

Auburn's Next Generation Vehicle Positioning

Principal Investigator David M. Bevly <u>dmbevly@eng.auburn.edu</u>

Researchers Jordan Britt, Scott Martin, Chris Rose

GPS and Vehicle Dynamics Lab Auburn University

- Objective Provide ubiquitous precise positioning supporting vehicle safety and automation in presence of GPS degradation
- Partners Auburn University, Kapsch TrafficCom, Penn State University, Stanford Research Institute
 - Automotive Advisory Panel
- Project Scope Assess diverse positioning and datafusion techniques, characterize achievable accuracy and robustness, test and demonstrate capabilities on test track and roadway scenarios

Presentation Overview

- Technical Approach
- Subsystem Overview & Evaluation
- Integration Overview
- Testing Results: Detroit
- Testing Results: NCAT
- Testing Results: Turner Fairbank
- Conclusions & Future Work

Technical Approach

 Technical Approach – Fuse outputs of various positioning technologies in an extended Kalman filter exploiting accuracy/uncertainty and mitigating subsystem faults

Subsystem Analysis Criteria

- Cost
- Availability
 - Nea<mark>r term</mark>
 - Long term
- Six DOF Position
- Three DOF Position
- Drifting Solution
- Infrastructure
 Requirement

- Map Requirement
- CPU Requirement
 - Minimal
 - Intensive
- Environmental Influences
 - Foliage
 - Urban Canyons
 - Weather
 - Lighting

GPS / INS Navigation

- GPS provides global position solution anywhere there is clear line of sight to four or more SV
- IMUs output at high rates
- Inertial measurements are used to smooth jumps in GPS positions
- IMUs can be used to dead reckon during a GPS outage
- INS solution degrade with time but are corrected by GPS
- GPS fault detection improved by INS solution

- Achievable standalone positioning accuracy limited to standard deviation on the order of meters
- INS solution drifts unbounded in GPS denied environments (heavy foliage, urban canyons)

Subsystem Capability Analysis Matrix

UNIVERSITY

		Cost	Current Availability	Six DOF Position	Three DOF Position	Drifting Solution	Infrastructure Requirement	Map Requirement	CPU Requirement	Environmental Influences
C	GPS	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
I	NS	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Whee	el Speed	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
PSU Finger	I-Road rprinting									
AU-	Lidar									
LDW	Camera									
SRI- Odc	Visual metry									
Ka Ga	psch- antry									
 No concern, current system capabilities not affected by criterion 										
	 Some concern, criterion may limit implementation or capability 									
	×	Cri	terion ca	nnot be	overcor	ne with	out additio	nal subsys	tems	

PSU – Road Fingerprinting

- Concept Use pitch gyro, wheel odometry, and map of pitch signal from previous road survey for positioning.
 - Map created by driving with high grade IMU and RTK GPS
- Hardware Pitch gyro, wheel encoders
 - Mostly on current automobiles
- Incentive: Continuous availability (provided road is mapped)
- Disadvantages arduous survey process (large amounts of data)

PSU – Road Fingerprinting

- Results Average error compared to RTK GPS approximately 0.75 - 1m
- Lane level accuracy (horizontal error < 1.5m) over 80% of time on average

Subsystem Capability Analysis Matrix

UNIVERSITY

		Cost	Current Availability	Six DOF Position	Three DOF Position	Drifting Solution	Infrastructure Requirement	Map Requirement	CPU Requirement	Environmental Influences
(GPS	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	INS	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Whe	el Speed	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
PSL Finge	J-Road rprinting	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AU-	Lidar									
LDW	Camera									
SRI- Odo	-Visual ometry									
Ka G;	psch- antry									
1.										
 No concern, current system capabilities not affected by criterion 										
	 ✓ Some concern, criterion may limit implementation or capability 									
	×	Cri	terion ca	nnot be	overcor	ne with	out additio	nal subsys	tems	

• If combined with map, it will provide additional lateral position accuracy.

