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1. Scope 
In an open environment, GPS provides a good estimation of vehicle position.  Numerous 
improvements over the basic GPS framework have provided accuracies in the centimeter 
range.  However, blockages of the GPS signal create significant problems for the 
positioning solution.  In so-called “urban canyons”, GPS signals are blocked by the 
presence of tall buildings.  Similarly, heavy foliage in forests can block line-of-sight to 
the satellites.  Because of these problems, a broader approach is needed that does not rely 
exclusively on GPS.  This project takes into account three key technology areas which 
have each been individually shown to improve positioning solutions where GPS is not 
available or is hampered in a shadowed environment.  First, terrain-based localization can 
be readily used to find the vehicle’s absolute longitudinal position within a pre-mapped 
highway segment – compensating for drift which occurs in dead-reckoning system in 
long longitudinal stretches of road.  Secondly, visual odometry keys upon visual 
landmarks at a detailed level to correlate position to a (visually) premapped road segment 
to find vehicle position along the roadway. Both of these preceding techniques rely on 
foreknowledge of road features – in essence, a feature-enhanced version of a digital map. 
This becomes feasible in the “connected vehicle” future, in which tomorrow’s vehicles 
have access to quantities of data orders of magnitude greater than today’s cars, as well as 
the ability to share data at high data rates. The third technology approach relies on radio 
frequency (RF) ranging based on DSRC radio technology. In addition to pure RF ranging 
with no GPS signals, information from RF ranging can be combined with GPS range 
measurements (which may be inadequate on their own) to generate a useful position. 
Based on testing and characterization of these technologies individually in a test track 
environment, Auburn will define a combined Integrated Positioning System (IPS) for 
degraded GPS environments, which will also incorporate ongoing FHWA EAR work at 
Auburn in fusion of GPS and on-board sensors. This integrated approach will blend the 
strengths of each technique for greater robustness and precision overall. This research is 
expected to be a major step forward towards exceptionally precise and reliable 
positioning by taking advantage of long-term trends in on-board computing, connected 
vehicles, and data sharing. 

1.1 Sarnoff Corporation Contribution 
The scope of Sarnoff’s work under Year One of this project is the evaluation of their 
Visual Aided Navigation System for providing highly accurate positioning for vehicles.  
As such there are 3 major tasks: 

(1) Evaluate and provide a survey of Sarnoff’s existing Visual Navigation results 

(2) Integrate Visual Navigation system on Auburn Engineering’s G35 vehicle test 
platform and collect test data using the integrated system. 

(3) Process and analyze the data from the tests and evaluate the performance and 
recommend any improvements and optimizations. 
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1.2 The Pennsylvania State University Contribution 
For sake of clarity and coherence, the scope of Penn State’s contribution to the project, as 
discussed in previous quarterly reports, is reproduced here. The primary objectives under 
Penn State’s purview are: 

(1) Developing the proven particle filter approach so that it can be used for localization with 
commercial-grade sensors, rather than defense-grade sensors, 

(2) Modifying and optimizing the particle filter algorithm, and exploring alternative 
approaches, so that localization can take place online (in real-time) rather than offline, 
and 

(3) Modifying and optimizing the algorithms as well as terrain map representation, so that 
the localization algorithms work over a large network of roads, rather than a small section 
of a single road alone. 

Following up from previous quarterly reports, as part of Task (2), Penn State has 
completed the offline testing of the Simulink model developed for real-time 
implementation. The model is now being incorporated into the QuaRC/Simulink 
architecture for field testing. Work on Task (3) is progressing with review of prevalent 
multiple model estimation techniques which will be used for vehicle position tracking on 
a large road network. 

1.3 Kapsch TrafficCom Inc. Contribution 
Kapsch will investigate the accuracy of close proximity calculations available from the 
5.9 GHz DSRC communications channel.  A great deal of information related to 
positioning can be inferred from the DSRC communications channel.  Basic calculations 
may provide a location region achieved through the channel ranging calculations to more 
precise lane based proximity determinations through advanced analysis of the 
communications channel.  Kapsch will research a combination of both approaches 
through available data defined in the IEEE 802.11p standard for 5.9 GHz communication 
and through scientific Radio Frequency (RF) analysis. 

