU
using an extended Kalman filter. Similar work has been done
using lane-based maps and lateral lane distance measurements.
Miller and Campbell [12] used a particle filter to augment GPS
and inertial solutions with vision-based measurements and a
map. Li et al. fused cameras, low-cost GPS, and map data
to achieve centimeter-level performance [13]. Vu et al. used
a tightly coupled filter along with a measurement of angle of
arrival from a known location of a traffic light to correct an
Inertial Measurement System (INS) [14]. Since the lidar and
the camera both measure lateral distance with respect to the
lane markings, a map of the lane markings is needed to relate
the camera and lidar measurements to the global coordinate
frame of the GPS. Much prior work with map matching pri-
marily is concerned with relating GPS and maps for consumer
automotive applications. A GPS navigation system that is de-
rived from a combination map matching algorithm has been
developed, which combines the shortest distance algorithm and
the assistant map matching algorithm to account for GPS error,
city environment error, and road complexity, which can lead
to inaccurate matching in the shortest distance algorithms [15].
Another system fuses camera-based speed sign recognition and
digitized speed limit maps combined with a GPS sensor for
speed limit assistants [16].

This paper uses a system for fusing lateral distance measure-
ments with a known map in a GPS/INS system to analyze the
impact of various nonideal scenarios, including loss of lateral
distance, loss of GPS, and various satellite geometries. Results
show that, by using sensors and systems that are already on
commercial vehicles, a positioning solution can be found even
in situations where only two satellites are visible. Section II de-
scribes the lidar and camera lane-detection systems. Section III
shows the experimental results for the lidar and camera lane-
detection systems. Section IV describes the navigation filter.
Section V analyzes the experimental results of the integrated
system under various conditions.

II. LANE-DETECTION SYSTEMS

Two lane-detection systems were designed to provide redun-
dant lateral distance measurements from the lane markings to
the center of the vehicle. The camera uses visual images to
determine the location of the lane markings, whereas the lidar
detection system uses reflectivity. Reflectivity is a measurement
known as echo width. Reflectivity is often a function of distance
from the lidar and a function of the surface of the object

measured. Hence, an object that is highly reflective at a large
distance may return the same echo width measurement by
the lidar as an object that is less reflective, but closer. This
reflectivity measurement is often exploited by LDW systems
because lane markings are designed to be more reflective than
the road’s surface [2].

Several assumptions are made for lane-detection systems.
The lane markings are assumed to be present on one or both
sides of the vehicle in order for a lateral distance estimate to
be found, and the vehicle is assumed to be within the lane
markings. No assumption is made about the weather or lighting
conditions—the time can vary from day through night, and
the weather can range from rainy to blue sky. However, the
performance of the systems significantly changes, as described
in Section III. Vehicle speed is assumed to be typical highway
speeds. The sensors themselves measure a few meters (1–3 m)
in front of the vehicle. Finally, both the camera and the lidar are
assumed to be perfectly aligned with the vehicle and the vehicle
is traveling parallel with the lane markings.

A. Camera-Based Lane Detection

This section presents a brief description of the algorithm for
determining lateral lane position in the lane using a camera.
More information can be found in [17]. The camera is mounted
on the roof of the vehicle facing forward and is angled down
toward the road. The lateral position is measured just over
the hood and a few meters in front of the vehicle. The vision
algorithm begins with thresholding, followed by edge detection
and extraction of lines in the image using the Hough trans-
form. Left and right lane marking lines are selected using two
criteria to be included in the interpolation of a second-order
polynomial, which serves as the model for the lane markings
in the image. The coefficients of the polynomial are used as
measurements into a Kalman filter, whose estimated states
represent the estimate for the lane markings in the image. The
following sections describe these steps in more detail.

1) Thresholding: The threshold operation must extract the
lane markings from the image and ignore extraneous features
on the road. Since vehicles drive in varying environments, the
threshold operation must take into account different levels of
lighting and weather to extract the lane markings. Fig. 1(a)
shows an image of a road at dusk.

A dynamic threshold, based on Niblack thresholding [18],
takes into account the statistics of the image to better ap-
proximate the best value for thresholding. Using the mean
and standard deviation of the image, the dynamic threshold is
calculated as

T = μ+Kσ (1)

where T is the grayscale threshold value, μ is the mean of
the grayscale image, K is heuristically chosen in order to
capture the lane markings whose intensities range in the upper
grayscale range of the image, and σ is the standard deviation
of the intensity of the image. Using K = 1.5, the resulting
thresholded image is shown in Fig. 1(b). The extracted lane
markings are clearly visible.
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Fig. 1. Darker highway image and thresholded image. (a) Darker original
image. (b) Dynamically thresholded image.

2) Edge Detection and the Hough Transform: The edges of
the thresholded image are extracted using Canny edge detection
[19], with a smaller threshold of 50 and a larger threshold of
200 for the hysteresis process and an aperture size of 3. Often,
the edges are broken in various places along the lane marking’s
edge. The Hough transform [20] extracts the lines from the edge
map while ignoring the gaps in the lines. For this work, the
resolution for ρ was 5 pixels, and the resolution for θ was 1◦. To
capture the lane marking lines on curves, the minimum length
allowed for a line from the Hough transform was set to be small
(30 pixels). A long minimum line length would fail to capture
the entire curve. Each line extracted from the Hough transform
is considered either a left or a right lane marking depending on
its slope. These two groups of lines, so-called line pools, are
independently processed and can be made up of many lines.
The following sections describe the processing on each of these
line pools.

3) Line Selection: Due to erroneous features in the image,
such as shadows or objects on the road, extracted lines from
the Hough transform may not be lines from lane markings. Two
criteria must be met before a line is considered a line from a
lane marking edge—a spatial criterion and a slope criterion.