Increases lane level positioning

Need to know which lane vehicle is in

- Sensor already on some vehicles
- Typically provide high coverage for low cost
- Wanted to compare different types of LDW sensors

Lidar Base Lane Detection Premise

- Lane Markings are more reflective than road surface
- Detect Peaks in reflectivity
- Analyze results for various weather and road conditions

Lidar Base Lane Detection Overview

- **Bound Scan Data**
- Find minimum RMS error to model
- Check for false positive

	Scena	ario	MAE (m)	MSE(m)	$\sigma_{ m error}$ (m)	%Det	
	Noon	Weaving	0.1818	0.1108	0.3076	98	
	Dusk -	45mph	0.0967	0.0176	0.1245	100	
	Rain (M		0.1046	0.0177	0.1314	65	
	Low b	eam Night	0.0966	0.0159	0.1215	99	
	v	Avg. Lane Vidth Error (m)	Std of Error (m)	Detection (%)	Ê 1	Lane Position	
Highway		0.075	0.233	94.7	o enter	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Yellow & White		0.042	0.272	81.7	Ŭ E Lou L		
Gravel o Surfa <mark>c</mark> e	'n	0.129	0.215	97.4	-2-	'	
Gras <mark>s</mark> Borderin	g	0.169	0.329	76.86		50 100 15 Time(s)	

- Utilize both distance and reflectivity estimation
- Use a derivative filter to accentuate changes in height or reflectivity
- Select peaks based on a dynamic threshold based on the current road
- Bound, filter, and compare height and reflectivity results before reporting a result

Road Edge Detection Results

- Tested on County Roads with no outside lane markings
- Day and Night testing
- Data was Post Processed
- Errors are derived from estimating lane width

	Average Error	Std of Error	% Detection
Day	7.6cm / 3in	16.1cm / 6.3in	88.5%
Night	6.7cm / 2.6in	0.13.8cm / 5.5in	91.5%

Subsystem Capability Analysis Matrix

UNIVERSITY

		Cost	Current Availability	Six DOF Position	Three DOF Position	Drifting Solution	Infrastructure Requirement	Map Requirement	CPU Requirement	Environmental Influences
C	GPS	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
I	NS	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Whee	el Speed	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
PSU Finger	-Road printing	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AU-	Lidar	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LDW	Camera									
SRI- Odc	Visual metry									
Ka Ga	psch- antry									
	 No concern, current system capabilities not affected by criterion 									
	√	So	me conce	ern, crit	erion ma	ay limit i	implementa	ation or cap	oability	
	×	Cri	terion ca	nnot be	overcor	ne with	out additio	nal subsys	tems	

Camera Lane Detection

Thresholding / Edge Detection

- Hough Transform
- Least Squares Interpolation
 - Interpolate 2nd order polynomial as model for lane
- Kalman filter
 - states are the coefficients of the polynomial
- Polynomial Bounds
 - Lines for subsequent frames lie within polynomial boundary curves
 - Lane line checking

Performance in Difficult Environments

Samuel Ginn College of Engineering

0.9

0.1808

0.1947

0.4801

% Detection

- How do humans determine drivable regions?
 - Color (asphalt vs. grass)
- With a sample of current road surface, the road in the image can be found
- Correlation matching with a sliding window is used to determine a metric for how similar a point in the image is compared with the template

Sample (or template) of road

Correlation matching (Normalized) – handles varying lighting

- Thresholding and Canny edge detection
 - Extract the road edges
- Pick out road edges with conditions to reduce erroneous detections
 - Local area
 - Reduces impact of branching roads, driveways, etc.
 - Distance (in pixels) between road edges must be within a threshold of expected lane width
 - Reduces impact of consistent erroneous measurements

Sample (or template) of road

Road edge local area

Lane width threshold

- Kalman Filter
 - 2 states: left and right road edge column location
 - Further reduces impact of erroneous lane measurements from shadows, vehicles, degraded road edge, etc.
 - Actual lane width calculated using precalibrated scale factor

