MECH 4420 Lecture: Vehicle Dynamics Control

David Bevly
Various Yaw Dynamic Models

Bicycle Model

\[
\frac{R(s)}{\delta(s)} = \frac{a C_{\alpha f} s + \frac{a C_{\alpha f} - c_1 C_{\alpha f}}{mV}}{I_z s^2 + \frac{c_0 I_z + mc_2}{mV} s + \left(\frac{c_0 c_2 - c_1 mV^2 - c_1^2}{mV^2}\right)}
\]

DC Gain:

\[
R_{ss} = \frac{V_x}{L + K_{US} V_x^2} \delta
\]

Neutral Steer Model \((K_{US} = 0)\)

\[
\frac{R(s)}{\delta(s)} = \frac{a C_{\alpha f}}{I_z s + \frac{c_2}{V}}
\]

Kinematic Model

\[
R = \frac{V_x}{L} \delta
\]
Classical (3140) Yaw Dynamic Control

• Placing the bicycle model transfer function into a classic block diagram format results in:

\[
\begin{align*}
K(s) &= \frac{a C_{\alpha f} - c_1 C_{\alpha f}}{mV} \\
\delta &= \frac{a C_{\alpha f} + \frac{a C_{\alpha f} - c_1 C_{\alpha f}}{mV}}{I_Z s^2 + \frac{c_0 I_Z + mc_2}{mV}s + \left(\frac{c_0 c_2 - c_1 mV^2 - c_1^2}{mV^2}\right)}
\end{align*}
\]
Classical (3140) Yaw Dynamic Control

• Where does desired yaw rate come from?
 – From knowledge of trajectory (and speed)
 – From an “ideal” bicycle model
 • Use measured steer angle and speed to determine desired yaw rate

• Design Methods
 – Classical Design (need good model)
 • Have to design in Bode or Root Locus
 – Why? Because of zero in the bicycle model TF
 – Prevents from being able to do coefficient matching
 – Hand-Tuning
 • Need access to the vehicle
Classical Control Options for $K(s)$

- **P**
 - Takes advantage of “free” zero (zero in the TF)
 - Closed loop G_{DC} will not be one!
 - Need to add feedforward or pre-reference scaling
 - Don’t want zero steer angle when error is zero

- **PI (or Lag)**
 - Drive steady state error to zero (even with disturbances)

- **PD (or Lead)**
 - If desire better (faster, higher closed-loop bandwidth)
 - Note: Very likely actuator limited in achieving this through steering

- **PID (or Lead+Lag)**
 - If desire both of the PI and PD.
Root Locus with Proportional Control

- P controller using the G35 Specifications
 - Note that (limited) improvement in settle time and bandwidth does exist with P control

\[K(s) = K \]
Root Locus with PI Control

• PI controller using the G35 specifications
 – Note that the time to steady state is decreased due to the additional integrator pole which will be dominant
 • But guarantees zero steady state error

\[K(s) = K \frac{s + 10}{s} = K + \frac{10K}{s} \]

\[K_p = K \]
\[K_i = 10K \]
What about controlling Position

• Various Strategies:
 – Waypoint Following
 • Easier to implement and tune (by hand)
 • Requires fewer model parameters
 • One less integrator (i.e. lower order)
 – Line Tracking
 • Need good model
 • Requires more parameters/states
 • Harder to define error
 • Provides improved tracking
Waypoint (Heading Control)

- Ignore the position and drive to “waypoints”
 - Reduce the order of the dynamics by one
 - One integrator

- Error is defined to be the angle pointing to the waypoint
 - Difference in the angle between the vehicle and the waypoint
Waypoint (Heading) Control

• One way of doing vehicle position/later control is to drive to “waypoints.”
 – Feedback three measurements
 • Heading error (modified to scale gain with Vx)
 • Yaw rate
 • Steer angle
 – Some gains set to zero because of lack of reliable vehicle model
 – If gain is too large the vehicle becomes unstable
 • Models predict this result
 – Use a “look ahead” distance (blue semi-circle) to select which point to drive to
 • Increasing the look ahead distance adds damping and increases stability
 • Increasing the look ahead distance leads to more error as the vehicle will cut corners in tight turns

\[x = [\psi \hspace{1em} r \hspace{1em} \delta]^T \]
• **Heading Error**

\[\psi_{error} = \psi - \tan^{-1}\left(\frac{E_{des} - E}{N_{des} - N}\right) \]

• **Look Ahead Radius**

\[R_{min} = 1 \text{ m} + \left(1 \frac{\text{m}}{\text{m/s}}\right) V \]
Waypoint (Heading) with P Control

- Proportional heading controller using the G35 Specifications
 - Stable with P only

\[K(s) = K \]
Waypoint with PD Control

- PD heading controller using the G35 specifications
 - Note this is exactly the same root locus as PI on yaw dynamic control

\[K(s) = K(s + 10) = Ks + 10K \]

- \(K_p = 10K \)
- \(K_D = K \)
Simplified Waypoint Control

• Waypoint control using a simplified vehicle model (1st order yaw dynamics) and ignoring steering dynamics, \(S(s) \)

Vehicle Model:
\[
\frac{r(s)}{\delta(s)} = \frac{G_{DC}}{\tau_r s + 1} \quad G_{DC} = \frac{V}{L + K_{US} V^2}
\]