The spatial criterion requires the Hough lines to be close
to the last estimated second-order polynomial lane marking
model. Two additional second-order polynomial lines are cre-
ated at equal distance from the last estimated second-order
polynomial on both sides to serve as bounding curves. The dis-
tance to the polynomial lines changes depending on the success
of tracking—consistent tracking of frames reduces the distance
to ignore erroneous lines, whereas missed frames increase the
distance to enlarge the allowable area for the lane markings.
Hough lines outside of these bounds fail, whereas those that
are fully within the bounds meet the criteria. Fig. 2 shows
a lane marking with the polynomial boundary curves (black
solid) around the last estimated lane model (dotted green). The
valid blue Hough lines can faintly be seen around the yellow
estimated lane model, and the rejected lines due to the spatial
criterion can be seen along the edge of the black bounding
polynomials as red lines.

Fig. 2. Spatial and slope criteria for Hough lines from a lane marking.

The slope criterion requires the line to have a slope approx-
imately equal to the slope of the last estimated second-order
polynomial lane marking model at the same row in the image.
The slope of the lines from frame to frame should not drastically
change; thus, the slopes of the lane markings are expected to be
close (within 0.3) to the slope of the second-order polynomial
curve lane marking model near that lane marking line. The red
(dot-dashed) line within the polynomial boundary lines in Fig. 2
passed the spatial criterion but failed the slope criterion. The
slope criterion, then, is mostly used to remove erroneous lines
near the real lane markings in the image.

4) Lane Modeling and the Kalman Filter: Each Hough line
that passes both criteria have their endpoints and midpoints
collected in point pools. These point pools then undergo the
standard least squares polynomial interpolation to determine
the coefficients of the polynomial model for the lane marking.
The model for the estimated lane marking consists of a second-
order polynomial in the form of

y = ax2 + bx+ c (2)

where a, b, and c are the coefficients of the polynomial in image
coordinates where the origin is located in the upper left corner
of the image with the x-axis pointing to the right and the y-axis
pointing down.

Despite the selection criteria, erroneous Hough lines may be
considered valid lane marking edges, and the resulting polyno-
mial may not align with the lane markings seen in the image.
To reduce the impact of these erroneous model estimates, the
coefficients of each lane marking line are used as measurements
into a linear Kalman filter. This Kalman filter, whose states
consist of a, b, and c coefficients for the left and right lane
marking polynomial models, solves the least square problem
with A = I and the states changing only on the measurement
update.

5) Lateral Distance Calculation: Using the coefficients of
the polynomial lane model, the lateral lane distance can be
calculated by employing known information from the lane
markings. The general form of the quadratic equation is used to
determine the horizontal point x on the lane model polynomial
with respect to any height y within the image. The lateral
distance x in pixels is the distance from the calibrated center
of the vehicle in the image (in our case, close to the center
of the image) to the lane marking. The lateral distance is then
multiplied by a known calibration factor to obtain the lateral
distance in meters. The calibration factor n is predetermined
by measuring the number of pixels in an image that spans the
bottom row of the image from the left lane marking to the right
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Fig. 3. Scanning for road markings.

lane marking. The bottom row of pixels is chosen as the row
to measure the distance to either lane since it has the most
resolution with respect to the road.

The hood of the vehicle is cropped from the image and the
sky. Since the width of a lane is approximately 3.658 m, the
calibration factor is calculated as

n =
wl

pc
(3)

where wl is the standard width of a lane, or 3.658 m, and pc is
the pixel count of the lane.

B. Lidar-Based Lane Detection

This section presents the algorithm for determining lateral
lane position with a lidar using reflectivity. More information
on this lidar-based method can be found in [21].

1) Detection: The detection of lane markings using the re-
flectivity of a lidar utilizes the principle that the lane markings
are more reflective than the surface of the road. The detection
algorithm will first bound the search area within the lidar scan
in the region where the reflectivity of a lane marking is most
likely to lie. Then, an ideal lane model is fit to the scanned data
to detect the lane markings. If a lane exists, the position in the
lane is determined and filtered to provide a final lateral distance
solution.

2) Bounding: The detection algorithm will first bound the
search area by assuming an ideal lane width so that, regardless
of the position of the vehicle in the lane, a lane marking is likely
to be scanned if it is present, as shown in Fig. 3. This bound is
found by assuming that the rightmost tires of the vehicle are
touching the lane markings. The angle that is required to scan
the leftmost lane marker is determined to be the angle bound,
i.e., θmax, as shown in

θmax = arctan

(
LW − VW

2

ρ

)
(4)

where LW represents the lane width, VW represents the ve-
hicle’s width, and ρ is the distance between the lidar and the
ground measured with zero horizontal angle.

3) Scan Matching: The heart of the lidar lane-detection
algorithm is the matching of an ideal lane scan to an actual lane
scan. Fig. 4 shows 100 stationary lidar scans of a road averaged
together. Note the distinction of the four labeled peaks and their
correspondence to Fig. 5.

Fig. 4. Averaged lidar scans.

Fig. 5. Lane markings seen in lidar scan.

Fig. 4 shows that the region between the spikes representing
the lane markings is a relatively constant area, and outside
of the scan bounds, a highly noisy region is created by the
environment bordering the roadway, where spikes 2 and 3
refer to the two center lane markings, and spikes 1 and 4
correspond to the outside lane markings. While this averaged
scan looks quite ideal because the bulk of the sensor noise has
been averaged out, a single scan of the environment can be
significantly less intuitive, as shown in Fig. 6.

The algorithm must be capable of detecting lane markings
in these types of nonideal conditions where the lane markings
may not be distinct due to sensor noise or environmental effects.
An ideal lane scan is therefore created to model the reflectivity
profile of a lane. This ideal scan is shown in Fig. 7 and will be
compared with the actual lidar data to detect the lane markings.

The ideal scan is created by first scanning a narrow area
directly in front of the vehicle and averaging the reflectivity;
this provides a metric of the reflectivity of the road surface and
constitutes the constant area between the spikes in Fig. 7. The
spikes are generated by increasing the averaged reflectivity of
the road surface by 75% to represent the lane marking. Thus,
this ideal lane model is dynamic and changes with each lidar
scan in response to changes with the road and environmental
conditions. Once this ideal scan is created, it is compared
with the actual lidar scan. This comparison is done over the
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Fig. 6. Typical lidar scan.

