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Project Overview 

•  Objective – Provide ubiquitous precise positioning 
supporting vehicle safety and automation in presence of 
GPS degradation 

•  Partners – Auburn University, Kapsch TrafficCom, Penn 
State University, Stanford Research Institute 
–  Automotive Advisory Panel 

•  Project Scope – Assess diverse positioning and data-
fusion techniques, characterize achievable accuracy and 
robustness,  test and demonstrate capabilities on test 
track and roadway scenarios 
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Presentation Overview 

•  Technical Approach 
•  Subsystem Overview & Evaluation 
•  Integration Overview 
•  Testing Results: Detroit 
•  Testing Results: NCAT 
•  Testing Results: Turner Fairbank 
•  Conclusions & Future Work 
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Technical Approach 

•  Technical Approach – Fuse outputs of various 
positioning technologies in an extended Kalman filter 
exploiting accuracy/uncertainty and mitigating subsystem 
faults 

  

Camera – Lateral Position 

Limited GPS 

Lidar – Lateral Position 

DRSC – Ranging 

Visual Odometry 

Longitudinal Position 

Fusion 
Algorithm 

Position, Velocity, Attitude 
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Subsystem Analysis Criteria 

•  Cost 
•  Availability 

–  Near term 
–  Long term 

•  Six DOF Position 
•  Three DOF Position 
•  Drifting Solution 
•  Infrastructure 

Requirement 

•  Map Requirement 
•  CPU Requirement 

–  Minimal 
–  Intensive 

•  Environmental 
Influences 
–  Foliage 
–  Urban Canyons 
–  Weather 
–  Lighting 
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GPS / INS Navigation 
•  GPS provides global position solution anywhere there is clear line of 

sight to four or more SV 
•  IMUs output at high rates 
•  Inertial measurements are used to smooth jumps in GPS positions 
•  IMUs can be used to dead reckon during a GPS outage 
•  INS solution degrade with time but are corrected by GPS 
•  GPS fault detection improved by INS solution 
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GPS / INS Limitations 

•  Achievable standalone positioning 
accuracy limited to standard deviation on 
the order of meters 
 

•  INS solution drifts unbounded in GPS 
denied environments (heavy foliage, urban 
canyons) 
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Subsystem Capability Analysis Matrix 

	  	   Cost	   Current	  
Availability	  

Six	  DOF	  
Posi7on	  

Three	  DOF	  
Posi7on	  

Dri:ing	  
Solu7on	  

Infrastructure	  
Requirement	  

Map	  
Requirement	  

CPU	  
Requirement	  

Environmental	  
Influences	  

GPS	   ü ü û ü ü ü ü ü ü 
INS	   ü ü ü ü û ü ü ü ü 

Wheel	  Speed	   ü ü û ü û ü ü ü ü 
PSU-‐Road	  

Fingerprin7ng	  

AU-‐
LDW	  

Lidar	  

Camera	  

SRI-‐Visual	  
Odometry	  
Kapsch-‐
Gantry	  

ü No concern, current system capabilities not affected by criterion  

ü Some concern, criterion may limit implementation or capability 

û Criterion cannot be overcome without additional subsystems 
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PSU – Road Fingerprinting 

•  Concept – Use pitch gyro, wheel odometry, and 
map of pitch signal from previous road survey for 
positioning. 
–  Map created by driving with high grade IMU and RTK 

GPS 
•  Hardware – Pitch gyro, wheel encoders 

–  Mostly on current automobiles 

•  Incentive: Continuous availability (provided road 
is mapped) 

•  Disadvantages arduous survey process (large 
amounts of data)  
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PSU – Road Fingerprinting 

•  Results – Average error compared to RTK GPS 
approximately 0.75 - 1m 

•  Lane level accuracy (horizontal error < 1.5m) over 80% 
of time on average 

•  Lack Road Network 
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Subsystem Capability Analysis Matrix 

	  	   Cost	   Current	  
Availability	  

Six	  DOF	  
Posi7on	  

Three	  DOF	  
Posi7on	  

Dri:ing	  
Solu7on	  

Infrastructure	  
Requirement	  

Map	  
Requirement	  

CPU	  
Requirement	  

Environmental	  
Influences	  

GPS	   ü ü û ü ü ü ü ü ü 
INS	   ü ü ü ü û ü ü ü ü 

Wheel	  Speed	   ü ü û ü û ü ü ü ü 
PSU-‐Road	  

Fingerprin7ng	   ü ü û ü ü ü ü ü ü 

AU-‐
LDW	  

Lidar	  

Camera	  

SRI-‐Visual	  
Odometry	  
Kapsch-‐
Gantry	  

ü No concern, current system capabilities not affected by criterion  

ü Some concern, criterion may limit implementation or capability 

û Criterion cannot be overcome without additional subsystems 
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Why Lane Detection? 