Kapsch will support Auburn for the characterization of the ability to utilize the 5.9 GHz 
DSRC communication channel for next generation non-GPS localization services.  The 
Received Signal Strength Indication (RSSI) in-conjunction with other aspects of the 
DSRC communications channel will be analyzed and a method developed for signal 
ranging. Kapsch does not believe RSSI ranging techniques will fully meet the desired 
localization needs.  Year 2 will yield more advanced algorithms and DSRC equipment 
capable of providing lane level localization from the DSRC communications channel.  
This task includes the following sub-tasks: 

(1) System Engineering and Deployment of DSRC Infrastructure at the Auburn Test 
Track 

(2) Lab testing of DSRC signal ranging solution 

(3) On-site testing of DSRC signal ranging solution 

(4) Analysis of DSRC signal ranging test results 
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2. Current Progress 

2.1 SRI Progress 

2.1.1 Visual Navigation Sensor Package and Data Collection 
 
The sensor package for visual navigation consists of cameras and IMU mounted on the 
vehicle roof rack, described in a previous report. 
 
SRI Sarnoff visited Auburn University on 1/16/2011 - 1/18/2011 for data collection and 
system tests. The sensor system installed at Auburn University on 10/3/2010 was found 
to be breached and have water damage. The rear cameras were non-responsive and the 
glass lens covers were fogged with internal condensation for both front and rear cameras. 
Both camera boxes were resealed with external application of RTV adhesive, and data 
was collected on the Auburn test track in rainy conditions.  
 
The camera boxes and breakout box were shipped to SRI Princeton, where it was found 
that the sealant used to secure the glass lens covers had failed, letting rainwater into the 
boxes. The GigE network hub and one camera were damaged. The front camera box will 
be returned to Auburn for continued testing and inclusion in the integrated positioning 
system. 

2.1.2 Visual Navigation System and Software 
During the 01/2011 trip to Auburn University, full system functionality was demonstrated 
including successful live interface with the Auburn vehicle computer.  

 GPS NMEA messages: The SRI laptop was connected to the vehicle GPS 
receiver via serial cable and GPS data was streamed to the live visual odometry 
software.  

 Visual Odometry Poses output over TCP/IP: The 6 degree-of-freedom position 
and bearing estimates were successfully streamed to the Auburn vehicle computer 
over TCP/IP Ethernet connection. 

 
Progress has also been made at SRI on various parts of the visual navigation system.  

 Diagonal pose covariances are now being calculated by the SRI visual odometry 
software. This is a necessary component for the integrated positioning system. 

 Extended Kalman Filter: An extended Kalman filter is used to fuse the 
measurements from visual feature tracking and a low-cost IMU. Two different 
formulations for the EKF have been developed at SRI, and both were evaluated 
using data collected in October, 2010. The first formulation is a velocity process 
model which specifies an explicit dynamic motion model for a given sensor 
platform, or assumes a constant velocity process if no dynamic model is given. 
The second filter representation uses an error-state formulation, where the filter 
dynamics follow from IMU error propagation equations, which evolve slowly 
over time and are therefore more amenable to linearization. The measurements 
propagated to the filter consist of the differences between the inertial navigation 
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solution as obtained by solving the IMU mechanization equations and the external 
source data, which in our case is the relative pose information provided by visual 
odometry through feature tracking. In general, the second filter representation has 
proven more accurate for platforms including human-mounted systems and 
rough-terrain robots. However, the performance on the Auburn track data was 
worse with the error-state formulation and showed a higher accuracy from the 
constant velocity formulation. This is not surprising, since the vehicle-mounted 
system actually does maintain a smooth velocity over short time frames, 
especially compared with a helmet-mounted system. 