Fig. 7. Ideal scan.

entirety of the lidar scan, where the ideal lidar scan is varied in
size from some minimum lane width to some maximum lane
width until the search space is exhausted, thus allowing for
varying changes in the true lane width. With each comparison,
the mean square error between the ideal and actual scans is
calculated. The region that provides the minimum mean square
error between the ideal scan and the actual scan is determined
to be the location of the true lane markings. A final comparison
of the reflectivity of the actual lidar scan to where the ideal
scan’s lane markings are located is analyzed. If the area of
the lane markings of the extracted lane is not at least 30%
above the averaged reflectivity used to model the surface of
the road, an assumption can be made that no lane marking
exists. This process is repeated for any additional scan layers
for a multilayer lidar. Finally, once a lane marking is detected,
a window of approximately 4◦ is placed on the area from which
the lane was detected, as shown in Fig. 8. This window allows
for a narrowed search space for subsequent extractions and
helps mitigate any sources of error in the scan. However, if no
lane markings are detected in this narrowed search space for
three consecutive scans, the search space is expanded back to
the original bounds.

4) Filtering: Once the lane markings have been detected,
the position in the lane and the lane width can be calculated
using the distance to the left and right lane markings, which are
denoted by dL and dR, respectively. Note that dL will always
be a negative number and dR will always be a positive number
in order to conform to the road coordinate frame used, as shown

Fig. 8. Bounds for narrowed search area.

in Section IV. Thus, the lane width calculation is given in (5),
and this value is stored for future processing, i.e.,

LW = dR − dL. (5)

The offset from the center of the lane, which is denoted by
ζ̄vision, can be then computed via

ζ̄vision = −(dL + dR)/2. (6)

However, if only the left or the right lane markings are detected,
the offset from the center of the lane is then found in (7), where
the most recent LW measurement is used, i.e.,

ζ̄vision = −
(

LW
2

+ dL

)
or ζ̄vision =

(
LW
2

− dR

)
.

(7)

If a simultaneous left and right lane marking measurement has
yet to occur so that no lane width estimate yet exists, an ideal
lane width of 3.36 m is used. Once this distance from the center
of the lane is calculated, the result is low-pass filtered to smooth
the data in an effort to limit any erroneous spikes. This filtered
result is incorporated into the navigation filter, as shown in
Section IV-B2.

III. LANE-DETECTION EXPERIMENTAL RESULTS

Both lane-detection algorithms were tested at the National
Center for Asphalt Technology (NCAT) test track in Opelika,
AL, USA. The NCAT test track is a 1.7-mi oval track with 8◦

bank angles, where lane markings were surveyed at centimeter
accuracy using a real-time kinematic (RTK) GPS. The track
is divided into various sections, where each section contains a
different type of asphalt. Thus, the track provides testing for
multiple road types. The lateral lane distances estimated by
each lane-detection system were compared with true lane dis-
tances using vehicle positions with centimeter accuracy levels
using RTK GPS.

A. Camera Lane-Detection Experimental Results

The test vehicle for the camera lane-detection experiment
was equipped with a low-cost forward-looking web camera
(QuickCam Pro 9000) at 244 × 100 pixels (after cropping the
image for region of interest) that was mounted on a conven-
tional roof rack and is similar to cameras found on commercial
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Fig. 9. Camera lateral distance to the right lane marking error.

vehicles. The vehicle was driven on the right lane around the
full extent of the NCAT test track at approximately 40 mi/h to
simultaneously acquire RTK GPS coordinates and frame grabs
at approximately 10 Hz from the camera. Each lateral distance
from the camera images was compared with the truth mea-
surements from GPS to determine the accuracy of the system.
The accuracy of the coefficient states can be seen by visual
inspection of the images. Simply, if the polynomial models
lie on the lane markings in the images, then the coefficients
are being estimated correctly. Note that the testing metric of
lateral distance relies on the polynomial coefficients; thus, the
coefficients are indirectly verified. In the experimental test run,
the quality of the lane markings is not ideal—the lane markings
disappear on some segments of the track and are faint in others.
As such, in several frames, no lane marking is detected. In
addition, at one part of the track, the asphalt creates a distinct
line between light-colored asphalt and dark-colored asphalt that
is near the dashed left lane markings, and the left lane marking
estimate tracks this line.

Fig. 9 shows the calculated lateral distance error for the test
run. From about the 50-s mark to the 100-s mark and from the
150-s mark to the end of the test run, the lateral distance seems
to slightly increase compared with the remaining sections of the
graph. These sections consist of the curves of the track. While
the driver drove closer to the center of the road in the turns, as
shown in the truth data, the error between the truth data and the
calculated lateral distance increased in this section as well. The
lateral distance is measured at the lowest row of pixels in
the image, which actually consists of a point in front of the vehi-
cle. Due to the curvature in the lane markings, the actual lateral
distance and the measured lateral distance at the point ahead
of the vehicle are slightly different. Therefore, the error in the
system increases due to the curvature of the lane markings. The
maximum error in the system on a straightaway is about 20 cm.

Table I shows the quantitative results of the camera vision
system in four test runs. The first test run consisted of a run at
dusk, where the first half of the run was facing the Sun. During
this run, the system failed to detect the lane markings due to the
presence of the Sun in the image, which pushed the threshold
above the lane marking values. This impact is reflected in the
detection rate of 48%. The second test run was a night run,

TABLE I
CAMERA LATERAL DISTANCE ERROR IN NONIDEAL

CONDITIONS IN METERS

TABLE II
VARIOUS SCENARIOS FOR ROAD TYPE IN METERS

where the headlights illuminated the lane marking lines. During
the test runs at dusk and at night in the rain, the system failed to
detect lane markings for the majority of the run, and the percent
detected was less than 20%. For the night, rain and dusk, and
rain and night test runs, the average absolute error was less than
6 cm, which signifies that the lateral distance estimates from
the camera are appropriate as unbiased measurements in the
navigation Kalman filter.