•  If combined with map, it will provide 
additional lateral position accuracy. 
–  Increases lane level positioning 
– Need to know which lane vehicle is in 

•  Sensor already on some vehicles 
•  Typically provide high coverage for low 

cost 
•  Wanted to compare different types of LDW 

sensors  
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Lidar Base Lane Detection Premise 

•  Lane Markings are more reflective 
than road surface 

•  Detect Peaks in reflectivity 
•  Analyze results for various weather 

and road conditions 
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Lidar Base Lane Detection Overview 

•  Bound Scan Data  
•  Find minimum RMS error to model 
•  Check for false positive 
•  Filter data and weighted averaging 
•  Final Position 
 



Samuel Ginn College of Engineering 

Lidar Base Lane Detection Results 

Scenario MAE (m) MSE(m) σerror  (m)  %Det 
Noon Weaving 0.1818 0.1108 0.3076 98 
Dusk 45mph 0.0967 0.0176 0.1245 100 
Rain (Medium) 0.1046 0.0177 0.1314 65 
Low beam Night 0.0966 0.0159 0.1215 99 

Avg. Lane 
Width Error 

(m) 

Std of 
Error (m) 

Detection 
(%) 

Highway 0.075 0.233 94.7 
Yellow & 
White 

0.042 0.272 81.7 

Gravel on 
Surface 

0.129 0.215 97.4 

Grass 
Bordering 

0.169 0.329 76.86 
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Lidar Based Road Edge Detection 

•  Utilize both distance and reflectivity 
estimation 

•  Use a derivative filter to accentuate 
changes in height or reflectivity 

•  Select peaks based on a dynamic 
threshold based on the current road 

•  Bound, filter, and compare height and 
reflectivity results before reporting a result  
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Road Edge Detection Results 

•  Tested on County Roads with no outside 
lane markings  

•  Day and Night testing 
•  Data was Post Processed 
•  Errors are derived from estimating lane 

width 

Average Error Std of Error  % Detection 
Day 7.6cm / 3in 16.1cm / 6.3in 88.5% 

Night 6.7cm / 2.6in 0.13.8cm / 5.5in 91.5% 
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Subsystem Capability Analysis Matrix 

	  	   Cost	   Current	  
Availability	  

Six	  DOF	  
Posi7on	  

Three	  DOF	  
Posi7on	  

Dri:ing	  
Solu7on	  

Infrastructure	  
Requirement	  

Map	  
Requirement	  

CPU	  
Requirement	  

Environmental	  
Influences	  

GPS	   ü ü û ü ü ü ü ü ü 
INS	   ü ü ü ü û ü ü ü ü 

Wheel	  Speed	   ü ü û ü û ü ü ü ü 
PSU-‐Road	  

Fingerprin7ng	   ü ü û ü ü ü ü ü ü 

AU-‐
LDW	  

Lidar	   ü ü û ü ü ü ü ü ü 
Camera	  

SRI-‐Visual	  
Odometry	  
Kapsch-‐
Gantry	  

ü No concern, current system capabilities not affected by criterion  

ü Some concern, criterion may limit implementation or capability 

û Criterion cannot be overcome without additional subsystems 
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Camera Lane Detection 

 
•  Thresholding / Edge Detection 
•  Hough Transform 
•  Least Squares Interpolation 

–  Interpolate 2nd order polynomial as model for lane 
•  Kalman filter 

–  states are the coefficients of the polynomial 

•  Polynomial Bounds 
–  Lines for subsequent frames lie within polynomial boundary curves 
–  Lane line checking 
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Performance in Difficult Environments 

Dusk Night Rain Dusk Rain Night 

Average Absolute Error (m) 0.2379 0.0307 0.0327 0.0512 

RMS Error(m) 0.4214 0.0401 0.094 0.1253 

std of Error 0.3526 0.0402 0.0887 0.1149 

var of Error 0.1243 0.0016 0.0079 0.0132 

% Detection 0.4801 0.9 0.1808 0.1947 
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Camera Road Edge Detection 

•  How do humans determine drivable regions? 
–  Color (asphalt vs. grass) 

•  With a sample of current road surface, the road in the image can be found 
•  Correlation matching with a sliding window is used to determine a metric for 

how similar a point in the image is compared with the template 

Sample (or template) of road 
Original Image 

Correlation matching 
(Unnormalized) 

