

Next Generation Vehicle Positioning in GPS-Degraded Environments for Vehicle Safety and Automation Systems Kickoff Meeting with FHWA

Supun Samarasekera, Chetna Bindra Nov 2009

A subsidiary of SRI International

GPS-Denied Navigation Low Cost & Small Form Factor High Accuracy 360° Situational Awareness

Dismounted Soldier

Human-Robot Collaboration

Large Vehicles

Man-transportable Robot

Core Features:

- Operates Indoors and Outdoors using GPS Denied Navigation.
- Navigation through Complex Environments with 6 Degrees of Freedom Localization (0.1% Drift Rates)
- •Highly Accurate following using Visual Landmarks. (5cm Accuracy)
- •Automatic Safety-Stop to avoid hitting anyone. Automatic restart when obstacle is out of the way.
- Obstacle avoidance using real-time stereo processing

SARNOFF'

© 2009 Sarnoff Corporation, a subsidiary of SRI International

Visual Aided Navigation: Warfighter Geo-Location and Gaze Estimation

Relative Pose Estimation:

3D ego-motion (6 DOF pose) estimated in real-time using stereo cameras

Absolute Pose Estimation:

- Automatic Detection and Matching of Visual Landmarks
- Landmark database created on the fly
- Opportunistic use of GPS when available

Raw relative Location Estimates $\begin{array}{c} 4 \\ 2 \\ 2 \\ 3 \\ 1 \\ 1 \end{array}$

Drift correction in relative position estimates with visual landmark matching

GPS Challenged 3D Localization and Orientation Estimation (6 DOF)

Integrated Navigation System Performance at 0.1% Drift Drift reset by landmark matching

•Experiment Scenario

- -Outdoor & indoor
- -Opening doors, White Walls
- -Moving Objects

ARNOFF'

Accuracy Results * GPS at 2 points

Duration: 435s (7.15 minutes) Distance (3D): 545.51m Loop closure accuracy (over start-to-end distance) Stereo- Camera+ On-the-Fly-Landmarks: 0.54 m

Performance in Building & Stairs

Π

Estimated 3D track of path in building&Stairs

- Duration: 404s (6 minutes 44 seconds)
- Distance (3D): 361.43m

Loop closure accuracy (over start-to-end distance)

Multi-Stereo-Camera + on-the-fly Landmarks: 0.48 m

Landmark Matching Examples

Matching Similar Views

Matching Different Views

Matching Views with Large Scale and Orientation Change

Green Points or Red Lines: false matches (can be eliminated successfully). Blue: the final matches that satisfy geometry constraints (good matches).

Data collection system

Real-Time Google Display

SARNOFF Corporation

Recovered trajectory: GPS (blue), Visual Odometry (red).

All dimensions in meters

Visual Odometry Palmer Square

-10

-15 -20

3D Moving Target Detection

Moving objects / Pop-Up targets automatically detected after compensation of the 3D motion of the vehicle.

System Accuracy: Sequence 2 Error for VisOdo only

The trajectories after the alignment. The Computed Errors (meter)

Distance Traveled	Min	Мах	Median	Mean
266.62	0.000267	0.91672	0.32611	0.34266
			©2008 Sarnoff	
OFF'			subsidiary of SRI International	

System Accuracy: Sequence 2 Error for Visodo+LM

The trajectories after the alignment.

Note: Visodo+LM refers to visodo with online-built landmark database.

ARNOFF

The Co	omputed	Errors	s (meter))

Distance Traveled	Min	Мах	Median	Mean	
266.62	0.00142	0.34655	0.07399	0.09577	
	©2008 Sarroff Corporation, a				
	subsidiary of SRI International				

System Accuracy: Sequence 2 Landmark Matching Accuracy

• There are landmark matches whenever there are common path segments during traversal.