B. Lidar Lane-Detection Results

The hardware used for detecting the lane markings using
lidar is an Ibeo ALASCA XT, which is a 3-D automotive-grade
lidar. The lidar provides range measurements and reflectivity
measurements (echo width). The Ibeo has four vertically di-
verging beams giving the Ibeo a 3.2◦ field of view directly in
front of the vehicle. Data from the lidar were taken at 10 Hz
with an angular resolution of approximately 0.25◦.

The lidar was mounted to the roof rack of a vehicle. This
location is ideal for the mounting of the lidar because it
provides a lateral resolution of approximately 0.040 m at the
lane markings while scanning less than 2 m in front of the
vehicle. The shortened scan distance in front of the vehicle
aids in the reduction of the effects of vehicle yaw and prevents
the scanning of other vehicles, thereby reducing any processing
time that would have been otherwise dedicated to the removal
of these obstructions.

Tests were performed on a number of different scenarios
of varied road types where no high-precision GPS measure-
ment was available. Instead, an estimate of the road width
was compared with the known road width as an estimate of
algorithm performance. Detection rates were also recorded.
Table II highlights these results.

Other testing included a comparison of the reported position
of the lidar in the lane to a precision GPS survey of the test
track. The results of these tests are shown in Figs. 10 and 11.
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Fig. 10. Lane position lidar error (Test 1).

Fig. 11. Lane position lidar error (Test 2).

The first test (Test 1) had a mean error 0.0984 m and a variance
of 0.1274 m, whereas the second test (Test 2) has a mean error
0.1074 m and a variance of 0.1115 m.

An additional series of tests were performed under various
weather conditions, whose position results are compared with
a high-accuracy GPS survey in Table III. The percent detection
for the “Rain Dusk” and “Rain Night” sections are lower than
the “Dusk” and “Night” data runs due to the presence of rain,
which significantly degrades lidar performance, particularly
when rain pools on the roadway. However, the lidar is not
affected by direct light or low-light situations, as opposed to
the camera system.

IV. NAVIGATION FILTER

The six-degree-of-freedom extended Kalman filter estimates
position, velocity, and attitude in the Earth Center Earth Fixed
(ECEF) coordinate frame using GPS position and velocity or
pseudorange and pseudorange rate measurements (depending
on which is available) along with an IMU in a GPS/INS
solution. The state vector is

�x =
[
�reeb �ve �ψe �bba

�bbg
�dtgps

]
(8)

TABLE III
LIDAR LATERAL DISTANCE ERROR IN NONIDEAL

CONDITIONS IN METERS

where �reeb is the 3-D estimate of position, �ve is the 3-D estimate
of velocity, and �ψe is the estimate for the three Euler angles that
describe the attitude of the vehicle and is expressed in terms
of the three necessary rotations to rotate the ECEF coordinate
frame to align with the body coordinate frame. The bias states
for the IMU consist of the three accelerometer biases, i.e., �bba,
and the three gyroscope biases, i.e., �bbg . Finally, �dtgps contains
the clock bias and drift terms necessary to use GPS pseudorange
and pseudorange rate measurements and is only necessary if
the pseudorange and pseudorange rate measurements are used.
The state vector, then, consists of 15–17 states depending on the
type of GPS measurements being used.

A. Time Update Propagation Equations

The time update consists of the propagation of the states for-
ward through time through inputs using inertial measurements
from the IMU. The equations are given as

�̇x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�x4:6

Ce
b (�u1:3 − �x10:12) + ωe

⎡
⎣ωe�x1 + 2�x5

ωe�x2 − 2�x4

0

⎤
⎦− ge

CMECH(�u4:6 − �x13:15 −

⎡
⎣ 0

0
ωe

⎤
⎦

�05×1

�x17

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Equation (10) splits the specific force caused by gravity into its
vector components in the ECEF coordinate frame, i.e.,

ge = GM
(
�x2
1 + �x2

2 + �x2
3

)−1.5
�x1:3. (10)

CMECH is the IMU mechanization matrix, i.e.,

CMECH =

⎡
⎣ 1 s7s8

c8
c7s8
c8

0 c7 −s7
0 s7

c8
c7
c8

⎤
⎦ . (11)

The body frame’s origin is located at the IMU’s position in
the center console of the vehicle, which is approximately the
center of mass of the vehicle. The x-axis points in the forward
direction (longitudinal) with respect to the vehicle, the y-axis
points to the right (lateral), and the z-axis points down. The
lidar and camera are mounted directly above the center console
on the roof and measure lateral distance in the road coordinate
frame. The GPS antenna is mounted behind the lidar and
camera on the roof of the vehicle along the center line of
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the vehicle and is approximately 1 m behind and 1 m above
the IMU, which results in a lever arm for the GPS antenna
with respect to the IMU of la = [−1 0 − 1]. The rotation
matrix from the body frame into the ECEF coordinate frame is
given by

Ce
b =

⎡
⎣ c8c9 s7s8c9 − c7s9 c7s8c9 + s7s9
c8s9 s7s8s9 + c7c9 c7s8s9 − s7c9
−s8 s7c8 c7c8

⎤
⎦ . (12)

For these equations, GM = 3.896004418 × 1014 m3/s2, si is
the sine of the ith state, ci is the cosine of the ith state, and �u is
the input vector consisting of the accelerations and angular rates
from the IMU. The state matrix A for the extended Kalman
filter, then, is the Jacobian matrix obtained from the partial
derivative of each change in state equation of (9) evaluated at
the current estimate.

The filter uses the lane position measurements from the
camera and lidar in conjunction with a map. Much of the
analysis of this paper will focus on the improvement of the filter
due to this lane position measurement. Additional information
on the navigation filter can be found in [22]. The next sections
describe how the vision measurements are incorporated into the
global navigation filter.