Correlation matching 
(Normalized) – handles varying lighting 
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Camera Road Edge Detection 

•  Thresholding and Canny edge detection 
–  Extract the road edges 

•  Pick out road edges with conditions to reduce erroneous detections 
–  Local area 

•  Reduces impact of branching roads, driveways, etc. 
–  Distance (in pixels) between road edges must be within a threshold of 

expected lane width 
•  Reduces impact of consistent erroneous measurements  

Edge Map 

Road edge local area 

Lane width threshold 

Sample (or template) of road 
Original Image 
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Camera Road Edge Detection 

•  Kalman Filter 
–  2 states: left and right road edge column location 
–  Further reduces impact of erroneous lane measurements from 

shadows, vehicles, degraded road edge, etc. 
–  Actual lane width calculated using precalibrated scale factor 

 
Marked Ideal Image 

Red: road surface 
Green dot: road edge measurement 
Red dot: no measurement 
Black circle: road edge estimate (from filter) 
Blue rectangle: template (5x5) 

Marked Unideal Image  
Dusk with Heavy Shadows 
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Camera Road Edge Detection 

•  Testing 
–  Webcam at low resolution: 240x100 pixels 
–  Road width measurement taken far down the road 
–  Day and Night 
–  Error Sources 

•  Tree Shadows (especially at dusk) 
•  Headlights (template match problems due to headlight illuminating the road ahead) 
•  Driveways, road intersections 

•  Mean estimates over the course of the run were compared with a physical 
measurement at the start of the test run 

 

Error County Road 84 County Road 188 Miss James 
Road 

Day- Average 
Error 

.0706 m .1043 m .1704 m 

Day- Std. Dev. .2191 m .1638 m .2972 m 
Night- Average 
Error 

.0720 m .1384 m .0667 m 

Night- Std. Dev. .2780 m .2253 m .1574 m 
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Subsystem Capability Analysis Matrix 

	  	   Cost	   Current	  
Availability	  

Six	  DOF	  
Posi7on	  

Three	  DOF	  
Posi7on	  

Dri:ing	  
Solu7on	  

Infrastructure	  
Requirement	  

Map	  
Requirement	  

CPU	  
Requirement	  

Environmental	  
Influences	  

GPS	   ü ü û ü ü ü ü ü ü 
INS	   ü ü ü ü û ü ü ü ü 

Wheel	  Speed	   ü ü û ü û ü ü ü ü 
PSU-‐Road	  

Fingerprin7ng	   ü ü û ü ü ü ü ü ü 

AU-‐
LDW	  

Lidar	   ü ü û ü ü ü ü ü ü 
Camera	   ü ü û ü ü ü ü ü ü 

SRI-‐Visual	  
Odometry	  
Kapsch-‐
Gantry	  

ü No concern, current system capabilities not affected by criterion  

ü Some concern, criterion may limit implementation or capability 

û Criterion cannot be overcome without additional subsystems 
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SRI – Visual Odometry 

•  Concept – Track features 
image to image and extract 
ego motion 

•  Provides local odometry 
without GPS initialization 

Visual odometry concept 
Tracking features over 3 frames before 
and after pruning and outlier rejection 
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Components: 
•  Cameras (2) - Allied Vision Prosilica GC1380 

–  GigaBit Ethernet interface 
–  640x480 (after 2x2 binning) x 30 fps,  
–  Sony ICX285 CCD, monochrome 

•  Lenses (2) - Kowa LM6JC  
–  6.0 mm/F1.4 

•  IMU (1) – CloudCap Crista 
–  100 Hz operation, 10x oversampling 

•  Ethernet hub (1) – Netgear GS105NA 
–  5 RJ45 ports 
–  Jumbo frame support to 9720 bytes 

•  Cabling and connectors 
–  Weather proof RJ45 connectors 
–  Shielded CAT6 cable 
–  Mil-style 10 pin connectors 

•  Computer (1) – AVA Direct Clevo D900F 
–  Intel quadcore i7, 3.33 GHz 

SRI – Sensor Mount 
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Results in Inclement Weather 