2.1.3 Visual Navigation Data Analysis 
Data was collected at the Auburn test track in rainy conditions on 01/17/2011, and 
analysis of the data is ongoing. RTK position measurements were recorded during these 
data collects. The data was collected from the front stereo cameras at 30Hz, from the 
Cloudcap Crista IMU at 100Hz, and from the Septentrio GPS at 10Hz. The rain caused 
significant blurring in the image, thus decreasing the number of tracked features per 
frame, but this did not cause visual navigation to fail. 
Image samples from front stereo pair. Rain caused image blur and specularities. Fogging of right image was caused by condensation 
between camera CCD and lens. 

 
Figure 1: Rainy images (stereo) using SRI’s Visodo system on the on ramp of the NCAT test track 

 

 
Figure 2: Rainy images (stereo) using SRI’s Visodo system on the NCAT test track 
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Feature tracking on four rand-blurred image sampled.  Even on the most affected images, there are enough features. 

 

 
Figure 3: Images of feature tracking with rain data.  
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The figure below shows Visodo’s position estimates during two laps around the track.  The drift is very evident by the paper clip like 
shape of the position estimates. 

 
Figure 4: Visual Odometry with no GPS updates (local coordinate frame) (meters) 

The figure below shows visual odometry with GPS input but with simulated outages to show the affect of GPS loss on the system.  
The system drifts slightly and is most apparent on the straightaways. 

 
Figure 5: Visual Odometry with GPS input with simulated outages (30%, in 3 chunks) (meters) 
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The figure below shows visual odometry trajectory with GPS input and no outages.  The position estimates line up well with the 
track’s shape. 

 
Figure 6: Visual odometry trajectory with GPS input (UTM coordinate frame) (meters) 

2.2 Penn State Progress 
Following up from previous quarterly reports, Penn State has successfully conducted the 
initial field tests of the terrain-based localization algorithm at Penn State. The algorithm 
performed satisfactorily with tracking being maintained at meter level accuracy during 
the test run. Work is currently underway to create an appropriate terrain map 
representation to increase the algorithm’s functionality to encompass an entire road 
network. The details of the progress since the previous quarterly report and current and 
upcoming work are included in the following sections. 

2.2.1 Real Time Implementation 
Task (2) entails the development of a real-time implementation of the localization 
algorithm. At the time of submission of the previous quarterly report, the Simulink model 
for the algorithm had been tested in an offline environment. During the last quarter, the 
algorithm was implemented in real-time and was tested at the Pennsylvania 
Transportation Institute’s test track. The test vehicle was instrumented to collect 
odometric data through encoders mounted on the wheels, and vehicle attitude data 
through the HG1700 tactical grade IMU. Since one of the aims of the project was to 
demonstrate the ability of the algorithm to work with low-cost commercial grade sensors, 
the attitude data acquired from the HG1700 IMU was corrupted using a noise model 
representative of an XBOW 440 IMU available at Auburn University. The process of 
determining the noise model for the XBOW 440 is documented in the quarterly report 
submitted in April 2010. The test vehicle and instrumentation setup are shown in Figure 8 
and Figure 7. 
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Figure 8 shows the Penn State test vehicle equipped with a GPS receiver on the roof and an encoder mounted on the wheel.  Figure 7 
shows the instrumentation setup including the HG1700 tactical grade IMU. 

 
 
 
At this point, we would like to emphasize that the simulated attitude data received from 
the simulated XBOW varies markedly from the ‘true’ attitude stored in the terrain map. 
Here, the ‘true’ attitude (or in this case ‘true’ pitch) is defined as the attitude measured 
using the tactical-grade HG1700 IMU system. During the test run, the pitch measured 
from the noisy simulated XBOW 440 IMU drifted from the ‘true’ pitch, with the error in 
measurement reaching to values as large as 2 degrees. However, the algorithm continued 
to track the vehicle position with satisfactory performance. The results of the real-time 
tracking are included in Figure 9. In the test run, during which the vehicle traveled 
approximately 1 km, tracking accuracy hovered in the meter level range. 
 