B. Vision Measurement Updates Using a Map

The vision measurements, either from the lidar or the camera,
give an estimated lateral position in the current lane in the
road coordinate frame. For this paper, the road coordinate
frame is approximated using a waypoint map, and each lane
is assumed to have its own associated lane map. The waypoints
lie in the center of the mapped lane, and the distance between
waypoints is defined by the road geometry. Complex road
geometry requires waypoints to be close together. For example,
the waypoints in a turn must be close enough to capture the
geometry of the road. On a straightaway, the waypoints can be
very spread out due to the lack of change in road geometry.

The road coordinate frame is a 3-D coordinate frame and
is denoted by the subscript/superscript r. The x-axis of the
road coordinate frame points from the last waypoint passed to
the next waypoint. The y-axis of the road coordinate frame is
perpendicular to the x-axis. If facing the direction of travel, the
y-axis points to the right. The road coordinate frame is assumed
to have no superelevation; therefore, the y-axis is always par-
allel with the plane tangent to the Earth’s reference ellipsoid.
The z-axis is perpendicular to the x− y plane and points to the
center of the Earth. This type of coordinate frame was chosen
because the vision measurements give a direct measurement of
the y-axis position. In addition, since this work was developed
for ground vehicles, the position of the sensor in the z-axis of
the road coordinate frame is known, can be measured once, and
is included in the navigation filter as a measurement update.
Note that this height is independent of the geometry of the road
itself and is related to the global coordinate frame through the
map. The change in vertical height on any point on the vehicle
is a function of the roll angle of the vehicle and the height of
the point above the roll axis; however, this angle and height

above the roll axis are small for normal operating conditions. A
similar idea is presented in [23].

In order to use the measurements given in the road coordinate
frame, the estimated position in the navigation (ECEF) coor-
dinate frame must be mapped into the road coordinate frame.
Equation (13) is used to map position from the navigation
coordinate frame to the road coordinate frame

�rrrb = Cr
e [�r

e
eb − �reer] (13)

where �reeb is the estimated position vector in the navigation co-
ordinate frame, �reer is the position of the origin of the road
coordinate frame, Cr

e is the rotation matrix from the ECEF
coordinate frame to the road coordinate frame, as shown in (15),
and �rrrb is the estimated position vector in the road coordinate
frame. In order to use this equation, the position of the origin
of the road coordinate frame, which in practice is implemented
as the last waypoint the vehicle passed in the waypoint map,
must be known (�reer). The rotation matrix from the navigation
coordinate frame to the road coordinate frame (Cr

e ) must be
also known and is constructed with the known attitude of the
road coordinate frame with respect to the navigation coordinate
frame, which is represented by three Euler angles, which rotates
the z-axis first, followed by the y-axis, and, finally, the x-axis.
The next section describes the waypoint-based lane map.

1) Waypoint-Based Lane Map: The information needed for
the lane map is the position of each waypoint in the ECEF
coordinate frame, the three Euler angles necessary to rotate
the ECEF coordinate frame to the road coordinate frame for
each waypoint, and the distance to the next waypoint for each
waypoint. Therefore, the map database takes the form

Map Database =

⎡
⎢⎣
�reer,1

�φ1 dr,1
...

...
...

�reer,m
�φm dr,m

⎤
⎥⎦ (14)

where �reer,i is the position vector of waypoint i in the ECEF

coordinate frame, and �φi is the attitude vector of the road coor-
dinate frame. dr,i is the distance from waypoint i to waypoint
i+ 1 and is used to check if the vehicle has passed the next
waypoint in order to keep up with the location of the vehicle
along the map.

The form of the rotation matrix from the ECEF coordinate
frame to the road coordinate frame is given as

Cr
e =

⎡
⎣ c2c3 c2s3 −s2
s1s2c3 − c1s3 s1s2s3 + c1c3 s1c2
c1s2c3 + s1s3 c1s2s3 − s1c3 c1c2

⎤
⎦ . (15)

The elements from the road coordinate frame attitude �φi

are used to construct the rotation matrix from ECEF to the
road coordinate frame. The rotation matrix and the position
of the road coordinate frame (position of the last waypoint
passed) can be used to solve for estimated position in the road
coordinate frame, where c1 is the cosine of the first attitude
angle in the attitude vector, and s1 is the sine of the first
attitude angle in the attitude vector. Similarly, c2 and s2 are the
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trigonometric functions of the second angle, and c3 and s3 are
the trigonometric functions of the third angle.

2) Vision Measurement Model: To use lateral lane position
measurements from the vision sensors, the lateral lane position
with respect to the lane map must be estimated using the current
states of the navigation filter. Equation (16) is used to find the
position estimates in the road coordinate frame, i.e.,⎡

⎣ x̂
ŷ
ẑ

⎤
⎦ = Cr

e

[
�reeb − �reer,i

]
. (16)

�reeb denotes the current position estimate in the ECEF co-
ordinate frame. �reer,i denotes the position of the last waypoint
passed in the ECEF coordinate frame. ŷ is the lateral lane
position estimate, x̂ is the distance into the current road co-
ordinate frame, and ẑ is the vertical position in the current
road coordinate frame. The z-axis of the road coordinate frame
points to the center of the Earth.

The three Euler angles that are substituted into Cr
e come

from the map database �φi along with the position of the last
waypoint passed �reer,i. The first three states of the filter x̂1:3 are
the position vector of the vehicle in the ECEF coordinate frame
�reeb,i. To perform a measurement update, three requirements
must be known. The first requirement is the measurement vector
�ζ, as shown in

�ζ =

[
ζ̃vision

ζ̃height

]
. (17)

The first measurement is the lane position measured by the lidar
or the camera. The second measurement is the height above
the lane.