•  Data collection in the rain (1/17) showed 
expected effect – lenses covered with water 
droplets. 
•  Feature tracking and positioning remained 
functional 
•  Droplets were cleared by moving air once vehicle 
reached higher speeds (over 30mph) 
•  Hoods overhanging the lenses may be sufficient 
for reducing the effects of both water and sun 
glare. 
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Results with GPS Degradation at 50 mph 

drift: total 1.415m, mean 2.857m  
(over 4305 m traveled distance) 

drift: total 9.629m, mean 9.258m  
(over 4305 m traveled distance) 

drift: total 21.83m, mean 60.56m  
(over 4305 m traveled distance) 

drift: total 2.419m, mean 4.981m  
(over 4305 m traveled distance) 
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Subsystem Capability Analysis Matrix 

	  	   Cost	   Current	  
Availability	  

Six	  DOF	  
Posi7on	  

Three	  DOF	  
Posi7on	  

Dri:ing	  
Solu7on	  

Infrastructure	  
Requirement	  

Map	  
Requirement	  

CPU	  
Requirement	  

Environmental	  
Influences	  

GPS	   ü ü û ü ü ü ü ü ü 
INS	   ü ü ü ü û ü ü ü ü 

Wheel	  Speed	   ü ü û ü û ü ü ü ü 
PSU-‐Road	  

Fingerprin7ng	   ü ü û ü ü ü ü ü ü 

AU-‐
LDW	  

Lidar	   ü ü û ü ü ü ü ü ü 
Camera	   ü ü û ü ü ü ü ü ü 

SRI-‐Visual	  
Odometry	   ü ü ü ü ü ü ü ü ü 
Kapsch-‐
Gantry	  

ü No concern, current system capabilities not affected by criterion  

ü Some concern, criterion may limit implementation or capability 

û Criterion cannot be overcome without additional subsystems 
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Kapsch TrafficCom – DSRC ranging 
•  Initial plan: estimate range based on turnaround time for 

unsynchronized clocks 
–  1 microsecond error-> 300 meters of range error: for 1 foot range 

error, 1 nanosecond precision is required 
•  Project hardware was not capable of lane level precision 
•  Sensor may still provide some information if nothing else is 

available 

!
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Kapsch TrafficCom – DSRC ranging 
•  Data was collected at the NCAT test track to collect time of 

flight between: 
–  Kapsch radio base station 
–  Auburn vehicle 

•  Variation in time of flight measurements was not sufficient for 
lane level measurements 
 

Static testing at 63 meters  Dynamic testing at 35-100 meters 
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Kapsch – TrafficCom 

•  Gantry based transceiver communicates with on-board 
transponder 

•  Vehicle position estimated in lane while vehicle in 
communication zone 

Kapsch TrafficCom Lane Level Localization*  

*Image From Kapsch TrafficCom 
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Subsystem Capability Analysis Matrix 

	  	   Cost	   Current	  
Availability	  

Six	  DOF	  
Posi7on	  

Three	  DOF	  
Posi7on	  

Dri:ing	  
Solu7on	  

Infrastructure	  
Requirement	  

Map	  
Requirement	  

CPU	  
Requirement	  

Environmental	  
Influences	  

GPS	   ü ü û ü ü ü ü ü ü 
INS	   ü ü ü ü û ü ü ü ü 

Wheel	  Speed	   ü ü û ü û ü ü ü ü 
PSU-‐Road	  

Fingerprin7ng	   ü ü û ü ü ü ü ü ü 

AU-‐
LDW	  

Lidar	   ü ü û ü ü ü ü ü ü 
Camera	   ü ü û ü ü ü ü ü ü 

SRI-‐Visual	  
Odometry	   ü ü ü ü ü ü ü ü ü 
Kapsch-‐
Gantry	   ü ü û ü ü ü ü ü ü 

ü No concern, current system capabilities not affected by criterion  

ü Some concern, criterion may limit implementation or capability 

û Criterion cannot be overcome without additional subsystems 
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Data Fusion Block Diagram 
•  Subsystems are currently fused in extended Kalman Filter implementation 
•  18 states are propagated using nonlinear dynamic relationship and IMU 

measurements 
•  Additional subsystems correct INS solution as measurements become 

available 

INS Nav 
Processor 

Range/Pos 
Processor 

LDW 
Processor 

LDW 
Processor 

Fingerprint 
Processor 

VIS OD 
Processor 

GPS Camera Lidar 

State/Cov 
Correction 

CAN 

CAN 

INS 

Stereo Camera 

State/Cov 
Propagation 

PVT 
Attitude 

Sensors 
Preprocessor 
Extended KF 
Outputs 
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Data Fusion 

Subsystems Inputs Outputs 
INS navigation processor Body frame 

accelerations and 
angular rates 

Navigation frame 
accelerations and 
angular rates (bias 
corrected) 