Figure 9 shows the real-time tracking error.  The error begins at 4 meters, peaks at 6 meters, then falls to 0 meters at 20 seconds into 
the run.  The error immediately increases to 3 meters until it falls back to 0 meters at 40 seconds.  The error thenremains at 1 meter 
until the end of the run. 

 
Figure 9: Real-time tracking error.  Vehicle tracking is maintained at meter level accuracy using a 

simulated ‘noisy’ XBOW 440 IMU 

Encoder mounted 
on wheel 

GPS Receiver 
mounted on 
roof 

HG1700 Tactical 
grade IMU

Figure 8: Test vehicle Figure 7: Instrumentation setup 
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2.3 Kapsch TrafficCom Inc. Progress 
The figure below shows the timeline for time of flight ranging.  One vehicle sends a request for acknowledgement.  The base radio 
receives the acknowledgement and sends it back.  In addition to the times of flight for sending and receiving, the receive request and 
send acknowledgement times are included. 

 
Figure 10: Timeline for time of flight ranging 

2.3.1 DSRC Ranging Timeline 
Figure 10 shows the timeline for time of flight ranging using DSRC radios.  Since the 
clocks on the radios are not synced, a two-way time of flight method will be used to 
estimate range.  The vehicle’s radio will measure the overall time of flight and sends a 
message requesting acknowledgement from a base radio.  The vehicle’s radio must also 
start a precise timer when the message is sent.  Ideally, this time will start as soon as the 
message starts to propagate from the radio’s antenna.  The base radio will receive the 
request and then send an acknowledgement.  The turnaround time (tb), or the time it takes 
the base radio to receive the message and send the acknowledgment, must be known in 
order to compute the range between the radios.  Once the vehicle’s radio receives the 
acknowledgement, it will stop the timer.  Ideally the timer will stop as soon as the 
vehicle’s antenna receives the message. 
   

 
 
The vehicle’s receiver measures total time of flight.  The total time is the sum of the 
flight time from the vehicle to the base (ta), the turnaround time at the base station (tb), 
and the flight time from the base back to the vehicle (tc).  If the turnaround time (tb) is 
known, the equation below can be used to estimate the range (r) between the vehicle’s 
radio antenna and the base radio’s antenna. c is the speed of light. 
 

 
 
There are several considerations that must be investigated when using the flight time 
method for ranging.  Most of these concerns center on the necessary precision of the tb 
and ttotal times.  Since these times are multiplied by a large number (the speed of light), an 
inaccuracy in the times will result in a large range estimate.  An error of one microsecond 
(1/100000 of a second) will result in a 300 meter error in range.  The signal traveling at 
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the speed of light will travel approximately one foot every nanosecond; therefore, the 
total flight time (ttotal) and the turnaround time (tb) must be known to at least to the 
nanosecond to result in a range accuracy of one foot. 
 
The DSRC radios have an onboard 1GHz processor.  Theoretically, the processor should 
be able to measure time to the nanosecond because the cycle time of the processor is 1 
nanosecond.  Another issue is error in the total time due to the timer not starting and 
stopping precisely when the message is being sent/received at the antenna, and it may be 
necessary to estimate the time from when the time of flight timer is started and when the 
request message starts to propagate from the antenna.  Similarly, it may also be necessary 
to estimate the time difference from when the acknowledgement is received at the 
antenna and when the time of flight timer is stopped.  Since these time differences are 
based on the receiver’s hardware, they should be constant. 
 
The time it takes the base radio to receive the request and send the acknowledgement 
must also be known to the nanosecond in order to have an accurate range estimate.  One 
method of determining the turnaround time is setting up the antennas at a known range 
and measure the time of flight.  The known range can be used to estimate the turnaround 
time.  The estimated turnaround time can be used as a constant.  This method will require 
that the turnaround time be constant on the nanosecond level.  Due to software processes 
involved in the turnaround time, it is unlikely that this time will be constant to the 
nanosecond.   Another method of determining the turnaround time could involve the base 
radio estimating the turnaround time using its own timer.  This time could then be sent in 
the acknowledgement or another message that is sent right after the acknowledgement.  
The vehicle’s receiver will then have an estimated turnaround time (accurate to the 
nanosecond) to use in the range estimation. 
 