Marked Ideal Image

Marked Unideal Image Dusk with Heavy Shadows

Red: road surface Green dot: road edge measurement Red dot: no measurement Black circle: road edge estimate (from filter) Blue rectangle: template (5x5)

- Testing
 - Webcam at low resolution: 240x100 pixels
 - Road width measurement taken far down the road
 - Day and Night
 - Error Sources
 - Tree Shadows (especially at dusk)
 - Headlights (template match problems due to headlight illuminating the road ahead)
 - Driveways, road intersections
- Mean estimates over the course of the run were compared with a physical measurement at the start of the test run

Error	County Road 84	County Road 188	Miss James Road
Day- Average Error	.0706 m	.1043 m	.1704 m
Day- Std. Dev.	.2191 m	.1638 m	.2972 m
Night- Average Error	.0720 m	.1384 m	.0667 m
Night- Std. Dev.	.2780 m	.2253 m	.1574 m

Subsystem Capability Analysis Matrix

UNIVERSITY

		Cost	Current Availability	Six DOF Position	Three DOF Position	Drifting Solution	Infrastructure Requirement	Map Requirement	CPU Requirement	Environmental Influences
Ċ	GPS	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
I	NS	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Whee	l Speed	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
PSU Finger	-Road printing	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AU-	Lidar	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LDW	Camera	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SRI- Odo	Visual metry									
Kar Ga	osch- Intry									
 No concern, current system capabilities not affected by criterion 										
	 Some concern, criterion may limit implementation or capability 									
	×	Cri	terion ca	nnot be	overcor	ne with	out additio	nal subsys	tems	

SRI – Visual Odometry

- Concept Track features image to image and extract ego motion
- Provides local odometry without GPS initialization

Tracking features over 3 frames before and after pruning and outlier rejection

Visual odometry concept

Samuel Ginn College of Engineering

SRI – Sensor Mount

Components:

- Cameras (2) Allied Vision Prosilica GC1380
 - GigaBit Ethernet interface
 - 640x480 (after 2x2 binning) x 30 fps,
 - Sony ICX285 CCD, monochrome
- Lenses (2) Kowa LM6JC
 - 6.0 mm/F1.4
- IMU (1) CloudCap Crista
 - 100 Hz operation, 10x oversampling
- Ethernet hub (1) Netgear GS105NA
 - 5 RJ45 ports
 - Jumbo frame support to 9720 bytes
- Cabling and connectors
 - Weather proof RJ45 connectors
 - Shielded CAT6 cable
 - Mil-style 10 pin connectors
- Computer (1) AVA Direct Clevo D900F
 - Intel quadcore i7, 3.33 GHz

Results in Inclement Weather

- Data collection in the rain (1/17) showed expected effect – lenses covered with water droplets.
- Feature tracking and positioning remained functional
- Droplets were cleared by moving air once vehicle reached higher speeds (over 30mph)
- Hoods overhanging the lenses may be sufficient for reducing the effects of both water and sun glare.

Results with GPS Degradation at 50 mph

Subsystem Capability Analysis Matrix

UNIVERSITY

		Cost	Current Availability	Six DOF Position	Three DOF Position	Drifting Solution	Infrastructure Requirement	Map Requirement	CPU Requirement	Environmental Influences
(GPS	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	INS	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Whee	el Speed	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
PSL Finge	J-Road rprinting	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AU-	Lidar	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LDW	Camera	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SRI- Odo	-Visual ometry	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ka Ga	psch- antry									
					_					
	 No concern, current system capabilities not affected by criterion 									
	 Some concern, criterion may limit implementation or capability 									
	×	Cri	terion ca	nnot be	overcor	ne with	out additio	nal subsys	tems	