The Computed Errors (meter)

Distance Traveled	Min	Мах	Median	Mean
266.62	0.0002	0.3158	0.01716	0.0255
			©2008 Sarnoff	
OFF*			subsidiary of SRI International	

Lighting Change Evaluation: Reference Sequence Image Sample of Sequence One Dawn: 6:31am

©2008 Sarnoff Corporation, a subsidiary of SRI International

Lighting Change Evaluation: Image Sample of Sequence Two Dawn: 6:53am

© 2008 Sarnoff Corporation, a subsidiary of SRI International

Lighting Change Evaluation: Sequence 2 Landmark Matching Accuracy

	The Com	puted Erro	ors (meter)
--	---------	------------	-------------

Distance Traveled	Min	Мах	Median	Mean
122.39	0.000009	0.16794	0.02261	0.03092
			©2008 Sar	noff
ARNOFF'	RNOFF'			

Corporation

subsidiary of SRI International

Lighting Change Evaluation: Image Sample of Sequence Three Noon:12:37pm

© 2008 Sarnoff Corporation, a subsidiary of SRI International

Lighting Change Evaluation: Landmark Matching Accuracy

The Computed Errors (meter)

Distance Traveled	Min	Мах	Median	Mean
145.57	0.0006771	0.1542	0.0231	0.0333
Corporation, a subsidiary of SRI International				noff n, a of SRI nal

Lighting Change Evaluation: Image Sample of Sequence Four Dusk: 4:56pm

©2008 Sarnoff Corporation, a subsidiary of SRI International

Lighting Change Evaluation: Landmark Matching Accuracy

The Computed Errors (meter)

Distance Traveled	Min	Мах	Median	Mean
144.73	0.0000523	0.17423	0.01691	0.03588

Visual Odometry and INS Enables Underconstrained RF Ranging

A) Fully connected RF

ARNOFF

orporation

Mobile node location is established to high precision

B) RF with missing link

Position is uncertain along circumference of circle centered on the established link

RF+INS also provides position reference for dynamically located fixed nodes

©2009 Sarnoff Corporation, a subsidiary of SRI International

Node with INS Reduced position uncertainty

C) RF + INS

RF provides constraint in radial direction, INS along the circumference

The Teamwork Effect

Mobile Locator Node

Disposable

Relay Node

Deployable

nchor Node

Radio & S Processing Unit

Navigation Display Unit

> Inertial Navigation Unit (INU)

- The "Teamwork Effect" enables platforms operating in groups to achieve significantly better navigation accuracy than when operating individually
- Opportunistic Peer-to-Peer Ranging Constrains INS Drift
 - Range estimate between two platforms serves as a "Wireless Tether" between them and bounds their otherwise independent drifts
 - Using multiple inter-asset range estimates constrain INS drift further

• Teamwork Effect holds as team size varies

- Single pair to large groups

$$\mathcal{E}(n,s) \propto \mathcal{E}(1,s)/\sqrt{n}$$

- i.e. Position accuracy improves by a factor √n for an n-node group
 - General performance prediction guideline for distributed multimodal fusion

Simulation with RF-Ranging

Enhancement of Geolocation Accuracy using Distributed Navigation

©2009 Sarnoff Corporation, a subsidiary of SRI International

Corporation

The Anchor Effect

- Deployable Anchor Node
 - Reference beacon deployed at fixed location
 - Zero INS drift error: position estimate (and error) remains constant
 - Anchor point for mobile nodes whose position estimates degrade with time/distance
- Deployed opportunistically (pre- or during mission) as stationary wireless tethers and communication relay nodes
 - Self-calibration of deployed nodes based on best location estimate available at the time of deployment
- The use of even a single Deployable Anchor Node can increase system accuracy by a factor of 2 to 3
- The use of two Deployable Anchor Nodes can bound absolute system error to <1m SEP
- Contrast with classical Time Difference of Arrival (multilateration) and Time of Arrival (trilateration) approaches that require at least 4 constraining measurements

The Anchor Effect: Simulation Validation

Absolute

Position

Accuracy

Shown

• 1 Anchor \rightarrow 2-3X performance improvement

SARNOFF Corporation

• 2 Anchors → Constant, low level error 1-2m SEP or less

© 2009 Sarnoff Corporation, a subsidiary of SRI International