Another issue will be what value is use for the speed of light.  The speed of light is 
299,792,458 meters per second in a vacuum; however, the speed of light is slowed when 
traveling through a medium like air.  The refractive index of a medium is the ratio of the 
speed of light trough the medium and to the speed of light in a vacuum.  There are 
methods on determining the correction to the speed of light through air based on current 
properties of the air like temperature and pressure. 

2.4 Auburn University Progress 

2.4.1 MOOS  
A significant part of a multisensor system is the data collection of each of the individual 
sensors and the ability to quickly change the system for various tests.  Auburn University 
has chosen the MOOS architecture for data recording and playback.  MOOS is a cross 
platform software architecture written in C++ which uses the well known Boost C++ 
libraries.  It uses TCP/IP packets for sending data between the client (sensors) and the 
MOOS database.  The MOOS database is the hub of the MOOS architecture, and all data 
is timestamped and recorded in the database.   
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The figure below shows a Graphical User Interface for the data being saved in the database.  The values corresponding to each 
variable are the most recent values obtained from the sensor.  The red values show that the variable value had recently changed. 

 
Figure 11: MOOS Database GUI Visualization – Novatel and XBOW 

 
The so-called mission files enable the user to choose which sensors to run, how the 
sensors are to be configured, and data to record in the database with only the modification 
of a text file.  This allows for quick inclusion or exclusion of experimental testing out on 
the track without the need for significant software changes.  With a single command line, 
the multiple sensor systems can be launched for recording data or just a single system 
depending on the needs of testing while at the track. 
 
Auburn University has implemented the majority of their sensors into the MOOS 
framework.  All sensors (Novatel, Septentrio, XBOW) as well as the sensors from the 
previous FHWA project (LiDAR and camera lane positioning) have been thoroughly 
tested using the MOOS system.  In addition, pose estimates and covariances from SRI’s 
(formally Sarnoff) Visodo system has been saved in the MOOS database.  Data from 
Kapsch and Penn State’s systems will be interfaced into the MOOS framework as well. 

2.4.2 Integrated Positioning System 
 
The Integrated Positioning System (IPS) will incorporate each system’s output into a 
final positioning solution using an Extended Kalman Filter (EKF). 
 
Time Update 
 
The time update for the IPS system follows the same structure as the well known 
GPS/INS system time update and will not be explained in detail here.  The time update 



Quarterly Report 
2/8/11 

Next Generation Vehicle Positioning Techniques for GPS-Degraded Environments to Support 
Vehicle Safety and Automation Systems 

FHWA BAA DTFH61-09-R-00004 

uses the Inertial Measurement Unit (IMU) to propagate the state vector and state 
covariance matrix forward in time.  Inputs from the IMU are used in the standard 
kinematic equations with integration and determining pose.  For more information see 
[9]. 
 
EKF Measurement Update 
 
An Extended Kalman filter is used to blend the range measurement(s) with other 
available measurements into one solution that has the same update rate as the onboard 
IMU.  The state vector of the Kalman filter (X) is given below: 
 

 
 
The state vector contains estimates of the position, velocity, and attitude of the vehicle 
along with the IMU bias and GPS receiver clock bias/drift.   is a three state vector 
containing the estimated three-dimensional position of the vehicle in the ECEF 
coordinate frame.   is a three state vector containing the estimated three-dimensional 
velocity of the vehicle in the ECEF coordinate frame.   is a three state vector 
containing the estimates for the three Euler angles that describe the attitude of the 
vehicle.  The attitude is expressed in terms of the three necessary rotations to rotate the 
ECEF coordinate frame to align with the body coordinate frame.  The values of  does 
not provide an intuitive view of the attitude of the vehicle.  The conventional roll, pitch, 
and yaw angles can be calculated using the  vector when the location of the vehicle is 

also known ( ).   is a three state vector containing the estimated IMU accelerometer 

biases given in the IMU or body coordinate frame.   is a state vector containing the 

estimated IMU gyro biases also given in the body coordinate frame.   is a two state 

vector containing clock values necessary to use GPS pseudorange and Doppler 
frequencies measurements.  The  is only necessary if these measurements are used; 

therefore, the state vector can consist of 15-17 states depending on the type of GPS 
measurements currently being used. 
 