PD Controller:
\[
\delta = K_\psi \psi_{\text{err}} + K_r \dot{\psi}_{\text{err}} = K_\psi \psi_{\text{err}} + K_r r
\]

Desired Closed Loop C.E.:
\[
\frac{\psi}{\psi_{\text{des}}} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}
\]

Resulting Gains:
\[
K_\psi = \frac{\omega_n^2 \tau_r}{G_{DC}} \quad K_r = \frac{2\zeta \omega_n \tau_r - 1}{G_{DC}}
\]
Waypoint Following Results

- Test performed on ATV at Auburn
- Waypoint controller works o.k. with correct parameters
- The incorrect model results in instability
Further Improvements

• Driving to waypoints is not best control method
• Results in decreased tracking accuracy
 – Vehicle oscillates more
• In limited scenarios this caused instability on RASCAL

• Two errors are important
 • Heading
 • Lateral position
• Driving both errors to zero requires line-tracking controller
• Requires a more accurate model
Line Tracking

• Heading Error

\[
\psi_{error} = \psi - \tan^{-1}\left(\frac{E_{des} - E}{N_{des} - N} \right)
\]

• Lateral Error
 – Neglecting \(V_y \)

\[
\dot{y} = V \frac{X}{\sin(\psi)} \approx V \frac{X}{\psi}
\]
Lateral Position Dynamics

\[V = \text{velocity} \]
\[r = \text{yaw rate} \]
\[\psi = \text{heading (or yaw)} \]
\[\nu = \text{vehicle course} \]
\[\delta = \text{steer angle} \]
\[\beta = \text{body sideslip angle} \]
\[\alpha = \text{tire sideslip angle} \]

- Lateral velocity is defined as:
 \[\dot{y} = V \sin(\psi + \beta) = V_x \sin(\psi) + V_y \cos(\psi) \]

- Assuming small angles:
 \[\dot{y} \approx V_x \psi + V_y \]
Full Yaw Vehicle Dynamics

• **Steering**
 – 1\(^{\text{st}}\) order
 \[\frac{\delta}{u} = \frac{K_\delta}{\tau_\delta s + 1} \]
 • Neglecting motor dynamics \((\dot{\delta} = u)\)
 – 0\(^{\text{th}}\) order if neglect steering dynamics \((\delta = u)\)

• **Vehicle**
 – 2\(^{\text{nd}}\) Order
 \[\frac{r}{\delta} = \frac{k_v(s + n_v)}{s^2 + 2\zeta_v\omega_vs + \omega_v^2} \]

• **Error**
 – Heading (1\(^{\text{st}}\) order) \(\dot{\psi} = r\)
 – Lateral Position (1\(^{\text{st}}\) Order) \(\dot{y} \approx V_x\psi + V_y\)
• Note that to put the lateral position into a transfer function, V_y has to be neglected (or treated as a disturbance)
 – Recall TF only allow one input and one output
• Not the case for state space

$$y(s)s = V_x \psi(s) + V_y(s)$$
Control Strategies

• Classical (i.e. 3140)
 – Single Controller
 • This must be done in Root Locus or Bode
 – Cascaded
 • Break up the system into more manageable systems
 – Yaw dynamic loop still must be done with root locus or bode due to the zero
 – Inner and outer loops could be designed with coefficient matching, root locus, or bode
 – Hand-tune each loop

• State Feedback (we will get into this later)
 – Need Good Model for Design
 – Need Estimator (also requires good model)
Lateral Control Dynamics

- Single Controller Design
- Neglecting Lateral Velocity, the system can be represented as follows (\(V_y\) is treated as a disturbance):

\[
\begin{align*}
S(s) &= \frac{1}{s} \\
\psi &= \frac{V_x}{s} \\
y &= \frac{1}{s} \\
r &= \frac{1}{s} \\
\delta &= \frac{a C_{af} s + a C_{af} - c_I C_{af}}{m V} \\
P &= \frac{a C_{af} s + a C_{af} - c_I C_{af}}{m V} \\
\end{align*}
\]
Lateral Control Dynamics

• Can use any type of controller for $K(s)$
• Note the closed loop $G_{DC}=1$ for any $K(s)$
 • This is because the plant already had integrators (2 to be exact)
 • Therefore if $y_{ss}=y_{des}$ (if y_{des} = constant) so $e_{ss}=0$
 • However might still need integrator for:
 – Changing y_{des} (i.e. tracking curves)
 – Disturbances (banks, cross-wind, etc.)
Lateral Proportional Controller

- Lateral P controller using the G35 specifications and ignoring steering dynamics ($S(s)=1$)
 - Unstable with P only (for any value of K)
 - Therefore also unstable for PI
Lateral PD Control

- PD lateral controller using the G35 specifications and ignoring steering dynamics ($S(s)=1$)
 - Stable, but not that great of performance (settle time of 2 seconds)

\[K(s) = K(s + 2) = Ks + 2K \]

\[K_p = 2K \]
\[K_D = K \]
Cascaded Approach

• Cascaded into 3 consecutive controllers
 – Inner loop: Steering Control
 – Middle Loop: Yaw Dynamics
 – Outer Loop: Position Control (waypoint or line)

• Each consecutive controller should be designed “slower” than the previous
 – Therefore previous “inner” dynamics can be neglected
 – Can use P, PI, and/or PID for any of the loops
Line Tracking of a Tractor with GPS

Mean = 5 mm \(1\sigma = 3 \text{ cm} \)