Kapsch TrafficCom – DSRC ranging

- Initial plan: estimate range based on turnaround time for unsynchronized clocks
 - 1 microsecond error-> 300 meters of range error: for 1 foot range error, 1 nanosecond precision is required
- Project hardware was not capable of lane level precision
- Sensor may still provide some information if nothing else is available

Kapsch TrafficCom – DSRC ranging

- Data was collected at the NCAT test track to collect time of flight between:
 - Kapsch radio base station
 - Auburn vehicle
- Variation in time of flight measurements was not sufficient for lane level measurements

Dynamic testing at 35-100 meters

Kapsch – TrafficCom

- Gantry based transceiver communicates with on-board transponder
- Vehicle position estimated in lane while vehicle in communication zone

Subsystem Capability Analysis Matrix

UNIVERSITY

		Cost	Current Availability	Six DOF Position	Three DOF Position	Drifting Solution	Infrastructure Requirement	Map Requirement	CPU Requirement	Environmental Influences
	GPS	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	INS	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Whe	el Speed	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
PS Finge	J-Road printing	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AU-	Lidar	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LDW	Camera	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SR Od	-Visual ometry	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ka G	apsch- antry	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	✓ No concern, current system capabilities not affected by criterion									
	✓	So	me conce	ern, crit	erion ma	ay limit	implementa	ation or cap	oability	

Criterion cannot be overcome without additional subsystems

X

Data Fusion Block Diagram

- Subsystems are currently fused in extended Kalman Filter implementation
- 18 states are propagated using nonlinear dynamic relationship and IMU measurements
- Additional subsystems correct INS solution as measurements become available

Data Fusion

 Subsystems provide positioning information in load or global navigation frames as well as estimates of output uncertainties

Subsystems	Inputs	Outputs
INS navigation processor	Body frame accelerations and angular rates	Navigation frame accelerations and angular rates (bias corrected)
GPS processor	RF signals for SV	Range/Range Rates Positions/Velocities
Camera LDW processor	Raw image	Lateral lane position
Lidar LDW processor	Distance and reflectivity	Lateral lane position
Fingerprint processor	Pitch rate and wheel speed	Navigation frame position
Visual Odometry processor	Raw image from two cameras, internal IMU, and GPS positions	Navigation frame position

Integration Testing (Detroit)

- Test route developed by Honda to meet road-use class proportioning found by FHWA
- Environments included trees, tree canopies, overpasses, buildings, urban canyons, and tunnels

			I	eatures			
Env	ironment	Terrain	Vegetation	Buildings	Overpasses	Tunnels	
	Open	flat or mildly	almostnone	almost none	none	none	
_	Sparse	mask < 5°	scattered trees	rare, low, far	none	none	
Rura	Moderate	mountains masking 5-20°	some tree canopies	some low	maybe but rare		
	Dense	mountains mask 20-60*	dominant tree canopies	nt tree obstructions although there co long tunnel			
u	Sparse	usually flator	scattered trees	some, low or far	none	none	
P ⁴	Moderate	mildly undulating with	moderate	multi-story, rare high-rises	some	rare	
	Dense	mask < 5	numper, some short canopies	dominanthigh- rise canyons	frequent	long	

Methodology (Detroit)

- Sensor combinations
 - Reduced inertial system, L1 GPS, wheel speeds
 - 6 DOF MEMS IMU, L1/L2 GPS, wheel speeds
 - 6 DOF MEMS IMU, L1/L2 GPS, wheel speeds, vision and map based lateral positions
- Extended Kalman filter implementation
- Estimated position, velocity, and attitude of vehicle
- Integrated vision information using low resolution map developed using Google Earth