Ranging Measurement Update 
 
Typically, it takes four observations from four different GPS satellites to maintain 
observability of a traditional navigation filter.  Previous work has shown when using 
vision and a lane map, a traditional navigation filter will still remain operation with only 
two GPS observations.  For this project, we have set out to test the effects of using ranges 
provided by Kapsch from DSRC radios to supplement GPS during times of limited 
satellite visibility.  DSRC ranges can be used to update a navigation filter the same way 
GPS observations are used to update the current filter.  The only difference is when 
dealing with DSRC ranging, there is no need to solve for a receiver clock bias.  Assuming 
vision measurements and a map are available, it is expected that only one DSRC range is 
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needed to maintain an operational navigation filter under a complete GPS block out.   
This is due to the fact that there is no receiver clock bias that needs to be estimated. 
 
The figure below shows a bird’s eye view of the NCAT test track.  Red lines are drawn on the map that represent the lines of sight to a 
typical GPS satellite constellation.  A blue line is drawn to represent a range provide by DSRC. 

 
Figure 12: Typical GPS Satellite Configuration 

 
Figure 12 shows a top down view of the track courteous of Google Earth.  Drawn on the 
map are line of sight vectors to GPS satellites for a typical GPS constellation.  The blue 
line is drawn to represent a DSRC range.   In a situation where no GPS observations are 
available, the navigation filter lacks observability in the axis parallel with the road.  
Ideally, the line of sight vector from the vehicle to the DSRC base station will lie in the 
axis parallel with the road.  This would allow for best observability during a satellite 
failure.  In the figure above, the location of the DSRC base station would provide good 
observability of the axis parallel with the road on the north straightaway. 
 
In order to use the DSRC ranges as measurement updates for the Kalman filter, an 
equation that estimates the range is needed.  The distance formula can be used estimate 
the range between the vehicle and the DSRC base station and is given below: 
 

 
 
This equation is the measurement function and is a function of the first three states of the 
navigation filter ( =[X1 X2 X3]) and the position of the base station ([xb yb zb]) in the 

ECEF coordinate frame.  Subtracting the base station position vector from the estimated 
vehicle position and dividing each element by the estimated range will result in a 
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estimated unit vector that points from the base station to the vehicle ( ).  The elevation 
and azimuth angle between the vehicle and the base station can be computed using the 
unit vector . 
 

 
 
The measurement model matrix (H) is a Jacobian matrix that is the result of taking the 
partial derivative of the measurement equation with respect to each state.  It turns out that 
the three values of the unit vector given above are equal to the first 3 values in the H 
matrix.  The rest of the values are zero as there are no other states in the measurement 
equation. 
 

 
 
The H matrix is an m x n matrix where m is the number of measurements, and n is the 
number of states.  If more than one DSRC range is available, then the unit vector for each 
range can be stacked in the H matrix as follows: 
 

 
 
Road Fingerprinting Measurement Update 
 
Penn State’s road fingerprinting provides a global solution.  When road fingerprinting is 
available, the H matrix is as follows: 
 

 233333333333 00000 xxxxxxIH   

 
where 
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Visual Odometry Measurement Update 
 
SRI’s Visual Odometry (Visodo) provides a global solution with one caveat – the 
solution will drift overtime without GPS corrections.  Visodo gets GPS positions from the 
receiver and automatically updates the global position to correct for drift.  However, if 
GPS cannot update Visodo, the solution will drift.  A drifting measurement in the EKF 
will result in a drifting position estimates.  To prevent this from occurring, Auburn will 
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determine the maximum time that Visodo can provide reasonable position estimates.  
when Visodo global position estimates are available, the H matrix is as follows: 
 

 233333333333 00000 xxxxxxIH   

 
where I3x3 is an identity matrix.  Additional information given by SRI’s Visodo system 
will be incorporated into the filter depending on the amount of drift in the Visodo system. 
 