The second requirement needed to perform a measurement
update is the measurement equations. The measurement equa-
tions for the y- and z-axes of the road coordinate frame are
given as

�̂ζ
(
�x,�reer,

�φi

)

=

[
ζ̂

ĥ

]

=
[
Cr

e(2,1)

(
�reeb,1 − �reer,i,1

)
+ Cr

e(2,2)

(
�reeb,2 − �reer,i,2

)
−Cr

e(3,1)

(
�reeb,1 − �reer,i,1

)
− Cr

e(3,2)

(
�reeb,2 − �reer,i,2

)
· · ·+ Cr

e(2,3)

(
�reeb,3 − �reer,i,3

)
· · · − Cr

e(3,3)

(
�reeb,3 − �reer,i,3

)]
. (18)

The measurement equations are a function of the states of the
filter and the map parameters. The states and map parameters
are substituted into these equations to estimate the measurement
based on the current states. These equations are also used to
determine the measurement model matrix, i.e., H . The first
measurement equation is for the lateral lane position, which is

provided by the camera or the lidar. The second measurement
equation is the height above the road coordinate frame.

The last requirement needed to perform a measurement
update is the linearized measurement matrix H . The linearized
measurement model is created by taking the partial derivative
of the measurement equations with respect to each state. The
measurement matrix is

H =

[
ê1 01×3 01×3 01×3 01×3 01×3 01×2

ê2 01×3 01×3 01×3 01×3 01×3 01×2

]
(19)

where ê1 is the unit vector in the navigation coordinate frame
that points in the direction of the y-axis of the road coordinate
frame, as shown in

ê1 =
[
Cr

e(2,1), C
r
e(2,2), C

r
e(2,3)

]
(20)

and ê2 is the unit vector in the navigation coordinate frame
that points in the direction of the negative z-axis of the road
coordinate frame, as shown in

ê2 =
[
−Cr

e(3,1),−Cr
e(3,2),−Cr

e(3,3)

]
. (21)

Both unit vectors are directly taken from rows of the rotation
matrix from the navigation coordinate frame to the road coor-
dinate frame.

C. Observability Analysis

With the introduction of additional sensors to the full system,
a discussion on the observability is necessary. The observability
analysis conducted for this paper uses the time-varying lin-
earized observability test [24], [25], i.e.,

O(kf , k0) =

kf∑
k=0

φT (k, k0)H
T (k)H(k)φ(k, k0) (22)

where

φ(k, k0) = Jd(k)Jd(k − 1), . . . , Jd(k0) (23)

where Jd(k) is the discretized Jacobian of the system dynamics,
kf was chosen to be 17 (window size), the same as the number
of states for the tightly coupled filter, and k0 is the time for
which the observability test is done. In the observability analy-
sis for this nonlinear system, the system is linearized about the
trajectory. Since this operation is time varying, integration must
be done over short periods to see the observability at each time.
The observability matrix value is determined by checking the
rank of the observability matrix at each measurement epoch and
is a function of the available measurements. The rank of the ob-
servability matrix in the linearized observability analysis case
signifies the number of observable modes, rather than states.
Modes are states or linear functions of states. The observability
matrix’s rank, then, describes a condition where states and
linear combinations of states are observable, but the nonlinear
filter may not be able to distinguish between the linear functions
of states. The time-varying linearized observability test used
in this paper is a necessary but not sufficient condition for
observability; thus, this observability analysis shows conditions
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that the filter is guaranteed to fail when the observability matrix
is not full rank.

Nevertheless, knowing the conditions in which the filter is
guaranteed to fail is important. The height and lane position
measurements provide measurements in two of the three co-
ordinate directions. The system is almost full rank just using
these measurements. The missing piece of information needed
for full rank is the position in the x-axis of the road coordinate
frame. If this position is measured (using something other than
GPS), then the navigation filter will remain full rank even
without GPS measurements. The results, shown in the follow-
ing sections, will show that, when using vision measurement
updates, the navigation filter remains full rank even if only two
GPS ranges are available (instead of the typical four needed to
calculate a position estimate).

V. NAVIGATION FILTER EXPERIMENTAL RESULTS

This section presents results from the navigation filter and an
evaluation of the performance of the filter in various scenarios.
Along with showing the filter with all measurements (GPS,
lidar, and camera), various sensor outages are simulated to show
how the loss of a particular sensor affects the estimates of the
filter. The results also show how the filter reacts when no lane
map is available. Finally, the results will show how the filter
performs when less than four GPS satellites are available and
the result of losing vision measurements or the lane map under
a limited satellite constellation.

All the error plots where created using the unfiltered RTK
GPS position and velocities from the Septentrio GPS receiver
as ground truth. The RTK corrections were provided by an on-
site base station. The close proximity to the base station ensures
that RTK GPS position is accurate on a centimeter level. These
RTK positions and velocities (taken at 10 Hz) were resampled
to 100 Hz to match the output rate of the navigation filter. The
error was estimated by differencing the resampled RTK GPS
measurements and the navigation estimates of the filter.

The data for the following results were collected at the NCAT
test track in Opelika. For this data set, the vehicle started in the
outside lane at the end of the front (north) straight. The test
vehicle drove down the front straight at 55 mi/h, through a 180◦

turn, then down the back straight at 70 mi/h. The vehicle came
to a complete stop at the end of the back straight.

A. Vision-Aided Lane-Level Positioning

Fig. 12 shows the estimated position of the vehicle compared
with the reference RTK GPS. The red dots represent the RTK
reference solution (at 10 Hz). As shown in Fig. 12, the reference
solution resides close to the center of the lane as expected.
The green dots represent the filtered solution (including IMU
at 100 Hz) with non-RTK GPS, vision, and map constraints as
measurements.

Fig. 13 shows the estimated position of the filter when using
stand-alone GPS measurements. The red dots represent the
stand-alone (not RTK) GPS measurements (at 2 Hz). As can be
seen, the GPS measurements no longer reside within the lane
lines due to the fact that stand-alone GPS does not have lane-

Fig. 12. Estimated vehicle position compared with RTK GPS.