Productio	on or Near-Produc	tion Grade	Bey	ond Production	Grade	Reference System			
Туре	Model	Rate (Hz)	Туре	Model	Rate (Hz)	Туре	Model	Rate (Hz)	
GPS	Novatel Propak V3 (L1 only)	5	GPS	Novatel Propak V3 (L1 and L2)	5	GPS	NovAtel SPAN- SE	5	
Wheel Speed	From in vehicle CAN network	50	IMU	Crossbow IMU 440, full	100	IMU	Honeywell HG1700 AG58	100	
RISS	Crossbow IMU 440, reduced	100	Lidar	Ibeo Alasca XT	10	External encoder	Peiseler MT1000	Speed dependent	
Camera	Camera Logitech Quickcam 9000					DGPS	Differential GPS s calculated post-p	solution was rocess	

Results (Detroit)

- GPS/INS provided improved results over standalone GPS particularly in heavy foliage and urban canyon environments
- Vision updates provided improvements where the lane of travel was assumed to be known (4 and 2 percentage point improvement in availability of lane level accuracy)

Device	Horizontal Error (m)		% < 1.5 m		% < 5 m	
Propak_R3	2.9		46.7		88.8	
GPS_INS_R3	2		59.8		95.5	
Propak Overall	2.6		41.8		88.4	
GPS_INS Overall	2.2 49.2		0.2	94.3		
Devies	Environment					
Device	Open	Ok	Trees	Canyon	All	
Propak All Runs (%<1.5m)	67	49	33	14	42	
GPS_INS All Runs (%<1.5m)	74	56	40	18	49	
Precentage of Test Route	4	54	15	8	100	

Samuel Ginn College of Engineering

Observations (Detroit)

- Subsystem integration improved positioning accuracy as expected but limited by map/survey accuracy/availability
- Identified limitation of road fingerprinting and visual odometry systems
- Need lane detection algorithm leveraging new road edge detection methods and/or inertial information

Integration Testing (NCAT)

- Nation Center for Asphalt Technology
 - 1.7 mile oval
 - RTK GPS Survey of lane markings and lane centers
 - Fingerprint Survey
- RTK Base Station
 - Wireless comm.

Methodology (NCAT)

- Subsystems Operational
 - 6 DOF MEMS IMU
 - L1/L2 GPS
 - Vehicle CAN
 - AU-LDW (Camera, Lidar)
 - PSU Fingerprinting
- Estimated position, velocity, and attitude of vehicle
- Integrated vision/fingerprinting information using high accuracy map/survey of test track
- Four data sets of several laps over three days
- Speeds ranging from 5 to 55 mph

Results (NCAT)

- GPS/INS accuracy dependent on GPS
- Vision and Fingerprinting integration results in consistent improvement in horizontal errors

GPS GPS/INS Full Sys Reference

Horizontal Error (m)									
	Run 1	Run 2	Run 3	Run 4	Average				
GPS	1.61	1.98	1.79	1.60	1.75				
GPS/INS	1.60	1.96	1.70	1.61	1.72				
Full Sys	1.10	1.07	1.00	0.93	1.03				

mage USDA Farm Service Agency © 2012 Google

Imagery Date: 7/31/2011 32°35'42.45" N 85°18'27.10" W elev 194 m eye alt 325 m 🔿

- Lane level accuracy improves significantly with vision and fingerprint aiding
- Filter memory limits affects GPS/INS solution

Testing (Turner/Fairbank)

- Data was collected in the Turner/ Fairbank driveways
- Novatel base station provided RTK corrections
- Satellite visibility degraded in some areas

Results (Turner/Fairbank)

- RTK accuracy for reference solution was intermittent (55 % of run on average)
- Limited precision of fingerprinting survey
- Lane level accuracy best with GPS/INS due to error correlation

Samuel Ginn College of Engineering

Positioning Visualization

- Real time display of positions from multiple sensors
 Error ellipse & pose history
- · Endleinpse & pose history
- Easily import map data points

Positioning Visualization

• See Videos

- Addition of Subsystems help improve lane level accuracy
- Continued testing needed to assess system robustness

- Onsite Demo Dec 10
- Automotive Panel invited
 - VW, Trimble, Volvo truck confirmed.