GPS processor RF signals for SV Range/Range Rates 
Positions/Velocities 

Camera LDW processor Raw image Lateral lane position 
Lidar LDW processor Distance and reflectivity Lateral lane position 
Fingerprint processor Pitch rate and wheel 

speed 
Navigation frame 
position 

Visual Odometry 
processor 

Raw image from two 
cameras, internal IMU, 
and GPS positions 

Navigation frame 
position 

•  Subsystems provide positioning information in load or global navigation 
frames as well as estimates of output uncertainties 
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•  Test route developed by Honda to meet 
road-use class proportioning found by 
FHWA 

•  Environments included trees, tree 
canopies, overpasses, buildings, urban 
canyons, and tunnels 

Integration Testing (Detroit) 
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•  Sensor combinations 
–  Reduced inertial system, L1 GPS, wheel speeds 
–  6 DOF MEMS IMU, L1/L2 GPS, wheel speeds 
–  6 DOF MEMS IMU, L1/L2 GPS, wheel speeds, vision and map based lateral 

positions  

•  Extended Kalman filter implementation 
•  Estimated position, velocity, and attitude of vehicle 
•  Integrated vision information using low resolution map developed 

using Google Earth 

Methodology (Detroit) 
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•  GPS/INS provided improved results 
over standalone GPS particularly in 
heavy foliage and urban canyon 
environments 

•  Vision updates provided improvements 
where the lane of travel was assumed 
to be known (4 and 2 percentage point 
improvement in availability of lane level 
accuracy) 

Results (Detroit) 
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•  Subsystem integration improved positioning accuracy as expected 
but limited by map/survey accuracy/availability 

•  Identified limitation of road fingerprinting and visual odometry 
systems 

•  Need lane detection algorithm leveraging new road edge detection 
methods and/or inertial information 

Observations (Detroit) 
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Integration Testing (NCAT) 

•  Nation Center for Asphalt Technology 
–  1.7 mile oval 
–  RTK GPS Survey of lane markings and lane 

centers 
–  Fingerprint Survey 

•  RTK Base Station 
–  Wireless comm. 
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•  Subsystems Operational 
–  6 DOF MEMS IMU 
–  L1/L2 GPS 
–  Vehicle CAN 
–  AU-LDW (Camera, Lidar) 
–  PSU Fingerprinting  

•  Estimated position, velocity, and attitude of 
vehicle 

•  Integrated vision/fingerprinting information using 
high accuracy map/survey of test track 

•  Four data sets of several laps over three days 
•  Speeds ranging from 5 to 55 mph 

Methodology (NCAT) 



Samuel Ginn College of Engineering 

Results (NCAT) 

•  GPS/INS accuracy dependent on GPS  
•  Vision and Fingerprinting integration results in consistent 

improvement in horizontal errors 
Horizontal Error (m) 

Run 1 Run 2 Run 3 Run 4 Average 
GPS 1.61 1.98 1.79 1.60 1.75 
GPS/INS 1.60 1.96 1.70 1.61 1.72 
Full Sys 1.10 1.07 1.00 0.93 1.03 GPS 

GPS/INS 
Full Sys 
Reference 
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•  Lane level accuracy improves significantly with 
vision and fingerprint aiding 

•  Filter memory limits affects GPS/INS solution 

Results (NCAT) 

30 

40 

50 

60 

70 

80 

90 

GPS GPS/INS Full Sys 

Run1 

Run2 

Run3 

Run4 

Horizontal Error < 1.5 meters (%) 

GPS 73.9 35.1 52.4 75.5 
GPS/INS 72.9 36.0 58.3 73.7 
Full Sys 80.4 84.1 72.0 83.7 

 GPS 
 GPS/INS 
 Reference 
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Testing (Turner/Fairbank) 

•  Data was collected in the Turner/
Fairbank driveways 

•  Novatel base station provided RTK 
corrections 

•  Satellite visibility degraded in some 
areas 
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Results (Turner/Fairbank) 

•  RTK accuracy for reference solution was 
intermittent (55 % of run on average) 

•  Limited precision of fingerprinting survey 
•  Lane level accuracy best with GPS/INS due to 

error correlation 
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Positioning Visualization 

•  Real time display of positions from multiple sensors 
•  Error ellipse & pose history  
•  Easily import map data points 
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Positioning Visualization 

•  See Videos 
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Conclusions & Beyond 

•  Addition of Subsystems help improve lane 
level accuracy 

•  Continued testing needed to assess 
system robustness 

 
•  Onsite Demo Dec 10 
•  Automotive Panel invited 

– VW, Trimble, Volvo truck confirmed. 