Fig. 13. Estimated vehicle position compared with stand-alone GPS.

level accuracy. The green dots represent the filtered solution
(at 100 Hz) with stand-alone GPS, vision, and map constraints.
The filtered solution resides within the lane lines since the
vision measurement constrains the position to the map. This
comparison shows that GPS alone is not enough to determine
lane position; however, fusing the GPS with vision and map
constraints results in a solution that is lane level accurate. If
the vision measurements are unavailable, the filtered solution
will converge to the GPS measurements at a rate dependent on
the measurement and process noise values in the filter, which
results in a loss of lane-level accuracy, as expected.

B. Effects of Sensor Failures

The next set of figures shows the effects of sensor failures
on the system. The dark gray horizontal lines represent the lane
marking locations. At 30 s into the data run, different sensor
outages are simulated to show what happens to the filter when
certain sensors become unavailable. The simulated outages last
for 1 min, after which the measurements are reinstated.

Fig. 14 shows three plots of the performance of the estimated
lane position under several different failure conditions. The
blue line (solid) in all three plots represents the lane position
reported by the RTK GPS alone, which was used to represent
true position in the lane. The cyan line (dashed, top plot) shows
the lane position for the full integrated system—non-RTK GPS,
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Fig. 14. Estimated lane position with various measurement outages.

IMU, and vision sensors. In this system, after the outage, the
filter can still estimate position to lane-level accuracy because
vision measurements are still available. When GPS is com-
pletely turned off (purple dashed) in the middle plot outage,
lane position can be estimated correctly because vision mea-
surements are again still available. The bottom plot (red dashed)
shows the loss of lane-level positioning. For this situation,
vision is not used; thus, the GPS outage allows divergence of
the INS estimation error. Loss of lane position accuracy for this
case occurs within 5 s.

Fig. 15 is a plot of the estimated error in longitudinal
position—the error in the distance along the path of the map.
Two failure conditions result in a loss of accuracy in the
estimated distance along the map. The first failure condition
is the GPS outage, shown as the dotted purple line. For this
case, only vision measurements are available. As shown in
Fig. 14, the lane position estimate still remains accurate for this
case. However, error accumulates in the longitudinal direction
because that direction is unobservable during the time interval
without GPS. In the lateral axis, the lane position estimate is
still available. The second failure condition is when both GPS
and vision are not available. Fig. 15 shows that the error in
estimated position grows quicker for the case when no vision
measurements are available and that having lateral vision mea-
surements helps in constraining drift in longitudinal position;
however, the error for both the loss of GPS (dotted magenta
line) and the loss of GPS and vision (dashed black line) results
in a continual error growth. Like the estimated lane position, the
estimated longitudinal position is corrected by the filter after
measurements are reinstated.

Fig. 15. Estimated longitudinal position error with measurement failures.

Fig. 16 provides the estimated error in each road axis when
no GPS measurements are available. The blue line represents
the error when no GPS, map (height measurement), or vision
measurements are available. For this case, there are no mea-
surement updates. Therefore, a continual error growth exists
in all axes due to integration of the IMU errors, as expected.
The black line represents the error when no GPS or vision
measurements are available. For this case, the map is available,
which constrains the error in the vertical road axis due to the
height constraint. The magenta line shows the error when only
GPS is not available. Vision measurements and the map height
constraint are available and constrain the error in the lateral road
axis. The error in the longitudinal axis is constrained with GPS.
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Fig. 16. Estimated error for various map and vision availability using no GPS.

Fig. 17. Rank of observability matrix with vision and height measurements
after outage.

Neither the vision measurements of lane lateral position nor
the height constraint provides observability in the longitudinal
road axis. Fig. 17 shows the observability matrix rank for
the same test run where the GPS outage is simulated at 45 s
into the test run. In this case, the pseudorange and pseudor-
ange rate measurements and the vision lane position measure-
ments and map are used before failure, resulting in full rank
(17 states). As shown in the figure, the observability matrix
rank drops to 15 after the GPS failure, which indicates a filter
failure condition and results in the drift shown in Fig. 15.
Around 72 s, the rank drops again to 13. This drop is most
likely due to the lack of dynamics in the system after the 70-s
mark, at which point the vehicle exits from the curved portion
of the track. Another test (not shown here) where the outage is
simulated earlier in the test run results in a drop to 13 and an
increase to 15 as the vehicle enters the curve.

TABLE IV
ERROR STATISTICS OF ESTIMATED LANE POSITION GIVEN

DIFFERENT MEASUREMENT AVAILABILITY

TABLE V
ERROR STATISTICS OF ESTIMATED LONGITUDINAL POSITION

GIVEN DIFFERENT MEASUREMENT AVAILABILITY

Table IV shows the standard deviation of the error for each
combination of available measurements. For the case when
only RTK GPS is used, the measurement of truth and the
measurement used to update the filter are the same, resulting
in a low standard deviation of error.

Table V gives the error statistics of the estimated longitudinal
position for various available measurements. The error statistics
of the longitudinal position match the error statistics of the GPS
measurement used. When using RTK GPS, the error is on the
centimeter level. When non-RTK GPS is used, the error is on
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the meter level. There is a continual growth of longitudinal
position error if no GPS measurements are available. The
growth of the error is slowed if vision measurements of lane
position are available; however, the error will continue to grow
until a GPS measurement becomes available.

C. Limited Satellite Results

Urban and rural environments both pose different problems
for each of the various algorithms. Navigation within a city has
proved to be an interesting problem for GPS-aided navigation
systems due to the blockage of satellites by buildings. Similarly,
trees on rural roads can block GPS satellites. However, the use
of multiple sensors can provide a solution that does not drift
even with poor GPS satellite visibility. A typical navigation
filter based on GPS measurement updates requires at least four
GPS observations to calculate a GPS measurement. Each of
the four observations is needed to solve an unknown when
calculating a GPS position. Three-dimensional position makes
up three of the unknowns. The fourth unknown is the clock
bias (or the difference in the GPS receiver’s clock and the GPS
system time).