Measurement Update Gain Calculation 
 
After setting up the measurement models from each sensor (which may occur at separate 
times), the EKF must update the state vector X and the state covariance matrix P.  The R 
matrix is the measurement covariance matrix.  It is m x m diagonal matrix.  The diagonal 
elements of the matrix are set to the expected variance of the error in each measurement. 
 

 
 
The Kalman gain can be calculated using the H and R matrices along with the P matrix.  
The P matrix is the filter’s state covariance matrix.  The equation for the Kalman gain is 
given below: 
 

 
 
The measurement residual vector (  ) is needed to update the state matrix.  This vector 
computed by subtracting a (mx1) vector containing the estimated measurement values 
from a (mx1) vector containing the actual recorded measurement.  The estimated 
measurement values are computed using the equation for ŷ  given above. 
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The state vector is updated using the equation below: 
 

 
 
The state covariance matrix must also be updated using the equation below: 
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3. Future Work 

3.1 SRI Future Work 

3.1.1 Continued data analysis 
Data analysis of recorded data includes comparing visual positioning with and without 
IMU, in different weather conditions, and with different simulated GPS outages and 
degradation. 

3.1.2 Return of sensor package and laptop to Auburn for data 
collection and integration 
Expected time is 2/4/2011. 

3.1.3 Software development 
Development includes: 
- output pose in NED instead of UTM coordinate frame 
- improvement of GPS alignment algorithms. 
 

3.2 Penn State Future Work 
3.2.1 Field testing of real-time implementation 

Additional field tests of the real-time algorithm will be conducted in the present quarter. 
The Simulink model will shortly be made available to our colleagues at Auburn 
University to interface and include into the Integrated Positioning System (IPS).   

3.2.2 Road Network Implementation 

A road network implementation for vehicle will require creating multiple estimators to 
maintain tracking. For instance, when a vehicle crosses an intersection, it can move along 
any one of the various available roads. An estimator would thus be required for each of 
the possible paths taken. Work is currently underway to modify the real-time 
implementation so that the algorithm can work in a road network with multiple estimators 
running simultaneously. Currently, the algorithm is being configured to calculate and 
accept multiple initial conditions to be fed into the multiple estimators. 

3.2.3 Future Plans 
Penn State’s plans for the near future involve rigorous testing of the SPKF algorithm and 
Simulink model in a real-life environment. Additionally, as mentioned earlier, work is 
already underway to incorporate the possibility of road intersections and road networks 
into the algorithm’s functionality. By the next quarterly report, it is expected that the 
algorithm will be tested for a simulated intersection and work would be underway for 
integration of the road network and real-time functionalities of the algorithm. 
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3.3 Kapsch Future Work 
Kapsch will continue to explore strategies for more accurately determining DSRC 
ranging.  In addition, Kapsch is looking for strategies for measuring angle of arrival at 
DSRC base antenna. 
 

3.4 Auburn University Future Work 
Auburn will continue to work with partners to interface and mount the sensors on the test 
vehicle. 

3.4.1 MOOS 
Auburn University will interface the data being sent from Penn State and Kapsch’s 
system with the MOOS framework.  With each sensor available for recording, system 
testing should be significantly easier when the full system is finally tested. 
 
Time synchronization is a difficult problem for any data collection system.  Currently, 
time synchronization has proven to not be a significant problem while using the MOOS 
system.  Auburn University will continue to monitor the time synchronization to ensure 
that faulty timestamps are not a problem in the data collection. 

3.4.2 Integrated Positioning System 
Since each system has not yet been implemented on the test vehicle, Auburn University 
will simulate the performance of the IPS using simulated data of each of the sensors.  
Initial work will use MATLAB for simulation.  When the vehicle is fully implemented, 
the IPS will be written in C++ for cohesion with MOOS. 
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