The filter’s vision measurements can measure position in one
axis—the axis perpendicular to the road. Since the road map
contains vertical information, position in the axis perpendicular
to the ground plane can be constrained. The height of the
vehicle above the road is assumed to be constant and known.
Therefore, the only unconstrained axis is the axis parallel to the
road. Since position is only unconstrained in one axis, using
only two GPS observations will result in a fully operational
system. One GPS observation is needed for the unknown axis,
and the other is needed for receiver clock errors. Note that the
INS error growth in the ECEF frame is also constrained due
to road direction changes from the vision-based measurement
of lane position correcting different components of the ECEF
error.

The plots presented here show the same data run from
Section V-B; however, at 30 s, all but a few selected GPS ob-
servations are turned off. After 1 min, all the GPS observations
are turned back on. The simulated satellite outages will show
how the filter with IMU and vision measurements reacts when
less than four GPS observations are available and the effects
satellite geometry and measurement quality have on the filter.
Like the measurement failure results, these results were created
by looking at the effects of satellite failures on the same data set.
Thirty seconds into the run, all satellite observations, except the
satellite observations listed in the legend, are turned off.

Fig. 18 shows a plot of the estimated lane position for the
various satellite constellations, where the numbers next to SV
pertain to each satellite’s ID number. The blue line is the
estimated truth using the RTK GPS measurements. The hori-
zontal gray lines represent the lane lines assuming a 12-ft lane.
When vision measurements are used, the lane position estimate
remains accurate for all limited satellite constellations. Even
when no GPS observations are available, the vision measure-
ments ensure that lateral lane position accuracy is maintained.
The lane position estimate reflects a lateral position, and the
component of any GPS observations that lie in the lateral road

Fig. 18. Estimated lane position with vision and limited satellite visibility.

Fig. 19. Rank of observability matrix with two satellites.

axis will be automatically weighed less because the vision
measurements have a much smaller associated variance.

If vision measurements are not available, the lack of ob-
servability in the filter allows the estimation error to grow, as
expected. Fig. 19 shows the rank of the observability matrix
for the data run with an outage at 45 s with two satellites. As
shown in the figure, the rank after the outage remains at 14 until
the end of the outage, which signifies a guaranteed filter failure.

Fig. 20 shows a plot of the estimated error in longitudinal
position with only the satellites shown in the legend. The figure
shows that the estimated longitudinal position contains a large
bias for the case when only SV 5 and SV 26 are used. This large
bias is likely due to the satellite geometry of the satellites—the
azimuth angles in both of these satellites are close together.
For the case when only SV 15 and SV 18 are used, the bias
present is along the level seen when using stand-alone GPS with
more than four observations. This bias is most likely due to the
azimuth angles being farther apart. If only two observations are
available, then the filter still remains full rank.

However, a bias can be present in the estimated longitudinal
position. This bias is a function of the quality of the observa-
tions available and the constellation. The best results appear
to come when the two observations are 180◦ apart in azimuth
angle and when both of the azimuth angles are orthogonal to the
road. Typically, in an urban environment, observable satellites
will reside in the axis parallel with the direction of the road. The
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Fig. 20. Estimated longitudinal position error with vision and limited satellite
visibility, only using the satellites shown in the legend.

Fig. 21. Rank of observability matrix with two satellites, vision measure-
ments, and height measurements.

estimated longitudinal position cannot be corrected with GPS if
one or no GPS observations are available.

Fig. 21 shows the observability analysis for the experimental
data where the satellite geometry results in only two satellite
observations, vision measurements, and height measurements.
The plot shows that the system is full rank before and after the
failure with only two satellites in view. In this case, the filter is
not guaranteed to diverge, and its observability is based on the
vehicle dynamics.

VI. CONCLUSION

This paper has shown that vision and height measurements,
along with a lane map, will greatly reduce the drift experienced
when GPS is lost, such as under heavy foliage or in an urban
canyon, using sensors already present in commercial vehicles
and the inclusion of a lane map. The subsystems for lateral
distance from both the camera and the lidar showed subme-
ter accuracy and provided measurements for the integrated
positioning system. A known lane marking map related the
lateral distance measurements from the local coordinate frame
to the global coordinate frame is used in the navigation filter.

TABLE VI
IMPACT OF SENSOR LOSS ON NAVIGATION FILTER

The navigation filter fused measurements from range data of
satellites from GPS, inertial data from an IMU, lateral distance
information from the camera and lidar, and known height
data to constrain the position estimate in situations where less
than four satellites were available for GPS. Experimental tests
conducted at the NCAT test track showed that the use of vision
data prevented drift due to an INS-only solution in situations
with low satellite visibility.

Table VI shows a summary of the loss of various measure-
ments for the filter. Vision and height measurements constrain
IMU drift in two axes; thus, the solution only drifts in the road’s
longitudinal axis (assuming a straight road). One GPS range
could be used to observe position in the road’s longitudinal axis.
However, using GPS observations adds another unobservable
mode (receiver clock bias and drift). Two GPS observations
are needed (along with vision measurements and a map) in
order to maintain full rank of the observability matrix. At
least one of the GPS observations must have a component in
the road’s longitudinal axis; therefore, as long as both GPS
observations do not lie in the plane perpendicular to the road
and vertical to the vehicle, full rank of the observability matrix
is maintained. It is unlikely that two GPS observations will
have the same azimuth angle or an exactly 180◦ azimuth angle
difference. While the navigation filter remains fully observable
with two GPS observations, map, and vision measurements, the
performance of positioning in the road’s longitudinal axis is
dependent on the degree of observability, the constellation of
the two GPS observations, and the error in the observations.

Future work involves further testing of the full system in
various environments, such as different weather conditions and
time of day. Other work includes resolving the detection of
lane changes in multilane roads and testing of the system with
actual production sensors present on the vehicle. Finally, an
implementation of this system using global landmarks will
eliminate the need for a road map and will create a more viable
navigation strategy in the real world.
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